Academic literature on the topic 'Fuzzy interval optimal control problem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fuzzy interval optimal control problem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fuzzy interval optimal control problem"
Campos, José Renato, Edvaldo Assunção, Geraldo Nunes Silva, Weldon Alexander Lodwick, Marcelo Carvalho Minhoto Teixeira, and Gino Gustavo Maqui-Huamán. "Fuzzy interval optimal control problem." Fuzzy Sets and Systems 385 (April 2020): 169–81. http://dx.doi.org/10.1016/j.fss.2019.05.003.
Full textAbd El-Wahed Khalifa, Hamiden, Sultan S. Alodhaibi, and Pavan Kumar. "Solving Constrained Flow-Shop Scheduling Problem through Multistage Fuzzy Binding Approach with Fuzzy Due Dates." Advances in Fuzzy Systems 2021 (March 4, 2021): 1–8. http://dx.doi.org/10.1155/2021/6697060.
Full textLin, Jian, Qiang Zhang, and Fanyong Meng. "A Novel Algorithm for Group Decision Making Based on Continuous Optimal Aggregation Operator and Shapley Value." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 27, no. 06 (December 2019): 969–1002. http://dx.doi.org/10.1142/s0218488519500430.
Full textLI, DENG-FENG, and YONG-CHUN WANG. "MATHEMATICAL PROGRAMMING APPROACH TO MULTIATTRIBUTE DECISION MAKING UNDER INTUITIONISTIC FUZZY ENVIRONMENTS." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 16, no. 04 (August 2008): 557–77. http://dx.doi.org/10.1142/s0218488508005418.
Full textCastillo, Oscar, Fevrier Valdez, Cinthia Peraza, Jin Hee Yoon, and Zong Woo Geem. "High-Speed Interval Type-2 Fuzzy Systems for Dynamic Parameter Adaptation in Harmony Search for Optimal Design of Fuzzy Controllers." Mathematics 9, no. 7 (April 1, 2021): 758. http://dx.doi.org/10.3390/math9070758.
Full textKhooban, Mohammad Hassan, Alireza Alfi, and Davood Nazari Maryam Abadi. "Teaching–learning-based optimal interval type-2 fuzzy PID controller design: a nonholonomic wheeled mobile robots." Robotica 31, no. 7 (April 19, 2013): 1059–71. http://dx.doi.org/10.1017/s0263574713000283.
Full textSama, Hanumantha Rao, Vasanta Kumar Vemuri, and Venkata Siva Nageswara Hari Prasad Boppana. "Optimal Control Policy for a Two-Phase M/M/1 Unreliable Gated Queue under N-Policy with a Fuzzy Environment." Ingénierie des systèmes d information 26, no. 4 (August 31, 2021): 357–64. http://dx.doi.org/10.18280/isi.260403.
Full textKhan, Indadul, Sova Pal, and Manas Kumar Maiti. "A Hybrid PSO-GA Algorithm for Traveling Salesman Problems in Different Environments." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 27, no. 05 (October 2019): 693–717. http://dx.doi.org/10.1142/s0218488519500314.
Full textCampos, J. R., E. Assunção, G. N. Silva, W. A. Lodwick, and M. C. M. Teixeira. "Discrete-time interval optimal control problem." International Journal of Control 92, no. 8 (December 8, 2017): 1778–84. http://dx.doi.org/10.1080/00207179.2017.1410575.
Full textJi, Linna, Fengbao Yang, and Xiaoming Guo. "Image Fusion Algorithm Selection Based on Fusion Validity Distribution Combination of Difference Features." Electronics 10, no. 15 (July 21, 2021): 1752. http://dx.doi.org/10.3390/electronics10151752.
Full textDissertations / Theses on the topic "Fuzzy interval optimal control problem"
Campos, José Renato. "Problemas de controle ótimo intervalar e intervalar fuzzy /." Ilha Solteira, 2018. http://hdl.handle.net/11449/157499.
Full textResumo: Neste trabalho estudamos problemas de controle ótimo intervalar e intervalar fuzzy. Em particular, propomos problemas de controle ótimo via teoria de incerteza generalizada e teoria dos conjuntos fuzzy. Dentre os vários tipos de incerteza generalizada utilizamos apenas a intervalar. Embora as abordagens do processo de solução dos problemas de controle ótimo intervalar e intervalar fuzzy sejam similares, as premissas iniciais para o uso e identificação de aplicação delas em problemas práticos são distintas assim como é distinto o processo de tomada de decisão. Assim, propomos inicialmente o problema de controle ótimo intervalar em tempo discreto. A primeira proposta de solução para o problema de controle ótimo intervalar em tempo discreto é construída usando a aritmética intervalar restrita de níveis simples juntamente com a técnica de programação dinâmica. As respostas do problema de controle ótimo intervalar contêm as possibilidades de soluções viáveis, e para implementar uma solução viável para o usuário final usamos a solução que minimiza o arrependimento máximo nos exemplos numéricos. A segunda proposta de solução para o problema de controle ótimo intervalar em tempo discreto é realizada com a aritmética intervalar restrita uma vez que essa aritmética intervalar é mais geral do que a aritmética intervalar restrita de níveis simples pois não considera os intervalos envolvidos nas operações variando de forma dependente. Exemplos numéricos também foram construídos e ilustram... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: In this work we study the interval optimal control problem and fuzzy interval optimal control problem. In particular, we propose optimal control problems via theory of generalized uncertainty and fuzzy set theory. Among the various types of generalized uncertainty we use only the interval uncertainty. Although the approaches to solve the interval optimal control problem and fuzzy interval optimal control problem are similar, the input data for problems with generalized uncertainty and flexibility are distinct as is distinct the decision-making process. Thus, we initially propose the discrete-time interval optimal control problem. The first solution method to solve the discrete-time interval optimal control problem is constructed using single-level constrained interval arithmetic coupled with a dynamic programming technique. The optimal interval solution contains the real-valued optimal solutions, and to implement a feasible solution to the user we use the minimax regret criterion in numerical examples. The second solution method to solve the discrete-time interval optimal control problem is done with the constrained interval arithmetic since this interval arithmetic is more general than the single-level constrained interval arithmetic because it does not have its intervals varying of dependent form in interval operations. Numerical examples have also been constructed and illustrate the method of solution. Finally, we study the discrete-time fuzzy interval optimal control prob... (Complete abstract click electronic access below)
Doutor
Book chapters on the topic "Fuzzy interval optimal control problem"
Li, Hongyi, Ligang Wu, Hak-Keung Lam, and Yabin Gao. "Optimal Control of Interval Type-2 Fuzzy-Model-Based Systems." In Analysis and Synthesis for Interval Type-2 Fuzzy-Model-Based Systems, 155–75. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0593-0_10.
Full textDeng, Yanfei. "An Optimal Control Model for Biogas Investment Problem Under Fuzzy Environment." In Advances in Intelligent Systems and Computing, 171–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47241-5_13.
Full textFigueroa-García, Juan Carlos, and Germán Hernandez. "Computing Optimal Solutions of a Linear Programming Problem with Interval Type-2 Fuzzy Constraints." In Lecture Notes in Computer Science, 567–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28942-2_51.
Full textEl Hassan, Zerrik, and EL Kabouss Abella. "Regional Optimal Control Problem of a Heat Equation with Bilinear Bounded Boundary Controls." In Recent Advances in Intuitionistic Fuzzy Logic Systems and Mathematics, 131–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53929-0_10.
Full textMitsuishi, Takashi, and Yasunari Shidama. "Fuzzy Number as Input for Approximate Reasoning and Applied to Optimal Control Problem." In Artificial Intelligence and Soft Computing, 144–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13208-7_19.
Full textSingh, Satvir, J. S. Saini, and Arun Khosla. "A PSO-Based Framework for Designing Fuzzy Systems from Noisy Data Set." In Machine Learning Algorithms for Problem Solving in Computational Applications, 210–28. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-1833-6.ch013.
Full text"Optimal Quadratic Cost Problem over an Infinite Time Interval: Algebraic Riccati Equation." In Control Theory for Partial Differential Equations, 121–77. Cambridge University Press, 2000. http://dx.doi.org/10.1017/cbo9781107340848.004.
Full text"Optimal Quadratic Cost Problem Over a Preassigned Finite Time Interval: Differential Riccati Equation." In Control Theory for Partial Differential Equations, 11–120. Cambridge University Press, 2000. http://dx.doi.org/10.1017/cbo9781107340848.003.
Full textLi, Minghuang, and Fusheng Yu. "Semidefinite Programming-Based Method for Implementing Linear Fitting to Interval-Valued Data." In Contemporary Theory and Pragmatic Approaches in Fuzzy Computing Utilization, 172–87. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-1870-1.ch012.
Full textWong, K., H. W. J. Lee, and Chi Kin Chan. "Optimal Feedback Production for a Supply Chain." In Successful Strategies in Supply Chain Management, 50–66. IGI Global, 2005. http://dx.doi.org/10.4018/978-1-59140-303-6.ch003.
Full textConference papers on the topic "Fuzzy interval optimal control problem"
Dmitruk, Andrei, and Ivan Samylovskiy. "Optimal Synthesis in the Goddard Problem on a Constrained Time Interval." In 2018 17th European Control Conference (ECC). IEEE, 2018. http://dx.doi.org/10.23919/ecc.2018.8550227.
Full textLiu, Gang, Jing-hua Han, Yu-bin Wu, and Mei-jiao Liu. "An Optimal Control Problem of Adaptive Fuzzy Controllers for Fuzzy Control Systems." In 2010 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2010. http://dx.doi.org/10.1109/icicta.2010.583.
Full textLeal, Ulcilea A. Severino, Geraldo N. Silva, and Weldon A. Lodwick. "Necessary condition for optimal control problem with interval-valued objective function." In XXXV CNMAC - Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2015. http://dx.doi.org/10.5540/03.2015.003.01.0131.
Full textLeal, Ulcilea A. Severino, Geraldo N. Silva, and Weldon A. Lodwick. "Multi-objective optimization in optimal control problem with interval-valued objective function." In XXXV CNMAC - Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2015. http://dx.doi.org/10.5540/03.2015.003.01.0130.
Full textAllawi, Ziyad T., and Turki Y. Abdalla. "An optimal defuzzification method for interval type-2 fuzzy logic control scheme." In 2015 Science and Information Conference (SAI). IEEE, 2015. http://dx.doi.org/10.1109/sai.2015.7237207.
Full textRazavi, Aliakbar, and Amirreza Kosari. "Fuzzy Optimal Control Approach in Low-Thrust Orbit Transfer Problem." In 2021 26th International Computer Conference, Computer Society of Iran (CSICC). IEEE, 2021. http://dx.doi.org/10.1109/csicc52343.2021.9420576.
Full textLin, Feng-Tse. "Shortest Path Problem Based on Interval-Valued Fuzzy Numbers and Signed Distance Defuzzification Method." In 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC). IEEE, 2009. http://dx.doi.org/10.1109/icicic.2009.331.
Full textGhaemi, Mostafa, Mohammad-R. Akbarzadeh-T., and Mohsen Jalaeian-F. "Optimal design of adaptive interval type-2 fuzzy sliding mode control using Genetic algorithm." In 2011 2nd International Conference on Control, Instrumentation, and Automation (ICCIA). IEEE, 2011. http://dx.doi.org/10.1109/icciautom.2011.6356731.
Full textSimon, Andra´s, and George T. Flowers. "Magnetic Bearing Control Using Interval Type-2 Fuzzy Logic." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82507.
Full textRogachev, N. G. "Fuzzy-Optimal Online Control of a Mobile Robot in the Obstacle Avoidance Problem." In 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2020. http://dx.doi.org/10.1109/fareastcon50210.2020.9271297.
Full text