Academic literature on the topic 'Fuzzy model identification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fuzzy model identification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fuzzy model identification"

1

Hwang, H. S., and K. B. Woo. "Linguistic fuzzy model identification." IEE Proceedings - Control Theory and Applications 142, no. 6 (1995): 537–44. http://dx.doi.org/10.1049/ip-cta:19952254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Burakov, Mikhail Vladimirovich, and Maksim Sergeevich Brunov. "Structural Identification of Fuzzy Model." SPIIRAS Proceedings 3, no. 34 (2014): 232. http://dx.doi.org/10.15622/sp.34.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Jong-Il, Jae-Heung Oh, and Young-Hoon Joo. "Fuzzy Model Identification Using VmGA." International Journal of Fuzzy Logic and Intelligent Systems 2, no. 1 (2002): 53–58. http://dx.doi.org/10.5391/ijfis.2002.2.1.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sugeno, M., and G. T. Kang. "Structure identification of fuzzy model." Fuzzy Sets and Systems 28, no. 1 (1988): 15–33. http://dx.doi.org/10.1016/0165-0114(88)90113-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Joo, Y. H., K. B. Kim, K. B. Woo, and H. S. Hwang. "Linguistic model identification for fuzzy system." Electronics Letters 31, no. 4 (1995): 330–31. http://dx.doi.org/10.1049/el:19950163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shi, Jianzhong. "Identification of Circulating Fluidized Bed Boiler Bed Temperature Based on Hyper-Plane-Shaped Fuzzy C-Regression Model." International Journal of Computational Intelligence and Applications 19, no. 04 (2020): 2050029. http://dx.doi.org/10.1142/s1469026820500297.

Full text
Abstract:
Bed temperature in dense-phase zone is the key parameter of circulating fluidized bed (CFB) boiler for stable combustion and economic operation. It is difficult to establish an accurate bed temperature model as the complexity of circulating fluidized bed combustion system. T-S fuzzy model was widely applied in the system identification for it can approximate complex nonlinear system with high accuracy. Fuzzy c-regression model (FCRM) clustering based on hyper-plane-shaped distance has the advantages in describing T-S fuzzy model, and Gaussian function was adapted in antecedent membership function of T-S fuzzy model. However, Gaussian fuzzy membership function was more suitable for clustering algorithm using point to point distance, such as fuzzy c-means (FCM). In this paper, a hyper-plane-shaped FCRM clustering algorithm for T-S fuzzy model identification algorithm is proposed. The antecedent membership function of proposed identification algorithm is defined by a hyper-plane-shaped membership function and an improved fuzzy partition method is applied. To illustrate the efficiency of the proposed identification algorithm, the algorithm is applied in four nonlinear systems which shows higher identification accuracy and simplified identification process. At last, the algorithm is used in a circulating fluidized bed boiler bed temperature identification process, and gets better identification result.
APA, Harvard, Vancouver, ISO, and other styles
7

Ho, Anh Pham Huy, and Nam Thanh Nguyen. "Dynamic model identification of IPMC actuator using fuzzy NARX model optimized by MPSO." Science and Technology Development Journal 17, no. 1 (2014): 62–80. http://dx.doi.org/10.32508/stdj.v17i1.1295.

Full text
Abstract:
In this paper, a novel inverse dynamic fuzzy NARX model is used for modeling and identifying the IPMC-based actuator’s inverse dynamic model. The contact force variation and highly nonlinear cross effect of the IPMC-based actuator are thoroughly modeled based on the inverse fuzzy NARX model-based identification process using experiment input-output training data. This paper proposes the novel use of a modified particle swarm optimization (MPSO) to generate the inverse fuzzy NARX (IFN) model for a highly nonlinear IPMC actuator system. The results show that the novel inverse dynamic fuzzy NARX model trained by MPSO algorithm yields outstanding performance and perfect accuracy.
APA, Harvard, Vancouver, ISO, and other styles
8

Nibiret, Getinet Asimare, and Abrham Tadesse Kassie. "Fuzzy Model Based Model Predictive Control for Biomass Boiler." International Journal of Engineering Research in Africa 71 (September 18, 2024): 93–108. http://dx.doi.org/10.4028/p-6uv4x4.

Full text
Abstract:
In the realm of renewable energy, biomass plays a crucial role. A key component of power plants, the biomass boiler unit, is responsible for steam production. This unit operates as a nonlinear, highly coupled multivariable process. Traditional controllers used in the industry are ineffective for such systems. To address this, this paper presents a novel approach: a model predictive controller designed for biomass boiler plants. Fuzzy modelling, employed to approximate nonlinear functions to linear ones, is used for system identification. The methodology is implemented using MATLAB/Simulink and the Fuzzy modelling and identification (FMID) toolbox, utilizing input-output data from the Wenji-Shoa sugar factory for fuzzy model identification. The proposed controller demonstrates significant improvements, achieving settling times of 7.5, 13, and 7 seconds, with acceptable overshoots of 0.5%, 0.39%, and 0.46% for pressure, temperature, and level, respectively, for MISO systems. In contrast, the MPC shows improved performance in MIMO systems compared to MISO systems, with settling times of 5, 4, and 7 seconds, while the overshoot is reduced only for the pressure output, with 0.214%.
APA, Harvard, Vancouver, ISO, and other styles
9

Bertone, Ana Maria Amarillo, Jefferson Beethoven Martins, and Keiji Yamanaka. "Black-Box Fuzzy Identification of a Nonlinear Hydrogen Fuel Cell Model." TEMA (São Carlos) 18, no. 3 (2018): 405. http://dx.doi.org/10.5540/tema.2017.018.03.405.

Full text
Abstract:
A fuzzy identification of the dynamical system model is developed upon a data generated by a software simulator of a hydrogen fuel cell. The data presents a black box model, just composed by inputs and outputs, carry no additional information, and showing a strong nonlinear behavior. The choice for a fuzzy identification is based on the data features, and the malleability of the mathematical fuzzy technique. This approach allows to accomplish the objectives of the research, among which, the validation of the method for it used in other industrial problems. The dynamic system identification process is performed using a fuzzy clustering through the Gustafson and Kessel algorithm, and a Takagi Sugeno fuzzy inference method. Validation tests are performed in terms of the 4-fold technique, confirming the lack of the data over-training. These results make the fuzzy approach looks as a promising tool for black-box identification of non linear dynamic systems.
APA, Harvard, Vancouver, ISO, and other styles
10

Kumar, Shakti, Parvinder Kaur, and Amarpartap Singh. "Fuzzy Model Identification: A Firefly Optimization Approach." International Journal of Computer Applications 58, no. 6 (2012): 1–8. http://dx.doi.org/10.5120/9283-3475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Fuzzy model identification"

1

Franco, Ivan Carlos 1976. "Controle preditivo baseado em modelo neuro-fuzzy de sistemas não-lineares aplicado em sistema de refrigeração = Model predictive control based on neuro-fuzzy nonlinear systems applied to a refrigeration plant." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266817.

Full text
Abstract:
Orientador: Flávio Vasconcelos da Silva<br>Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química<br>Made available in DSpace on 2018-08-20T15:14:24Z (GMT). No. of bitstreams: 1 Franco_IvanCarlos_D.pdf: 30656846 bytes, checksum: 73b0216f94ce7393fb51d78cc6e4ea7f (MD5) Previous issue date: 2012<br>Resumo: Os sistemas de refrigeração estão presentes em diferentes ramos da indústria e caracterizam-se como grandes consumidores de energia com considerável comportamento não-linear. Inúmeros trabalhos vêm sido desenvolvidos para promover a redução dos gastos energéticos e a minimização dos efeitos das não-linearidades nestes sistemas. A aplicação da automação e do controle de processos, particularmente o uso de técnicas avançadas de controle, são estratégias amplamente utilizadas para esta finalidade. O Controle Preditivo baseado em Modelos (MPC) é capaz de estabilizar processos onde há não-linearidades, sendo promissora a sua aplicação em sistemas de refrigeração. Neste trabalho, foi desenvolvido um SIStema de MOnitoramento e Controle Avançado para Refrigeração (SISMOCAR) capaz de monitorar, em tempo real, através da comunicação OPC (OLE for Process Control), todas as variáveis envolvidas no ciclo de refrigeração e também realizar o controle das variáveis de interesse. Modelos Takagi-Sugeno (SISO) para a predição das temperaturas de evaporação (Te) e do fluido secundário (Tp) foram desenvolvidos e validados, a partir da técnica ANFIS (Adaptative Network based Fuzzy Inference Systems), com análise de desempenho baseado no cálculo do VAF (Variance accounted for). Os modelos Takagi-Sugeno validados foram utilizados como base para Controladores Preditivos, mais especificamente um Controlador Preditivo Generalizado (GPC). Os controladores GPC's foram desenvolvidos sem restrições na função objetivo da ação do controlador. Foram projetados diferentes controladores preditivos para diferentes regras locais (Regras Fuzzy), sendo a ação global do controlador a integração ponderada dos modelos locais. Foram desenvolvidos três diferentes controladores: GPC1 (controle da temperatura de evaporação utilizando modelo de predição da Te em função da frequência do compressor); GPC2 (controle da temperatura do propilenoglicol utilizando modelo de predição da Tp em função da frequência do compressor) e GPC3 (controle da temperatura do propilenoglicol utilizando o modelo de predição da Tp em função da frequência da bomba do evaporador). Os testes realizados para rastreamento do set-point (±1 °C), com carga térmica constante de 3000 W, mostraram-se satisfatórios sendo os melhores desempenhos apresentados pelos controladores GPC1 e GPC2 onde o desvio da variável controlada em relação ao set point, dos respectivos controladores, ficou em torno de ± 0,3 °C<br>Abstract: Refrigeration systems can be found in many different branches of industry and are characterized as great energy consumers with considerable non-linear behavior. Several studies have been developed to promote the reduction of energy costs and to minimize the effects of nonlinearities in these systems. The use of automation and process control, particularly the use of advanced control techniques, is a widely used strategy for this purpose. The Model Predictive Control (MPC) is capable of stabilizing processes in which there are nonlinearities, and it is a promising application in refrigeration systems. In this work, a System for Monitoring and Advanced Control in Refrigeration (SISMOCAR) was developed using OPC (OLE for Process Control) communication. This feature allowed beyond real time monitoring for all variables involved in the refrigeration cycle, the control of the relevant variables. Furthermore, to predict the evaporating (Te) and the secondary fluid (Tp) temperatures, Takagi-Sugeno models (SISO) were developed and validated using the ANFIS (Adaptive Network-based Fuzzy Inference Systems) technique, with performance analysis based on the VAF (Variance accounted for) calculation. The validated Takagi-Sugeno models were used as basis for Predictive Controllers, specifically using Generalized Predictive Controller (GPC) strategy. The GPC controllers were developed without constraints in the objective function of the controller action. Different predictive controllers were designed for different local rules (Fuzzy Rules), being the weighted integration of the local models the controller global action. Three different controllers were developed: GPC1 (evaporating temperature control using the Te predictive model as a function of compressor frequency); GPC2 (control of propylene glycol temperature using the Tp predictive model as a function of compressor frequency) and GPC3 (control of propylene glycol temperature using the Tp predictive model as a function of the frequency of the evaporator pump). The tests performed for the set-point tracking (± 1 °C), with constant thermal load of 3000 W, were considered satisfactory and best performances were those obtained by GPC1 and GPC2 controllers, in which the controlled variable was around ± 0,3 °C<br>Doutorado<br>Sistemas de Processos Quimicos e Informatica<br>Doutor em Engenharia Química
APA, Harvard, Vancouver, ISO, and other styles
2

Mitchell, Ryan. "A WANFIS Model for Use in System Identification and Structural Control of Civil Engineering Structures." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/1165.

Full text
Abstract:
With the increased deterioration of infrastructure in this country, it has become important to find ways to maintain the strength and integrity of a structure over its design life. Being able to control the amount a structure displaces or vibrates during a seismic event, as well as being able to model this nonlinear behavior, provides a new challenge for structural engineers. This research proposes a wavelet-based adaptive neuro- fuzzy inference system for use in system identification and structural control of civil engineering structures. This algorithm combines aspects of fuzzy logic theory, neural networks, and wavelet transforms to create a new system that effectively reduces the number of sensors needed in a structure to capture its seismic response and the amount of computation time needed to model its nonlinear behavior. The algorithm has been tested for structural control using a three-story building equipped with a magnetorheological damper for system identification, an eight-story building, and a benchmark highway bridge. Each of these examples has been tested using a variety of earthquakes, including the El-Centro, Kobe, Hachinohe, Northridge, and other seismic events.
APA, Harvard, Vancouver, ISO, and other styles
3

Lima, Nádson Murilo Nascimento. "Modelagem e controle hibrido preditivo por logica fuzzy de processos de polimerização." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266795.

Full text
Abstract:
Orientador: Rubens Maciel Filho<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica<br>Made available in DSpace on 2018-08-09T11:12:44Z (GMT). No. of bitstreams: 1 Lima_NadsonMuriloNascimento_M.pdf: 1887705 bytes, checksum: e0761ce0e30dd05a47c9cfbe9b0968ef (MD5) Previous issue date: 2006<br>Resumo: A síntese de controladores representa uma importante vertente dos desenvolvimentos atuais no campo da pesquisa acadêmica e industrial. Um controlador bem projetado pode significar sucesso no que se refere aos objetivos de produção, sendo gerados materiais com as especificações desejadas e proporcionando que o sistema opere sob certas restrições, levando em consideração aspectos relativos à operabilidade, segurança e minimização de resíduos. Para tanto, sabe-se que as etapas de modelagem são fundamentais para a delineação de estratégias de controle. No entanto, a obtenção de representações matemáticas precisas e, ao mesmo tempo, aplicáveis para controle da maioria dos processos de interesse da engenharia química é uma tarefa árdua, devido à presença de comportamentos dinâmicos não lineares e variantes ao longo do espaço e do tempo. Deste modo, busca-se a obtenção de modelos mais simples, porém dotados da imprescindível representatividade inerente aos sistemas de produção, a fim de serem projetadas estruturas de controle adequadas para cada necessidade específica. Este trabalho enfoca o desenvolvimento de um controlador híbrido preditivo baseado em modelos nebulosos (fuzzy) tipo Takagi-Sugeno para processos de polimerização, os quais apresentam dinâmicas altamente complexas e de difícil modelagem matemática, dificultando assim a aplicação de metodologias convencionais de controle. Foram considerados dois casos de estudo para análise de desempenho do controlador proposto: o processo de copolimerização em solução do metacrilato de metila e acetato de vinila, e a copolimerização industrial do eteno/1-buteno com catalisador Ziegler-Natta solúvel. Os modelos fenomenológicos de ambos os processos já se encontram descritos na literatura, sendo considerados como plantas virtuais para geração de dados dinâmicos e implementação do controlador. A partir de simulações computacionais, os modelos dinâmicos nebulosos funcionais foram construídos ¿ os quais demonstraram excelentes capacidades para predição das saídas dos processos como uma função dos dados dinâmicos de entrada ¿ sendo, posteriormente, inseridos na estrutura interna do controle preditivo DMC (Dynamic Matrix Control). A escolha do controlador DMC como base para o desenvolvimento da estrutura proposta deve-se ao fato de sua notória aplicabilidade industrial, aliada à simplicidade de projeto e execução, além de possibilitar a incorporação de restrições nas variáveis controladas e manipuladas. Por fim, foram comparados os desempenhos entre os controladores híbrido e DMC convencional para os problemas regulatório e servo, fornecendo resultados satisfatórios em ambas as situações. Isto demonstra o alto potencial do algoritmo proposto para o controle de sistemas não lineares<br>Abstract: Controller synthesis represents an important slope of recent development in the field of academic and industry research. A well-projected controller may express the success in reference to the aim of production, and it also creates materials with desirable specification and it allows that the system operates under certain restrictions, considering aspects related to operability, safety and minimization of residue. Then, it¿s known that modeling stage is fundamental to delineation of controller strategies. However, the obtaining of precise and applicable mathematical representation to control most of relevant process in chemist engineering is an arduous task, because of the presence of nonlinear dynamic behavior and space-time variation. Therefore, it searches obtaining of simplier models, but gifted of essential representativity inherent to production system, because of this suitable control structure to each specific necessity projected. This work focus on the development of predictive hybrid controller based on fuzzy models, type Takagi-Sugeno, to process of copolymerization, that present high complex dynamic and hard mathematical modeling, what is also difficult to apply conventional methodologies of control. Two study cases that present analyze of purpose controller were considered: the process of copolymerization in solution of methyl methacrylate and vinyl acetate, and industry copolymerization of ethene/1-butene with Ziegler-Natta catalyzation. The phenomenologic models of the two processes have already described in relevant literature, and they are considered as virtual plants to create dynamic data and controller implementation. Based on computer simulation, functional dynamic fuzzy models were made ¿ they demonstrate excellent capacity to output prediction in process as a function of input dynamic data ¿ and they are, subsequently, inserted in an internal structure of DMC (Dynamic Matrix Control) predictive control. The choice of DMC controller as the base to development of proposal structure is responsible to the fact of its well-known industry applicability, allied to simplicity of the project and execution, beyond it makes possible the incorporation of restrictions in controlled and manipulated variables. Finally, the performance between hybrid controller and conventional DMC to regulatory and servo problems were compared, and it supplies satisfactory results in both situation. It demonstrates high potential of propose algorithm to control nonlinear system<br>Mestrado<br>Desenvolvimento de Processos Químicos<br>Mestre em Engenharia Química
APA, Harvard, Vancouver, ISO, and other styles
4

Jesse, Alexandra. "Towards a lexical fuzzy logical model of perception : the time-course of information in lexical identification of face-to face speech /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2005. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Obut, Salih. "Control Of Ph In Neutralization Reactor Of A Waste Water Treatment System Using Identification Reactor." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606395/index.pdf.

Full text
Abstract:
A typical wastewater effluent of a chemical process can contain several strong acids/bases, weak acids/bases as well as their salts. They must be neutralized before being discharged to the environment in order to protect aquatic life and human welfare. However, neutralization process is highly non&ndash<br>linear and has time&ndash<br>varying characteristics. Therefore, the control of pH is a challenging problem where advanced control strategies are often considered. In this study, the aim is to design a pH control system that will be capable of controlling the pH-value of a plant waste-water effluent stream having unknown acids with unknown concentrations using an on&ndash<br>line identification procedure. A Model Predictive Controller, MPC, and a Fuzzy Logic Controller, FLC, are designed and used in a laboratory scale pH neutralization system. The characteristic of the upstream flow is obtained by a small identification reactor which has ten times faster dynamics and which is working parallel to actual neutralization tank. In the control strategy, steady&ndash<br>state titration curve of the process stream is obtained using the data collected in terms of pH value from the response of the identification reactor to a pulse input in base flow rate and using the simulated response of the identification reactor for the same input. After obtaining the steady&ndash<br>state titration curve, it is used in the design of a Proportional&ndash<br>Integral, PI, and of an Adaptive Model Predictive Controller, AMPC. On the other hand, identification reactor is not used in the FLC scheme. The performances of the designed controllers are tested mainly for disturbance rejection, set&ndash<br>point tracking and robustness issues theoretically and experimentally. The superiority of the FLC is verified.
APA, Harvard, Vancouver, ISO, and other styles
6

Alvarado, Christiam Segundo Morales. "Estudo e implementação de métodos de validação de modelos matemáticos aplicados no desenvolvimento de sistemas de controle de processos industriais." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-05092017-092437/.

Full text
Abstract:
A validação de modelos lineares é uma etapa importante em um projeto de Identificação de Sistemas, pois a escolha correta do modelo para representar a maior parte da dinâmica do processo, dentro de um número finito de técnicas de identificação e em torno de um ponto de operação, permite o sucesso no desenvolvimento de controladores preditivos e de controladores robustos. Por tal razão, o objetivo principal desta Tese é o desenvolvimento de um método de validação de modelos lineares, tendo como ferramentas de avaliação os métodos estatísticos, avaliações dinâmicas e análise da robustez do modelo. O componente principal do sistema de validação de modelos lineares proposto é o desenvolvimento de um sistema fuzzy para análise dos resultados obtidos pelas ferramentas utilizadas na etapa de validação. O projeto de Identificação de Sistemas é baseado em dados reais de operação de uma Planta-Piloto de Neutralização de pH, localizada no Laboratório de Controle de Processos Industriais da Escola Politécnica da USP. Para verificar o resultado da validação, todos os modelos são testados em um controlador preditivo do tipo QDMC (Quadratic Dynamic Matrix Control) para seguir uma trajetória de referência. Os critérios utilizados para avaliar o desempenho do controlador QDMC, para cada modelo utilizado, foram a velocidade de resposta do controlador e o índice da mínima variabilidade da variável de processo. Os resultados mostram que a confiabilidade do sistema de validação projetado para malhas com baixa e alta não-linearidade em um processo real, foram de 85,71% e 50%, respectivamente, com relação aos índices de desempenho obtidos pelo controlador QDMC.<br>Linear model validation is the most important stage in System Identification Project because, the model correct selection to represent the most of process dynamic allows the success in the development of predictive and robust controllers, within identification technique finite number and around the operation point. For this reason, the development of linear model validation methods is the main objective in this Thesis, taking as a tools of assessing the statistical, dynamic and robustness methods. Fuzzy system is the main component of model linear validation system proposed to analyze the results obtained by the tools used in validation stage. System Identification project is performed through operation real data of a pH neutralization pilot plant, located at the Industrial Process Control Laboratory, IPCL, of the Escola Politécnica of the University of São Paulo, Brazil. In order to verify the validation results, all modes are used in QDMC type predictive controller, to follow a set point tracking. The criterions used to assess the QDMC controller performance were the speed response and the process variable minimum variance index, for each model used. The results show that the validation system reliability were 85.71% and 50% projected for low and high non-linearity in a real process, respectively, linking to the performance indexes obtained by the QDMC controller.
APA, Harvard, Vancouver, ISO, and other styles
7

Godoy, Andre Pereira de. "Modelagem de processos de acumulação de biomassa e de açucar da cana-de açucar via sistemas nebulosos." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259127.

Full text
Abstract:
Orientadores: Gilmar Barreto, Ginalber Luiz de Oliveira Serra<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação<br>Made available in DSpace on 2018-08-09T18:49:20Z (GMT). No. of bitstreams: 1 Godoy_AndrePereirade_M.pdf: 5878897 bytes, checksum: e24b9a4ace4612b1e7cc56ccc677932f (MD5) Previous issue date: 2007<br>Resumo: Este estudo objetiva identificar e ajustar um modelo nebuloso (Fuzzy) para a predição de um passo a frente dos processos de acumulação de biomassa e de açúcar da cana-de-açúcar com índices de erro inferiores aos obtidos pelo modelo QCANE. Os processos fisiológicos de acumulação da cana-de-açúcar são estudados para determinação dos fatores mais influentes a serem tratados no procedimento de identificação do modelo. Algumas técnicas de identificação disponíveis são estudadas e experimentos computacionais são realizados para selecionar e avaliar a representação matemática e a estrutura de modelo mais dequadas. Durante o procedimento de identificação procura-se obter modelo com o menor número de parâmetros possível, que permita ao usuário compreender de forma mais clara o resultado da simulação do modelo. Para estes processos são apresentados resultados para modelos contínuos, modelos ARX e modelos nebulosos discretos. A opção pela utilização dos modelos nebulosos para estes processos deve-se a expectativa confirmada de que esta estrutura matemática obtivesse um melhor desempenho nas predições utilizando uma quantidade reduzida de parâmetros. Os resultados computacionais indicam a obtenção de respostas mais precisas e exatas para os modelos nebulosos do que para o modelo QCANE, tido como o modelo mais preciso da literatura para estimação de acumulação de biomassa e de açúcar na cana-de-açúcar, em todos os aspectos desejados para este trabalho<br>Abstract: The aim of this master thesis is to identify and adjust a fuzzy model for the one step ahead prediction of the process of biomass and sugar accumulation of the sugarcane with a level of errors inferior to those gotten by the QCANE model. The physiological processes of accumulation in sugar cane are studied for determination of the most influent factors to be dealt within the procedure of model identification. Some available identification techniques are studied and computer experiments are done to select and evaluate the mathematical representation and the structure of a more suitable model. During the process of identification, the search is for a model with a smaller number of parameters, that allows the user to understand in a simple, clear way, the result of the simulation of the model. To these processes results for continuous, ARX and discrete fuzzy models are presented. The option for the use of the fuzzy model for these processes is due to confirmation of the expectation that this mathematical structure could have a better performance in the prediction using a reduced amount of parameters. The computer results indicate the obtention of more accurate and precise answers to the fuzzy models than to the QCANE model considered the most precise model from the literature in biomass and sugar accumulation of the sugar cane estimation according to all the aspects set for this work<br>Mestrado<br>Automação<br>Mestre em Engenharia Elétrica
APA, Harvard, Vancouver, ISO, and other styles
8

Machado, Jeremias Barbosa. "Modelagem e controle preditivo utilizando multimodelos." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259984.

Full text
Abstract:
Orientadores: Wagner Caradori do Amaral, Ricardo Jose Grabrielli Barreto Campello<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação<br>Made available in DSpace on 2018-08-09T14:19:44Z (GMT). No. of bitstreams: 1 Machado_JeremiasBarbosa_M.pdf: 6477617 bytes, checksum: 3f0c4fec476306e8cc05a7940894b0a0 (MD5) Previous issue date: 2007<br>Resumo: o interesse na utilização de algoritmos de controle sofisticados cresce no meio industrial devido à necessidade de melhor qualidade dos produtos produzidos. Uma abordagem que vem ganhando destaque é a utilização de sistemas de controle não-linear que modelam os sistemas por meio de multimodelos lineares. Neste contexto, este trabalho apresenta a modelagem e controle de sistemas não-lineares através de controladores preditivos não-lineares que utilizam multimodelos lineares. Os controladores preditivos baseados em modelos (MBPC - Model Based Predictive Controllers) são controladores cuja principal característica é a utilização de um modelo na determinação de um conjunto de previsões de saída, e a lei de controle é calculada em função destas previsões minimizando-se uma função de custo. O desempenho deste controlador depende da qualidade do modelo utilizado para predição dos sinais de saída. A proposta do trabalho é modelar as não-linearidades do processo sob controle através de modelos fuzzy Takagi-Sugeno - TS com funções de base ortonormal - FBO nos conseqüentes das regras. As FBO's apresentam diversas características conceituais e estruturais de interesse na elaboração dos modelos utilizados nos controladores preditivos, como a ausência de realimentação de saída, o que evita a propagação de erro, além de outras que serão discutidas ao longo deste trabalho. Os parâmetros de um modelo fuzzy TS a serem determinados são os antecedentes das regras, com suas funções de pertinência, e as funções nos conseqüentes das regras, que neste trabalho dar-se-ão de forma automática, sendo os antecedentes das regras obtidos através de agrupamento fuzzy (fuzzy clustering) das amostras de entrada e saída. Para esta tarefa será utilizado o algoritmo de GustafsonKessel. A fim de determinar o número de grupos que irão compor o modelo e, por conseqüência, defil)ir o número de regras e modelos locais, utilizar-se-ão critérios que avaliam a qualidade dos agrupamentos juzzy, como Fuzzy Silhouette, Fuzzy Hipervolume, Average Partition Density e Average Within-Cluster Distance, sendo proposta a combinação dos resultados obtidos em cada um dos critérios. O controle é feito de forma que, para cada modelo local, presente no modelo fuzzy TS-FBO, tem-se um controlador atuando sobre este. As ações de controle locais são combinadas conforme a ativação de cada regra do respectivo modelo local, e a ação de controle global resultante dessa combinação é aplicada ao processo a ser controlado. A abordagem proposta apresenta vantagens estruturais na modelagem e controle de processos nãolineares, quando comparado a outras metodologias de modelagem (como modelos polinomiais NARMAX) e controle, uma vez que esta abordagem é composta de uma estrutura simples com modelos locais lineares (ou afins) formados por FBO's. Para ilustrar o que foi desenvolvido, são apresentadas, no final destes trabalho, implementações na modelagem e controle de processos não-lineares<br>Abstract: The use of advanced control strategies has been increased in the last years due to the needs of more accurate quality on products. An approach that seems attractive on control and modeling of the nonlinear processes is the use of multiple linear models. In this context, this work presents an altemative approach for modeling and controlling nonlinear processes through nonlinear predictive control (NMBPC) using multi-models. The main characteristic of the Model Based Predictive Controllers is the use of a model for the determination ofthe output predictions. The controllaw is derived based on these output predictions, minimizing a specified cost function. Its performance is directly related to the quality of the model predictor. Therefore, in this work, the process is modeling through Takagi-Sugeno- TS fuzzy models with orthonormal base functions - OBF - on the mIes consequents. OBF' s models present several conceptual and structural characteristics of interest on the elaboration of models predictors, such as, absence of output recursion and feedback of prediction errors, often leading to superior performances over long-range horizon predictions and natural decoupling between multiple outputs; there is no need for previous knowledge about the relevant past terms of the system signals; the representation of a stable system is assuredly stable; tolerance to unmodeled dynamics; ability to deal with time delays. The antecedents ofthe TS fuzzy models are obtained through fuzzy c1ustering ofthe input and output measures. The algorithm of Gustafson-Kessel is used to perform this task. In order to determine the number ofthe local models, clustering validity criteria such as Fuzzy Silhouette, Fuzzy Hipervolume, Average Partition Density e Average Within-Cluster Distance are used. A predictive controller is derived for local model and the global controllaw is obtained by combining each local control law, using the degree of activation of every mIe of the respective local model. The proposed approach presents structural advantages in the modeling and controlling nonlinear process, when compared to other modeling (like polynomial models-NARMAX) and controlling strategies, as this approach is constituted of a simple structure with linear local models using OBF' s. The performance of the proposed strategies is illustrated using some simulated examples<br>Mestrado<br>Automação<br>Mestre em Engenharia Elétrica
APA, Harvard, Vancouver, ISO, and other styles
9

Hu, Cheng Lin. "Design optimization of fuzzy models in system identification." Thesis, University of Macau, 2010. http://umaclib3.umac.mo/record=b2493501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grisales, Palacio Victor Hugo. "Modélisation et commande floues de type Takagi-Sugeno appliquées à un bioprocédé de traitement des eaux usées." Phd thesis, Université Paul Sabatier - Toulouse III, 2007. http://tel.archives-ouvertes.fr/tel-00136382.

Full text
Abstract:
Ce travail de thèse s'inscrit au carrefour de l'Automatique, de l'Intelligence Artificielle et des Biotechnologies. Il cherche à développer une méthodologie de modélisation et de commande qui repose sur une approche par logique floue. La première partie du travail présente une introduction aux principes et techniques mises en Suvre dans les stations d'épuration actuelles, et met en évidence la difficulté de modélisation des différents phénomènes mis en jeu. A partir de ce constat, dans une deuxième partie, focalisée sur la modélisation et la commande floues, nous développons d'abord l'identification de modèles flous affines de type Takagi-Sugeno (TS) à partir de données entrées-sorties. Nous considérons différentes méthodes de coalescence floue et une méthode d'agglomération compétitive, robuste en présence de bruit. Ce type d'approche " boîte grise " permet une représentation à base de règles qui approxime la dynamique non linéaire comme une concaténation de sous-modèles localement linéaires sous la forme d'auto-régression non-linéaire (NARX). De plus, nous avons développé une version graphique de la boîte à outils pour la modélisation floue des systèmes (FMIDg). Ensuite, nous proposons une commande floue TS sous-optimale linéaire quadratique adaptée à la structure du modèle flou identifié, en utilisant la philosophie de commande du type compensation parallèle distribuée (PDC). La méthodologie globale est finalement testée et validée en simulation sur un bioprocédé aérobie de dépollution des eaux usées.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Fuzzy model identification"

1

Hellendoorn, Hans, and Dimiter Driankov, eds. Fuzzy Model Identification. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60767-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abonyi, János. Fuzzy Model Identification for Control. Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0027-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hans, Hellendoorn, and Driankov Dimiter, eds. Fuzzy model identification: Selected approaches. Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nelles, Oliver. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer Berlin Heidelberg, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fuzzy Model Identification. Island Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abonyi, Janos. Fuzzy Model Identification for Control. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abonyi, Janos. Fuzzy Model Identification for Control. Birkhauser Verlag, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hellendoorn, Hans, and Dimiter Driankov. Fuzzy Model Identification: Selected Approaches. Springer London, Limited, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

(Editor), Hans Hellendoorn, and Dimiter Driankov (Editor), eds. Fuzzy Model Identification: Selected Approaches. Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fuzzy Model Identification for Control. Birkhauser, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Fuzzy model identification"

1

Lindskog, P. "Fuzzy Identification from a Grey Box Modeling Point of View." In Fuzzy Model Identification. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60767-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Babuška, R., and H. B. Verbruggen. "Constructing Fuzzy Models by Product Space Clustering." In Fuzzy Model Identification. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60767-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Min-Kee, Seung-Hwan Ji, Eun-Tai Kim, and Mignon Park. "Identification of Takagi-Sugeno Fuzzy Models via Clustering and Hough Transform." In Fuzzy Model Identification. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60767-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Delgado, M., M. A. Vila, and A. F. Gomez-Skarmeta. "Rapid Prototyping of Fuzzy Models Based on Hierarchical Clustering." In Fuzzy Model Identification. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60767-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hollatz, J. "Fuzzy Identification Using Methods of Intelligent Data Analysis." In Fuzzy Model Identification. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60767-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Su, Mu-Chun. "Identification of Singleton Fuzzy Models via Fuzzy Hyperrectangular Composite NN." In Fuzzy Model Identification. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60767-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cordón, Oscar, and Francisco Herrera. "Identification of Linguistic Fuzzy Models by Means of Genetic Algorithms*." In Fuzzy Model Identification. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60767-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vergara, V., and C. Moraga. "Optimization of Fuzzy Models by Global Numeric Optimization." In Fuzzy Model Identification. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60767-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nakoula, Y., S. Galichet, and L. Foulloy. "Identification of Linguistic Fuzzy Models Based on Learning." In Fuzzy Model Identification. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60767-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abonyi, János. "Fuzzy Model Identification." In Fuzzy Model Identification for Control. Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0027-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fuzzy model identification"

1

Dovžan, D., and I. Škrjanc. "Recursive Fuzzy Model Identification." In Advances in Computer Science and Engineering. ACTAPRESS, 2010. http://dx.doi.org/10.2316/p.2010.689-027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chung-Chun Kung, Yi-Fen Nieh, and Jui-Yiao Su. "Fuzzy dynamic model identification by fuzzy c-regressoin models clustering." In 2010 IEEE International Conference on Systems, Man and Cybernetics - SMC. IEEE, 2010. http://dx.doi.org/10.1109/icsmc.2010.5642226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dam, Tanmoy, and Alok Kanti Deb. "Interval type-2 modified fuzzy c-regression model clustering algorithm in TS Fuzzy Model identification." In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2016. http://dx.doi.org/10.1109/fuzz-ieee.2016.7737891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sameni, Majid Khadem, Ehsan Toyserkani, and Amir Khajepour. "Fuzzy model and compact fuzzy model identification of laser cladding process." In ICALEO® 2004: 23rd International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2004. http://dx.doi.org/10.2351/1.5060284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Q. M., and C. W. de Silva. "Model Identification for Fuzzy Dynamic Systems." In 1993 American Control Conference. IEEE, 1993. http://dx.doi.org/10.23919/acc.1993.4793283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Jungwon, and Sungshin Kim. "Automatic structure identification of TSK fuzzy model for stock index forecasting." In 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2015. http://dx.doi.org/10.1109/fuzz-ieee.2015.7337949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bagherpour, Solmaz, Angela Nebot, and Francisco Mugica. "Wrapper-based Fuzzy Inductive Reasoning model identification for imbalance data classification." In 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2018. http://dx.doi.org/10.1109/fuzz-ieee.2018.8491622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kalhor, Ahmad, and Caro Lucas. "Online identification of a neuro-fuzzy model through indirect fuzzy clustering of data space." In 2009 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2009. http://dx.doi.org/10.1109/fuzzy.2009.5277139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chung-Chun Kung and Jui-Yiao Su. "T-S fuzzy model identification and the fuzzy model based controller design." In 2007 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icsmc.2007.4413895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boukezzoula, R., S. Galichet, and L. Foulloy. "Fuzzy nonlinear adaptive internal model control (FNAIMC) part I: Fuzzy model identification." In 1999 European Control Conference (ECC). IEEE, 1999. http://dx.doi.org/10.23919/ecc.1999.7099729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!