Dissertations / Theses on the topic 'Fuzzy c-means clustering analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Fuzzy c-means clustering analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kanade, Parag M. "Fuzzy ants as a clustering concept." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000397.
Full textCamara, Assa. "Využití fuzzy množin ve shlukové analýze se zaměřením na metodu Fuzzy C-means Clustering." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417051.
Full textStetco, Adrian. "An investigation into fuzzy clustering quality and speed : fuzzy C-means with effective seeding." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/an-investigation-into-fuzzy-clustering-quality-and-speed-fuzzy-cmeans-with-effective-seeding(fac3eab2-919a-436c-ae9b-1109b11c1cc2).html.
Full textRodgers, Sarah. "Application of the fuzzy c-means clustering algorithm to the analysis of chemical structures." Thesis, University of Sheffield, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412772.
Full textFANEGAN, JULIUS BOLUDE. "A FUZZY MODEL FOR ESTIMATING REMAINING LIFETIME OF A DIESEL ENGINE." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1188951646.
Full textZubková, Kateřina. "Text mining se zaměřením na shlukovací a fuzzy shlukovací metody." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-382412.
Full textPondini, Alessio. "Tenacizzazione di laminati compositi mediante l'utilizzo di nanofibre in PVDF." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8463/.
Full textAtaeian, Seyed Mohsen, and Mehrnaz Jaberi Darbandi. "Analysis of Quality of Experience by applying Fuzzy logic : A study on response time." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5742.
Full textZettervall, Hang. "Fuzzy Set Theory Applied to Make Medical Prognoses for Cancer Patients." Doctoral thesis, Blekinge Tekniska Högskola [bth.se], Faculty of Engineering - Department of Mathematics and Natural Sciences, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-00574.
Full textMoura, Ronildo Pinheiro de Ara?jo. "Algoritmos de agrupamentos fuzzy intervalares e ?ndice de valida??o para agrupamento de dados simb?licos do tipo intervalo." Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br:8080/jspui/handle/123456789/18111.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
Symbolic Data Analysis (SDA) main aims to provide tools for reducing large databases to extract knowledge and provide techniques to describe the unit of such data in complex units, as such, interval or histogram. The objective of this work is to extend classical clustering methods for symbolic interval data based on interval-based distance. The main advantage of using an interval-based distance for interval-based data lies on the fact that it preserves the underlying imprecision on intervals which is usually lost when real-valued distances are applied. This work includes an approach allow existing indices to be adapted to interval context. The proposed methods with interval-based distances are compared with distances punctual existing literature through experiments with simulated data and real data interval
A An?lise de Dados Simb?licos (SDA) tem como objetivo prover mecanismos de redu??o de grandes bases de dados para extra??o do conhecimento e desenvolver m?todos que descrevem esses dados em unidades complexas, tais como, intervalos ou um histograma. O objetivo deste trabalho ? estender m?todos de agrupamento cl?ssicos para dados simb?licos intervalares baseados em dist?ncias essencialmente intervalares. A principal vantagem da utiliza??o de uma dist?ncia essencialmente intervalar est? no fato da preserva??o da imprecis?o inerente aos intervalos, pois a imprecis?o ? normalmente perdida quando as dist?ncias valoradas em R s?o aplicadas. Este trabalho inclui uma abordagem que permite adaptar ?ndices de valida??o de agrupamento existentes para o contexto intervalar. Os m?todos propostos com dist?ncias essencialmente intervalares s?o comparados a dist?ncias pontuais existentes na literatura atrav?s de experimentos realizados com dados sint?ticos e reais intervalares
Parker, Jonathon Karl. "Accelerated Fuzzy Clustering." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4929.
Full textNaik, Vaibhav C. "Fuzzy C-means clustering approach to design a warehouse layout." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000437.
Full textFURUHASHI, Takeshi, and Makoto YASUDA. "Fuzzy Entropy Based Fuzzy c-Means Clustering with Deterministic and Simulated Annealing Methods." Institute of Electronics, Information and Communication Engineers, 2009. http://hdl.handle.net/2237/15060.
Full textHong, Sui. "Experiments with K-Means, Fuzzy c-Means and Approaches to Choose K and C." Honors in the Major Thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1224.
Full textBachelors
Engineering and Computer Science
Computer Engineering
Altinel, Fatih. "An Empirical Study On Fuzzy C-means Clustering For Turkish Banking System." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615027/index.pdf.
Full textdifference between initial non-optimized and final optimized values of objective function&rsquo
starts to diminish as number of clusters increases.
Chahine, Firas Safwan. "A Genetic Algorithm that Exchanges Neighboring Centers for Fuzzy c-Means Clustering." NSUWorks, 2012. http://nsuworks.nova.edu/gscis_etd/116.
Full textRapstine, Thomas D. "Gravity gradiometry and seismic interpretation integration using spatially guided fuzzy c-means clustering inversion." Thesis, Colorado School of Mines, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1602383.
Full textGravity gradiometry has been used as a geophysical tool to image salt structure in hydrocarbon exploration. The knowledge of the location, orientation, and spatial extent of salt bodies helps characterize possible petroleum prospects. Imaging around and underneath salt bodies can be challenging given the petrophysical properties and complicated geometry of salt. Methods for imaging beneath salt using seismic data exist but are often iterative and expensive, requiring a refinement of a velocity model at each iteration. Fortunately, the relatively strong density contrast between salt and background density structure pro- vides the opportunity for gravity gradiometry to be useful in exploration, especially when integrated with other geophysical data such as seismic. Quantitatively integrating multiple geophysical data is not trivial, but can improve the recovery of salt body geometry and petrophysical composition using inversion. This thesis provides two options for quantitatively integrating seismic, AGG, and petrophysical data that may aid the imaging of salt bodies. Both methods leverage and expand upon previously developed deterministic inversion methods. The inversion methods leverage seismically derived information, such as horizon slope and salt body interpretation, to constrain the inversion of airborne gravity gradiometry data (AGG) to arrive at a density contrast model. The first method involves constraining a top of salt inversion using slope in a seismic image. The second method expands fuzzy c-means (FCM) clustering inversion to include spatial control on clustering based on a seismically derived salt body interpretation. The effective- ness of the methods are illustrated on a 2D synthetic earth model derived from the SEAM Phase 1 salt model. Both methods show that constraining the inversion of AGG data using information derived from seismic images can improve the recovery of salt.
Beca, Cofre Sebastián. "Clustering Difuso con Selección de Atributos." Tesis, Universidad de Chile, 2007. http://www.repositorio.uchile.cl/handle/2250/104686.
Full textTurner, Kevin Michael. "Estimation of Ocean Water Chlorophyll-A Concentration Using Fuzzy C-Means Clustering and Artificial Neural Networks." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/TurnerKM2007.pdf.
Full textHore, Prodip. "Scalable frameworks and algorithms for cluster ensembles and clustering data streams." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002135.
Full textChakeri, Alireza. "Scalable Clustering Using the Dempster-Shafer Theory of Evidence." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6478.
Full textLai, Daphne Teck Ching. "An exploration of improvements to semi-supervised fuzzy c-means clustering for real-world biomedical data." Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14232/.
Full textMilagre, Selma Terezinha. "Análise do número de grupos em bases de dados incompletas utilizando agrupamentos nebulosos e reamostragem Bootstrap." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/18/18153/tde-04032009-150315/.
Full textClustering in exploratory data analysis is often necessary in several areas of the survey such as medicine, biology and statistics, to evaluate potential hypotheses for subsequent studies. In real datasets the occurrence of incompleteness, where the values of some of the attributes are unknown, is very common. This work presents a method capable to identifying the number of clusters present in incomplete datasets, using a combination of the fuzzy clustering and resampling (bootstrapping). The quality of classification is based on the traditional measures, like F1, Cross-Classification, Hubert and others. The studies were made on eigth datasets. The first four are artificial datasets, the fifth and sixth are the wine and iris datasets. The seventh and eighth databases are composed of the brazilian collection of 119 Bradyrhizobium strains. To evaluate all information without introducing estimates, a modification of the Fuzzy C-Means (FCM) algorithm was developed using an index vector of attributes, which indicates whether an attribute value is observed or not, and changing the center and distance calculations. The simulations were made from 2 to 8 clusters using 100 sub-samples. The percentages of the missing values used were 2%, 5%, 10%, 20% and 30%. Even lacking data and with no special requirements of the database, the results of this work demonstrate that the proposed method is capable to identifying relevant partitions. The best experimental results were found using Hubert and corrected randomness measures.
Hughes, M. Joseph. "Determining biogeochemical assemblages on the Stony River, Grant County, WV, using fuzzy c-means and k-nearest neighbors clustering." Huntington, WV : [Marshall University Libraries], 2006. http://www.marshall.edu/etd/descript.asp?ref=723.
Full textGu, Yuhua. "Ant clustering with consensus." [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0002959.
Full textBacak, Hikmet Ozge. "Decision Making System Algorithm On Menopause Data Set." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12612471/index.pdf.
Full textsimilarity measure&rdquo
between clusters defined in the thesis. During the merging process, the cluster center coordinates do not change but the data members in these clusters are merged in a new cluster. As the output of this method, therefore, one obtains clusters which include many cluster centers. In the final part of this study, an application of the clustering algorithms &ndash
including the multiple centered clustering method &ndash
a decision making system is constructed using a special data on menopause treatment. The decisions are based on the clusterings created by the algorithms already discussed in the previous chapters of the thesis. A verification of the decision making system / v decision aid system is done by a team of experts from the Department of Department of Obstetrics and Gynecology of Hacettepe University under the guidance of Prof. Sinan Beksaç
.
Soumi, Ghosh. "A Quasi Stationary Service Architecture for Network Monitoring and Connectivity Prediction in Aeronautical Ad Hoc Network Using Fuzzy C Means Clustering." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31495.
Full textFontana, Fabiane Sorbar. "Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias." Universidade Estadual do Oeste do Paraná, 2017. http://tede.unioeste.br/handle/tede/3764.
Full textMade available in DSpace on 2018-06-15T20:19:22Z (GMT). No. of bitstreams: 2 Fabiane_Fontana2018.pdf: 2677532 bytes, checksum: 3036328537227cc96b8ea368e893f2fc (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-07-19
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Precision Agriculture (AP) uses technologies aimed at increasing productivity and reducing environmental impact through localized application of agricultural inputs. In order to make AP economically feasible, it is essential to improve current methodologies, as well as to propose new ones, such as the design of management areas (MZs) from productivity data, topographic, and soil attributes, among others, to determine which are heterogeneous subareas among themselves in the same area. In this context, the main objective of this research was to evaluate three distance metrics (Diagonal, Euclidian, and Mahalanobis) through FUZME and SDUM software (for the definition of management units) using the fuzzy c-means algorithm, and, at a further moment, to evaluate the cultures of soybeans and corn, as well as the association between them. On the first scientific paper, using data corresponding to four distinct areas, the three metrics with original and normalized data associated with soybean yield were evaluated. For area A, the Diagonal and Mahalanobis distances exempted the need for normalization of the variables, presenting areas that were identical for both versions. After the normalization of the data, the Euclidian distance presented a better delineation in its MZs for area A. For areas B, C, and D it was not possible to reach conclusions regarding the best performance, since only one variable was used for the process of MZs, and that has directly influenced the results. On the second scientific paper, data corresponding to three distinct areas were applied to analyze the use of soybean and corn yields, as well as the association between them, in the selection of variables to define MZs. Based on the variables available for each of the areas, the selection was carried out using the spatial correlation method, considering, for each one of the areas, the three target yields (soybean, corn, and soybean+corn). The type of productivity used demonstrated two different outcomes: first in the variable selection process, where its alternation resulted in different selections for the same area, and second, in the evaluation of the defined MZs, where even when the same variables were selected in the definition of the MZs, the performances of the MZs were different. After the validation methods applied, it was verified that the best target yield was soybean+corn, reasserting the idea of being better to use these two cultures, together, when defining the MZs of an area with rotating crops of soybean and corn.
A Agricultura de Precisão (AP) utiliza tecnologias objetivando o aumento da produtividade e redução do impacto ambiental por meio de aplicação localizada de insumos agrícolas. Para viabilizar economicamente a AP, é essencial aprimorar as metodologias atuais, bem como propor novas, como, por exemplo, o delineamento de zonas de manejo (ZMs) a partir de dados de produtividade, atributos topográficos e do solo, entre outros, utilizados a fim de determinar subáreas heterogêneas entre si em uma mesma área. Neste contexto, este trabalho teve como principal objetivo avaliar três métricas de distâncias (Diagonal, Euclidiana e Mahalanobis) junto aos Softwares FUZME e SDUM (Software para a definição de unidades de manejo), que utilizam o algoritmo fuzzy c-means, e, em um segundo momento, avaliar também as culturas de soja e milho, assim como a associação entre elas. No primeiro artigo, utilizando dados correspondentes a quatro áreas distintas, avaliaram-se as três métricas com dados originais e normalizados associados à produtividade de soja. Para a área A, as distâncias Diagonal e Mahalanobis dispensaram a necessidade de normalização das variáveis, apresentando áreas idênticas para as duas versões. Após a normalização dos dados, a distância Euclidiana apresentou um melhor delineamento em suas ZMs para a área A. Para as áreas B, C e D não foi possível obter conclusões quanto ao melhor desempenho, visto que o fato de ser utilizado apenas uma variável para o processo de definição de ZMs influenciou diretamente nos resultados obtidos. No segundo artigo, dados correspondentes a três áreas distintas foram utilizados para analisar o uso de produtividades de soja e milho, assim como a associação entre elas, na seleção de variáveis para definição de ZMs. A partir das variáveis disponíveis para cada uma das áreas foi realizada a seleção destas através do método da correlação espacial, levando em consideração, para cada uma das áreas, as três produtividades-alvo (soja, milho e soja+milho). O tipo de produtividade utilizada repercutiu de duas formas diferentes: primeiro no processo de seleção de variáveis, onde a sua alternância resultou em seleções diferenciadas para uma mesma área; e em um segundo momento, na avaliação das ZMs definidas, onde mesmo quando as mesmas variáveis foram selecionadas na definição das ZMs, os desempenhos das ZMs foram diferentes. Após os métodos de validação aplicados, verificou-se que a melhor produtividade-alvo foi soja+milho, reforçando a ideia de ser útil a utilização destas duas culturas, em conjunto, na definição das ZMs de uma área com alternância de produção de soja e milho.
Silva, Ana Claudia Guedes. "Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná." Universidade Estadual do Oeste do Paraná, 2018. http://tede.unioeste.br/handle/tede/3760.
Full textMade available in DSpace on 2018-06-15T17:07:21Z (GMT). No. of bitstreams: 2 Ana Claudia_Silva2018.pdf: 1741410 bytes, checksum: 83384ab7c02835c3d776f862defc84c1 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-02-07
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The design of hydrologically homogeneous regions (RHH) is an essential procedure to provide information essential to the modeling, planning, and management of water resources, especially when it is necessary to perform the regionalization of flows, aiming to estimate the water availability in sections without measurements. The definition of strategies for the management and conservation of natural resources depends on information obtained through the identification of RHH, also being one of the steps of a study of regionalization of flows. Thus, this work has the objective of identifying the RHH in the state of Paraná through the grouping method Fuzzy C-Means. A total of 9 variables were used for the 114 fluviometric stations, with 4 dependent variables related to the characteristic flows (annual average long-term flow (Qmld), minimum annual flow with seven days duration and 10-year return period (Q7,10), flow rates associated to the 95% (Q95) and 90% (Q90) permanencies) and 5 independent variables related to the morphometric characteristics of the station (drainage area (AD - m²), sum of drainage (SD - m) (LA - Lat and longitude - Long). From the principal components analysis (PCA), the variables Qmld, DD, Lat and Long were identified as the least representative, being discarded from the study, proceeding with the analysis using only the variables AD, SD, Q90, Q95, and Q7,10. The results were obtained using the Fuzzy C-Means for the chosen variables, and the smallest objective function was found for 4 Clusters in the study group, with index of and fuzzification (m) 1.7. Separating the fluviometric stations by clusters through degrees of pertinence, the largest number of stations were obtained in Cluster 3 (83 stations), followed by Cluster 4 (13 stations) and Clusters 1 and 2 (7 stations in each cluster), and only 4 stations were not inserted in any cluster, being classified as nebulae, where the groups were determined practically by the distribution of the AD and SD variables. The smaller areas of coverage, analyzed flows and the smaller amount of drainage in the coverage area of the stations were found in Cluster 3, considering they were well spread in the state of Paraná. Clusters 1 and 4 were intermediate among the other clusters in all parameters evaluated. The Fuzzy C-Means algorithm proved to be efficient for the grouping of fluviometric stations in the state of Paraná, where it was possible to find the characteristics of each cluster formed, without overlapping of data in the analyzed variables.
O delineamento de regiões hidrologicamente homogêneas (RHH) é um procedimento essencial para provimento de informações indispensáveis aos trabalhos de modelagem, planejamento e gestão de recursos hídricos, principalmente quando se tem a necessidade de realizar a regionalização de vazões, visando estimar a disponibilidade hídrica em seções desprovidas de medições. A definição de estratégias de manejo e conservação dos recursos naturais depende de informações obtidas por meio da identificação de RHH, sendo também um dos passos de um estudo de regionalização de vazões. Assim, este trabalho tem como objetivo a identificação das RHH no estado do Paraná através do método de agrupamento Fuzzy C-Means. Foram utilizadas 9 variáveis, individualizadas para as 114 estações fluviométricas adotadas, sendo 4 variáveis dependentes referentes às vazões características (vazão média anual de longa duração (Qmld), vazão mínima anual com sete dias de duração e período de retorno de 10 anos (Q7,10), vazões associadas às permanências de 95% (Q95) e 90% (Q90)) e 5 independentes referentes às características morfometrias da estação (área de drenagem (AD – m²), soma das drenagens (SD - m), densidade de drenagem (DD – 1/m) e a localização geográfica (latitude - Lat e longitude - Long). A partir da análise de componentes principais (ACP) identificou-se as variáveis Qmld, DD, Lat e Long como as menos representativas, sendo excluídas do estudo, dando procedência à análise de agrupamentos apenas com as variáveis AD, SD, Q90, Q95 e Q7,10. Aplicou-se o Fuzzy C-Means para as variáveis escolhidas, sendo que a menor função objetiva encontrada foi para 4 Clusters no índice de fuzzificação (m) 1,7. Separando as estações fluviométricas por clusters através dos graus de pertinência, obtivemos o maior número de estações no Cluster 3 (83 estações), seguidos do Cluster 4 (13 estações) e dos Clusters 1 e 2 (7 estações em cada cluster), e apenas 4 estações não foram inseridas em nenhum cluster, sendo classificadas como nebulosas, sendo que os grupos foram determinados praticamente pela distribuição das variáveis AD e SD. As menores áreas de abrangência, vazões analisadas e as menores quantidade de drenagens na área de cobertura das estações foram encontras no Cluster 3, que estão bem espalhadas no estado do Paraná. Já os Clusters 1 e 4 ficaram intermediários entre os demais clusters em todos os parâmetros avaliados. O algoritmo Fuzzy C-Means se mostrou eficiente para o agrupamento das estações fluviométricas no estado do Paraná, onde foi possível encontrar as características de cada cluster formado, sem haver sobreposição de dados nos intervalos das variáveis analisadas.
Vargas, Rogerio Rodrigues de. "Uma nova forma de calcular os centros dos Clusters em algoritmos de agrupamento tipo fuzzy c-means." Universidade Federal do Rio Grande do Norte, 2012. http://repositorio.ufrn.br:8080/jspui/handle/123456789/17949.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
Clustering data is a very important task in data mining, image processing and pattern recognition problems. One of the most popular clustering algorithms is the Fuzzy C-Means (FCM). This thesis proposes to implement a new way of calculating the cluster centers in the procedure of FCM algorithm which are called ckMeans, and in some variants of FCM, in particular, here we apply it for those variants that use other distances. The goal of this change is to reduce the number of iterations and processing time of these algorithms without affecting the quality of the partition, or even to improve the number of correct classifications in some cases. Also, we developed an algorithm based on ckMeans to manipulate interval data considering interval membership degrees. This algorithm allows the representation of data without converting interval data into punctual ones, as it happens to other extensions of FCM that deal with interval data. In order to validate the proposed methodologies it was made a comparison between a clustering for ckMeans, K-Means and FCM algorithms (since the algorithm proposed in this paper to calculate the centers is similar to the K-Means) considering three different distances. We used several known databases. In this case, the results of Interval ckMeans were compared with the results of other clustering algorithms when applied to an interval database with minimum and maximum temperature of the month for a given year, referring to 37 cities distributed across continents
Agrupar dados ? uma tarefa muito importante em minera??o de dados, processamento de imagens e em problemas de reconhecimento de padr?es. Um dos algoritmos de agrupamentos mais popular ? o Fuzzy C-Means (FCM). Esta tese prop?e aplicar uma nova forma de calcular os centros dos clusters no algoritmo FCM, que denominamos de ckMeans, e que pode ser tamb?m aplicada em algumas variantes do FCM, em particular aqui aplicamos naquelas variantes que usam outras dist?ncias. Com essa modifica??o, pretende-se reduzir o n?mero de itera??es e o tempo de processamento desses algoritmos sem afetar a qualidade da parti??o ou at? melhorar o n?mero de classifica??es corretas em alguns casos. Tamb?m, desenvolveu-se um algoritmo baseado no ckMeans para manipular dados intervalares considerando graus de pertin?ncia intervalares. Este algoritmo possibilita a representa??o dos dados sem convers?o dos dados intervalares para pontuais, como ocorre com outras extens?es do FCM que lidam com dados intervalares. Para validar com as metodologias propostas, comparou-se o agrupamento ckMeans com os algoritmos K-Means (pois o algoritmo proposto neste trabalho para c?lculo dos centros se assemelha ? do K-Means) e FCM, considerando tr?s dist?ncias diferentes. Foram utilizadas v?rias bases de dados conhecidas. No caso, os resultados do ckMeans intervalar, foram comparadas com outros algoritmos de agrupamento intervalar quando aplicadas a uma base de dados intervalar com a temperatura m?nima e m?xima do m?s de um determinado ano, referente a 37 cidades distribu?das entre os continentes
Filho, Márcio Coutinho Brandão Côrtes. "Reconhecimento de padrão na biodisponibilidade do ferro utilizando o Algoritmo Fuzzy C-Means." Universidade do Estado do Rio de Janeiro, 2012. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=4902.
Full textEste trabalho apresenta um método para reconhecimento do padrão na biodisponibilidade do ferro, através da interação com substâncias que auxiliam a absorção como vitamina C e vitamina A e nutrientes inibidores como cálcio, fitato, oxalato, tanino e cafeína. Os dados foram obtidos através de inquérito alimentar, almoço e jantar, em crianças de 2 a 5 anos da única Creche Municipal de Paraty-RJ entre 2007 e 2008. A Análise de Componentes Principais (ACP) foi aplicada na seleção dos nutrientes e utilizou-se o Algoritmo Fuzzy C-Means (FCM) para criar os agrupamentos classificados de acordo com a biodisponibilidade do ferro. Uma análise de sensibilidade foi desenvolvida na tentativa de buscar quantidades limítrofes de cálcio a serem consumidas nas refeições. A ACP mostrou que no almoço os nutrientes que explicavam melhor a variabilidade do modelo foram ferro, vitamina C, fitato e oxalato, enquanto no jantar o cálcio se mostrou eficaz na determinação da variabilidade do modelo devido ao elevado consumo de leite e derivados. Para o almoço, a aplicação do FCM na interação dos nutrientes, notou-se que a ingestão de vitamina C foi determinante na classificação dos grupos. No jantar, a classificação de grupos foi determinada pela quantidade de ferro heme na interação com o cálcio. Na análise de sensibilidade realizada no almoço e no jantar, duas iterações do algoritmo determinaram a interferência total do cálcio na biodisponibilidade do ferro.
This dissertation presents a method for pattern recognition on the bioavailability of iron, through interaction with substances that help the absorption such as vitamin C and vitamin A and inhibitors as calcium, phytate, oxalate, tannin and caffeine. The database was obtained through dietary, lunch and dinner, in children 2-5 years in the Municipal Nursery of Paraty - Rio de Janeiro, between 2007 and 2008. The Principal Component Analysis (PCA) was applied in the selection of nutrients and used the Fuzzy C-Means Algorithm (FCM) to create the groups classified according to the bioavailability of iron. A sensitivity analysis was developed in an attempt to find neighboring amounts of calcium being consumed at meals. The PCA showed that at lunch the nutrients that best explained the variability of the model were iron, vitamin C, phytate and oxalate, while at dinner the calcium was effective in determining the variability of the model due to high consumption of dairy products. For lunch, the application of FCM in the interaction of nutrients, it was noted that the intake of vitamin C was decisive in the classification of groups. At dinner, the classification of groups was determined by the amount of iron in the interaction with calcium. In the sensitivity analysis performed for lunch and dinner, two iterations of the algorithm determined the total interference of calcium on iron bioavailability.
Liu, Xiaofeng. "Machinery fault diagnostics based on fuzzy measure and fuzzy integral data fusion techniques." Queensland University of Technology, 2007. http://eprints.qut.edu.au/16456/.
Full textUlucan, Serkan. "A Recommendation System Combining Context-awarenes And User Profiling In Mobile Environment." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606845/index.pdf.
Full text#8217
actions are independent of their instant context (location, time&
#8230
etc). But as for mobile environment, the users&
#8217
actions are strictly dependent on their instant context. These dependencies give raise to need of filtering items/actions with respect to the users&
#8217
instant context. In this thesis, an approach coupling approaches from two different domains, one is the mobile environment and other is the web, is proposed. Hence, it will be possible to separate whole approach into two phases: context-aware prediction and user profiling. In the first phase, combination of two methods called fuzzy c-means clustering and learning automata will be used to predict the mobile user&
#8217
s motions in context space beforehand. This provides elimination of a large amount of items placed in the context space. In the second phase, hierarchical fuzzy clustering for users profiling will be used to determine the best recommendation among the remaining items.
Arnaldo, Helo?na Alves. "Novos m?todos determin?sticos para gerar centros iniciais dos grupos no algoritmo fuzzy C-Means e variantes." Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br:8080/jspui/handle/123456789/18109.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
Data clustering is applied to various fields such as data mining, image processing and pattern recognition technique. Clustering algorithms splits a data set into clusters such that elements within the same cluster have a high degree of similarity, while elements belonging to different clusters have a high degree of dissimilarity. The Fuzzy C-Means Algorithm (FCM) is a fuzzy clustering algorithm most used and discussed in the literature. The performance of the FCM is strongly affected by the selection of the initial centers of the clusters. Therefore, the choice of a good set of initial cluster centers is very important for the performance of the algorithm. However, in FCM, the choice of initial centers is made randomly, making it difficult to find a good set. This paper proposes three new methods to obtain initial cluster centers, deterministically, the FCM algorithm, and can also be used in variants of the FCM. In this work these initialization methods were applied in variant ckMeans.With the proposed methods, we intend to obtain a set of initial centers which are close to the real cluster centers. With these new approaches startup if you want to reduce the number of iterations to converge these algorithms and processing time without affecting the quality of the cluster or even improve the quality in some cases. Accordingly, cluster validation indices were used to measure the quality of the clusters obtained by the modified FCM and ckMeans algorithms with the proposed initialization methods when applied to various data sets
Agrupamento de dados ? uma t?cnica aplicada a diversas ?reas como minera??o de dados, processamento de imagens e reconhecimento de padr?es. Algoritmos de agrupamento particionam um conjunto de dados em grupos, de tal forma, que elementos dentro de um mesmo grupo tenham alto grau de similaridade, enquanto elementos pertencentes a diferentes grupos tenham alto grau de dissimilaridade. O algoritmo Fuzzy C-Means (FCM) ? um dos algoritmos de agrupamento fuzzy de dados mais utilizados e discutidos na literatura. O desempenho do FCM ? fortemente afetado pela sele??o dos centros iniciais dos grupos. Portanto, a escolha de um bom conjunto de centros iniciais ? muito importante para o desempenho do algoritmo. No entanto, no FCM, a escolha dos centros iniciais ? feita de forma aleat?ria, tornando dif?cil encontrar um bom conjunto. Este trabalho prop?e tr?s novos m?todos para obter os centros iniciais dos grupos, de forma determin?stica, no algoritmo FCM, e que podem tamb?m ser usados em variantes do FCM. Neste trabalho esses m?todos de inicializa??o foram aplicados na variante ckMeans. Com os m?todos propostos, pretende-se obter um conjunto de centros iniciais que esteja pr?ximo dos centros reais dos grupos. Com estas novas abordagens de inicializa??o deseja-se reduzir o n?mero de itera??es para estes algoritmos convergirem e o tempo de processamento, sem afetar a qualidade do agrupamento ou at? melhorar a qualidade em alguns casos. Neste sentido, foram utilizados ?ndices de valida??o de agrupamento para medir a qualidade dos agrupamentos obtidos pelos algoritmos FCM e ckMeans, modificados com os m?todos de inicializa??o propostos, quando aplicados a diversas bases de dados
Wong, Cheok Meng. "A distributed particle swarm optimization for fuzzy c-means algorithm based on an apache spark platform." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3950604.
Full textGuder, Mennan. "Data Mining Methods For Clustering Power Quality Data Collected Via Monitoring Systems Installed On The Electricity Network." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12611120/index.pdf.
Full textMohd-Safar, Noor Zuraidin. "Integration of principal component analysis, fuzzy C-means and artificial neural networks for localised environmental modelling of tropical climate." Thesis, University of Portsmouth, 2017. https://researchportal.port.ac.uk/portal/en/theses/integration-of-principal-component-analysis-fuzzy-cmeans-and-artificial-neural-networks-for-localised-environmental-modelling-of-tropical-climate(46e896a0-e712-4e4f-9812-d5c977fe6b1d).html.
Full textRodríguez, Martínez Cecilia. "Software quality studies using analytical metric analysis." Thesis, KTH, Kommunikationssystem, CoS, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-120325.
Full textIdag spenderar ingenjörsföretag en stor mängd resurser på att upptäcka och korrigera buggar (fel) i sin mjukvara. Det är oftast programmerare som inför dessa buggar på grund av fel och misstag som uppkommer när de skriver koden eller specifikationerna. Inget verktyg kan detektera alla dessa buggar. Några av buggarna förblir oupptäckta trots testning av koden. Av dessa skäl har många forskare försökt hitta indikatorer i programvarans källkod som kan användas för att förutsäga förekomsten av buggar. Varje fel i källkoden är ett potentiellt misslyckande som gör att applikationen inte fungerar som förväntat. För att hitta buggarna testas koden med många olika testfall för att försöka täcka alla möjliga kombinationer och fall. Förutsägelse av buggar informerar programmerarna om var i koden buggarna finns. Således kan programmerarna mer noggrant testa felbenägna filer och därmed spara mycket tid genom att inte behöva testa felfria filer. Detta examensarbete har skapat ett verktyg som kan förutsäga felbenägen källkod skriven i C ++. För att uppnå detta har vi utnyttjat en välkänd metod som heter Software Metrics. Många studier har visat att det finns ett samband mellan Software Metrics och förekomsten av buggar. I detta projekt har en Neuro-Fuzzy hybridmodell baserad på Fuzzy c-means och Radial Basis Neural Network använts. Effektiviteten av modellen har testats i ett mjukvaruprojekt på Ericsson. Testning av denna modell visade att programmet inte Uppnå hög noggrannhet på grund av bristen av oberoende urval i datauppsättningen. Men gjordt experiment visade att klassificering modeller ger bättre förutsägelser än regressionsmodeller. Exjobbet avslutade genom att föreslå framtida arbetet som skulle kunna förbättra detta program.
Actualmente las empresas de ingeniería derivan una gran cantidad de recursos a la detección y corrección de errores en sus códigos software. Estos errores se deben generalmente a los errores cometidos por los desarrolladores cuando escriben el código o sus especificaciones. No hay ninguna herramienta capaz de detectar todos estos errores y algunos de ellos pasan desapercibidos tras el proceso de pruebas. Por esta razón, numerosas investigaciones han intentado encontrar indicadores en los códigos fuente del software que puedan ser utilizados para detectar la presencia de errores. Cada error en un código fuente es un error potencial en el funcionamiento del programa, por ello los programas son sometidos a exhaustivas pruebas que cubren (o intentan cubrir) todos los posibles caminos del programa para detectar todos sus errores. La temprana localización de errores informa a los programadores dedicados a la realización de estas pruebas sobre la ubicación de estos errores en el código. Así, los programadores pueden probar con más cuidado los archivos más propensos a tener errores dejando a un lado los archivos libres de error. En este proyecto se ha creado una herramienta capaz de predecir código software propenso a errores escrito en C++. Para ello, en este proyecto se ha utilizado un indicador que ha sido cuidadosamente estudiado y ha demostrado su relación con la presencia de errores: las métricas del software. En este proyecto un modelo híbrido neuro-disfuso basado en Fuzzy c-means y en redes neuronales de función de base radial ha sido utilizado. La eficacia de este modelo ha sido probada en un proyecto software de Ericsson. Como resultado se ha comprobado que el modelo no alcanza una alta precisión debido a la falta de muestras independientes en el conjunto de datos y los experimentos han mostrado que los modelos de clasificación proporcionan mejores predicciones que los modelos de regresión. El proyecto concluye sugiriendo trabajo que mejoraría el funcionamiento del programa en el futuro.
Koprnicky, Miroslav. "Towards a Versatile System for the Visual Recognition of Surface Defects." Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/888.
Full textThis thesis proposes a framework for generalizing and automating the design of the defect classification stage of an automated visual inspection system. It involves using an expandable set of features which are optimized along with the classifier operating on them in order to adapt to the application at hand. The particular implementation explored involves optimizing the feature set in disjoint sets logically grouped by feature type to keep search spaces reasonable. Operator input is kept at a minimum throughout this customization process, since it is limited only to those cases in which the existing feature library cannot adequately delineate the classes at hand, at which time new features (or pools) may have to be introduced by an engineer with experience in the domain.
Two novel methods are put forward which fit well within this framework: cluster-space and hybrid-space classifiers. They are compared in a series of tests against both standard benchmark classifiers, as well as mean and majority vote multi-classifiers, on feature sets comprised of just the logical feature subsets, as well as the entire feature sets formed by their union. The proposed classifiers as well as the benchmarks are optimized with both a progressive combinatorial approach and with an genetic algorithm. Experimentation was performed on true colour industrial lumber defect images, as well as binary hand-written digits.
Based on the experiments conducted in this work, it was found that the sequentially optimized multi hybrid-space methods are capable of matching the performances of the benchmark classifiers on the lumber data, with the exception of the mean-rule multi-classifiers, which dominated most experiments by approximately 3% in classification accuracy. The genetic algorithm optimized hybrid-space multi-classifier achieved best performance however; an accuracy of 79. 2%.
The numeral dataset results were less promising; the proposed methods could not equal benchmark performance. This is probably because the numeral feature-sets were much more conducive to good class separation, with standard benchmark accuracies approaching 95% not uncommon. This indicates that the cluster-space transform inherent to the proposed methods appear to be most useful in highly dependant or confusing feature-spaces, a hypothesis supported by the outstanding performance of the single hybrid-space classifier in the difficult texture feature subspace: 42. 6% accuracy, a 6% increase over the best benchmark performance.
The generalized framework proposed appears promising, because classifier performance over feature sets formed by the union of independently optimized feature subsets regularly met and exceeded those classifiers operating on feature sets formed by the optimization of the feature set in its entirety. This finding corroborates earlier work with similar results [3, 9], and is an aspect of pattern recognition that should be examined further.
Budayan, Cenk. "Strategic Group Analysis: Strategic Perspective, Differentiation And Performance In Construction." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609676/index.pdf.
Full textSobíšek, Lukáš. "Shluková a regresní analýza mikropanelových dat." Doctoral thesis, Vysoká škola ekonomická v Praze, 2010. http://www.nusl.cz/ntk/nusl-261941.
Full textHunter, Brandon. "Channel Probing for an Indoor Wireless Communications Channel." BYU ScholarsArchive, 2003. https://scholarsarchive.byu.edu/etd/64.
Full textChing-Lin, Lin, and 林敬霖. "Kernel Intuitionistic Fuzzy C-Means Clustering Algorithms with Rough Set for Customer Analysis." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/69926836270687990934.
Full text龍華科技大學
資訊管理系碩士班
101
Fuzzy C-mean (FCM) algorithms have been widely used in variety of different places. This paper proposes a kernel intuitionistic fuzzy c-means clustering algorithms with rough set (KIFCMRS), and this method is applied to the E-learning data analysis. The rule generation can be divided into two stages for effective rule generation. In the first stage, KIFCM takes advantages of kernel function and intuitionistic fuzzy sets to cluster raw data into similarity groups. In the second stage, the rough set theory is employed to generate rules with different groups. Finally, this paper compared different methods, the first stages comparative KIFCM and the other two methods (KM, FCM), the second stages compare the KIFCMRS and the other two methods (ID3, RS). Comparison with other approaches demonstrate the superior performance of the proposed KIFCMRS.
Lin, Chun-Hao, and 林峻皓. "Electric Signal-Based Proactive Operation Condition Monitoring of High-Voltage Motors Using Principal Component Analysis and Fuzzy C-means Clustering." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/3ta44f.
Full text國立臺灣科技大學
電機工程系
107
In today's industry, high-voltage motors are indispensable sources of power. There are some characteristics about high-voltage motors, like long life cycle, high energy efficiency, low vibration noise and high stability. High-voltage motors usually need long-term operation to maintain economic efficiency. Therefore, how to maintain high-voltage motors is an important issue. Most of today's factories or electric power plants adopt a maintenance strategy for predetermined maintenance, also known as time-based maintenance (TBM). Although the probability of failure can be reduced, the potential operation status of the high-voltage motor cannot be displayed immediately. If the operation status of the high-voltage motor can be predicted early and prevented in advance, the maintenance cost can be greatly reduced, and major accidents can be avoided. This thesis is dedicated to the establishment of a proactive high-voltage motor operation condition monitoring method based on electric signals. Firstly, the three-line voltage and current signal of the high-voltage motor running in an electric power plant are captured by the measuring platform, and the one-day data of normal operation is taken from the database. Because there is no dangerous operation data of the high-voltage motor, this study adds additive white Gaussian noise (AWGN) and linear amplification on normal state data, synthesizing warning and dangerous state data, and makes a case study. Next, calculate the relevant electrical indexes in the international standard, and then extract the least number of characteristic indexes with the most structure information through the principal component analysis (PCA). Further, we use the extracted characteristic indexes dataset as the inputs, and employ the fuzzy C-means (FCM) clustering method to cluster the data, that is, distinguish the various operation states of the motor. Finally, the data is defuzzified, and the data points are displayed in percentage for the user to refer to the high-voltage motor operating state to make the most suitable maintenance decision.
Sadri, Sara. "Frequency Analysis of Droughts Using Stochastic and Soft Computing Techniques." Thesis, 2010. http://hdl.handle.net/10012/5198.
Full textYung-Fu, Tsai. "Multiple-pose Face Detection Using Fuzzy C-means Clustering." 2005. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-2607200512112000.
Full textSsu-Min, Yang, and 楊斯閔. "Kernel-Based Fuzzy c-Means Clustering Algorithm Hadrware Implementation." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/72322960297601595511.
Full textTsai, Yung-Fu, and 蔡永富. "Multiple-pose Face Detection Using Fuzzy C-means Clustering." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/27909134956224960721.
Full text國立臺灣大學
資訊管理學研究所
93
The challenges for face detection from images come from the variation of poses, facial expressions, occlusions, lighting conditions, and so on. We propose a method for multiple-pose face detection from still images. Our proposed method consists of three phases. First, skin pixels are extracted using a skin color model. Connected component analysis is performed to find the skin regions. Second, before extracting the feature vector of a skin region, we apply edge detection to the region. Our feature vector consists of two parts. The first part is obtained by dividing the edge image into 3*4 grids and calculating the number of horizontal edges and the number of vertical edges in each grid. The other part is obtained by computing the summary of color correlogram of the edge image. Third, with a set of training images, the fuzzy c-means (FCM) clustering algorithm is used to build face models. If the Euclidian distance between a feature vector and a face model does not exceed a predefined threshold, the region will be classified to a face. The experimental results show that our method can deal with the variation in poses, rotations, scales, and so on.
Ma, Yen-Ting, and 馬嬿婷. "Sample and cluster weighted fuzzy c-means clustering algorithms." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/tpkev7.
Full text中原大學
應用數學研究所
102
In fuzzy cluster analysis﹐the fuzzy c-means (FCM) clustering algorithm is the most well-known and used method. Up to now﹐there are various generalizations of FCM. In order to reduce the influences of the clustering results by outliers and noisy points﹐Yu, Yang and Lee (2011) proposed sample-weighted clustering methods that apply the maximum entropy principle to automatically calculate these sample weights so as to increase the robustness of the algorithm. The purpose of this thesis is to give a cluster-weighted version of sample-weighted FCM﹐called the sample and cluster weighted fuzzy c-means (SCW-FCM) clustering algorithms. We apply the SCW-FCM to real data sets. The results demonstrate the SCW-FCM is more effective than the SW-FCM.
Chu, Chih-Yu, and 朱致宇. "Robust Fuzzy C-Means Clustering Algorithm for Interval Data." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/b8ne4x.
Full text中原大學
應用數學研究所
106
Abstract In fuzzy clustering, the fuzzy c-means (FCM) algorithm is the most widely used clustering method. Many extensions of FCM had been proposed in the literature. However, the FCM algorithm and its extensions are usually affected by initializations and parameter selection with a number of clusters to be given a priori. Although there were some works to solve these problems in FCM, there is no work for FCM to be simultaneously robust to initializations and parameter selection under free of the fuzziness index m without a given the number of clusters and parameters in priori. The FCM also have a restriction for classify the interval type of measurement scale. In this thesis, we extend the robust-learning fuzzy c-means clustering algorithm to interval data and called it robust-learning fuzzy c-means clustering algorithm for interval data (I-RLFCM) where based on the fuzzy c-means algorithm to demonstrate the effectiveness of the I-RLFCM algorithm for interval datasets.