Academic literature on the topic 'Fuzzy pattern'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fuzzy pattern.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fuzzy pattern"
Shukhat, Boris. "Supervised fuzzy pattern recognition." Fuzzy Sets and Systems 100, no. 1-3 (November 1998): 257–65. http://dx.doi.org/10.1016/s0165-0114(97)00052-3.
Full textLiu, Liren. "Optical Pattern Fuzzy Logic." Japanese Journal of Applied Physics 29, Part 2, No. 7 (July 20, 1990): L1281—L1283. http://dx.doi.org/10.1143/jjap.29.l1281.
Full textCaulfield, H. John. "Fuzzy syntactical pattern recognition." Applied Optics 29, no. 17 (June 10, 1990): 2600. http://dx.doi.org/10.1364/ao.29.002600.
Full textDubois, Didier, Henri Prade, and Claudette Testemale. "Weighted fuzzy pattern matching." Fuzzy Sets and Systems 28, no. 3 (December 1988): 313–31. http://dx.doi.org/10.1016/0165-0114(88)90038-3.
Full textLiu, Z. W., B. Wei, C. L. Kang, and J. W. Jiang. "THE IMPLEMENTATION OF HESITANT FUZZY SPATIAL CO-LOCATION PATTERN MINING ALGORITHM BASED ON PYTHON." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W10 (February 8, 2020): 763–67. http://dx.doi.org/10.5194/isprs-archives-xlii-3-w10-763-2020.
Full textRay, Kumar S. "Pattern Recognition Based on Fuzzy Set and Genetic Algorithm." International Journal of Image and Graphics 14, no. 03 (July 2014): 1450009. http://dx.doi.org/10.1142/s0219467814500090.
Full textUehara, Kiyohiko, and Kaoru Hirota. "A Fast Method for Fuzzy Rules Learning with Derivative-Free Optimization by Formulating Independent Evaluations of Each Fuzzy Rule." Journal of Advanced Computational Intelligence and Intelligent Informatics 25, no. 2 (March 20, 2021): 213–25. http://dx.doi.org/10.20965/jaciii.2021.p0213.
Full textPhuong, Truong Duc, Do Van Thanh, and Nguyen Duc Dung. "Mining Fuzzy Sequential Patterns with Fuzzy Time-Intervals in Quantitative Sequence Databases." Cybernetics and Information Technologies 18, no. 2 (June 1, 2018): 3–19. http://dx.doi.org/10.2478/cait-2018-0024.
Full textCheng, Bilian, Zheng Liu, Guang Chen, and Fengyuan Zou. "Generating cheongsam custom pattern based on fuzzy set theory." International Journal of Clothing Science and Technology 32, no. 5 (April 17, 2020): 725–41. http://dx.doi.org/10.1108/ijcst-06-2019-0086.
Full textPAPAKOSTAS, G. A., Y. S. BOUTALIS, D. E. KOULOURIOTIS, and B. G. MERTZIOS. "FUZZY COGNITIVE MAPS FOR PATTERN RECOGNITION APPLICATIONS." International Journal of Pattern Recognition and Artificial Intelligence 22, no. 08 (December 2008): 1461–86. http://dx.doi.org/10.1142/s0218001408006910.
Full textDissertations / Theses on the topic "Fuzzy pattern"
Angstenberger, Larisa. "Dynamic fuzzy pattern recognition." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=962701106.
Full textPalancioglu, Haci Mustafa. "Extracting Movement Patterns Using Fuzzy and Neuro-fuzzy Approaches." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/PalanciogluHM2003.pdf.
Full textKarim, Ehsanul, Sri Phani Venkata Siva Krishna Madani, and Feng Yun. "Fuzzy Clustering Analysis." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2165.
Full textHempel, Arne-Jens. "Netzorientierte Fuzzy-Pattern-Klassifikation nichtkonvexer Objektmengenmorphologien." Doctoral thesis, Universitätsbibliothek Chemnitz, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-77040.
Full textThis work contributes to the field of fuzzy classification. It dedicates itself to the subject of "Fuzzy-Pattern-Classification", a versatile method applied for classificatory modeling of complex, high dimensional systems based on metric and nonmetric data, i.e. sensor readings or expert statements. Uncertainties of data, their associated morphology and therewith classificatory states are incorporated in terms of fuzziness using a uniform and convex type of membership function. Based on the properties of the already existing convex Fuzzy-Pattern-Class models and their automatic, data-driven setup a method for modeling nonconvex relations without leaving the present classification concept is introduced. Key points of the elaborated approach are: 1.) The aggregation of Fuzzy-Pattern-Classes with the help of so called complementary objects. 2.) The sequential combination of Fuzzy-Pattern-Classes and complementary Fuzzy-Pattern-Classes in terms of a fuzzy set difference. 3.) A clustering based structuring of complementary Fuzzy-Pattern-Classes and therewith a structuring of the combination process. A result of this structuring process is the representation of the resulting nonconvex fuzzy classification model in terms of a classifier tree. Such a nonconvex Fuzzy-Classifier features high transparency, which allows a structured understanding of the classificatory decision in working mode. Both the automatic data-based design as well as properties of such tree-like fuzzy classifiers will be illustrated with the help of academic and real word data. Even though the proposed method is introduced for a specific type of membership function, the underlying idea may be applied to any convex membership function
Hofmann, Dirk. "Fuzzy-Pattern-Klassifikation von Last- und Einspeisergängen." Master's thesis, Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800144.
Full textHofmann, Dirk. "Fuzzy-Pattern-Klassifikation von Last- und Einspeisergängen." [S.l. : s.n.], 1998. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10324557.
Full textGONCALVES, LAERCIO BRITO. "NEURAL-FUZZY HIERARCHICAL MODELS FOR PATTERN CLASSIFICATION AND FUZZY RULE EXTRACTION FROM DATABASES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2001. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1326@1.
Full textEsta dissertação investiga a utilização de sistemas Neuro- Fuzzy Hierárquicos BSP (Binary Space Partitioning) para classificação de padrões e para extração de regras fuzzy em bases de dados. O objetivo do trabalho foi criar modelos específicos para classificação de registros a partir do modelo Neuro-Fuzzy Hierárquico BSP que é capaz de gerar sua própria estrutura automaticamente e extrair regras fuzzy, lingüisticamente interpretáveis, que explicam a estrutura dos dados. O princípio da tarefa de classificação de padrões é descobrir relacionamentos entre os dados com a intenção de prever a classe de um padrão desconhecido. O trabalho consistiu fundamentalmente de quatro partes: um estudo sobre os principais métodos de classificação de padrões; análise do sistema Neuro-Fuzzy Hierárquico BSP (NFHB) original na tarefa de classificação; definição e implementação de dois sistemas NFHB específicos para classificação de padrões; e o estudo de casos. No estudo sobre os métodos de classificação foi feito um levantamento bibliográfico da área, resultando em um "survey" onde foram apresentadas as principais técnicas utilizadas para esta tarefa. Entre as principais técnicas destacaram-se: os métodos estatísticos, algoritmos genéticos, árvores de decisão fuzzy, redes neurais, e os sistemas neuro-fuzzy. Na análise do sistema NFHB na classificação de dados levou- se em consideração as peculiaridades do modelo, que possui: aprendizado da estrutura, particionamento recursivo do espaço de entrada, aceita maior número de entradas que os outros sistemas neuro-fuzzy, além de regras fuzzy recursivas. O sistema NFHB, entretanto, não é um modelo exatamente desenvolvido para classificação de padrões. O modelo NFHB original possui apenas uma saída e para utilizá- lo como um classificador é necessário criar um critério de faixa de valores (janelas) para representar as classes. Assim sendo, decidiu-se criar novos modelos que suprissem essa deficiência. Foram definidos dois novos sistemas NFHB para classificação de padrões: NFHB-Invertido e NFHB-Class. O primeiro utiliza a arquitetura do modelo NFHB original no aprendizado e em seguida a inversão da mesma para a validação dos resultados. A inversão do sistema consistiu de um meio de adaptar o novo sistema à tarefa específica de classificação, pois passou-se a ter o número de saídas do sistema igual ao número de classes ao invés do critério de faixa de valores utilizado no modelo NFHB original. Já o sistema NFHB-Class utilizou, tanto para a fase de aprendizado, quanto para a fase de validação, o modelo NFHB original invertido. Ambos os sistemas criados possuem o número de saídas igual ao número de classes dos padrões, o que representou um grande diferencial em relação ao modelo NFHB original. Além do objetivo de classificação de padrões, o sistema NFHB-Class foi capaz de extrair conhecimento em forma de regras fuzzy interpretáveis. Essas regras são expressas da seguinte maneira: SE x é A e y é B então padrão pertence à classe Z. Realizou-se um amplo estudo de casos, abrangendo diversas bases de dados Benchmark para a tarefa de classificação, tais como: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders e Heart Disease, e foram feitas comparações com diversos modelos e algoritmos de classificação de padrões. Os resultados encontrados com os modelos NFHB-Invertido e NFHB-Class mostraram-se, na maioria dos casos, superiores ou iguais aos melhores resultados encontrados pelos outros modelos e algoritmos aos quais foram comparados.O desempenho dos modelos NFHB-Invertido e NFHB-Class em relação ao tempo de processamento também se mostrou muito bom. Para todas as bases de dados descritas no estudo de casos (capítulo 8), os modelos convergiram para uma ótima solução de classificação, além da extração das regras fuzzy, em
This dissertation investigates the use of Neuro-Fuzzy Hierarchical BSP (Binary Space Partitioning) systems for pattern classification and extraction of fuzzy rules in databases. The objective of this work was to create specific models for the classification of registers based on the Neuro-Fuzzy BSP model that is able to create its structure automatically and to extract linguistic rules that explain the data structure. The task of pattern classification is to find relationships between data with the intention of forecasting the class of an unknown pattern. The work consisted of four parts: study about the main methods of the pattern classification; evaluation of the original Neuro-Fuzzy Hierarchical BSP system (NFHB) in pattern classification; definition and implementation of two NFHB systems dedicated to pattern classification; and case studies. The study about classification methods resulted in a survey on the area, where the main techniques used for pattern classification are described. The main techniques are: statistic methods, genetic algorithms, decision trees, neural networks, and neuro-fuzzy systems. The evaluation of the NFHB system in pattern classification took in to consideration the particularities of the model which has: ability to create its own structure; recursive space partitioning; ability to deal with more inputs than other neuro-fuzzy system; and recursive fuzzy rules. The original NFHB system, however, is unsuited for pattern classification. The original NFHB model has only one output and its use in classification problems makes it necessary to create a criterion of band value (windows) in order to represent the classes. Therefore, it was decided to create new models that could overcome this deficiency. Two new NFHB systems were developed for pattern classification: NFHB-Invertido and NFHB-Class. The first one creates its structure using the same learning algorithm of the original NFHB system. After the structure has been created, it is inverted (see chapter 5) for the generalization process. The inversion of the structure provides the system with the number of outputs equal to the number of classes in the database. The second system, the NFHB-Class uses an inverted version of the original basic NFHB cell in both phases, learning and validation. Both systems proposed have the number of outputs equal to the number of the pattern classes, what means a great differential in relation to the original NFHB model. Besides the pattern classification objective, the NFHB- Class system was able to extract knowledge in form of interpretable fuzzy rules. These rules are expressed by this way: If x is A and y is B then the pattern belongs to Z class. The two models developed have been tested in many case studies, including Benchmark databases for classification task, such as: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders and Heart Disease, where comparison has been made with several traditional models and algorithms of pattern classification. The results found with NFHB-Invertido and NFHB-Class models, in all cases, showed to be superior or equal to the best results found by the others models and algorithms for pattern classification. The performance of the NFHB- Invertido and NFHB-Class models in terms of time-processing were also very good. For all databases described in the case studies (chapter 8), the models converged to an optimal classification solution, besides the fuzzy rules extraction, in a time-processing inferior to a minute.
Esta disertación investiga el uso de sistemas Neuro- Fuzzy Herárquicos BSP (Binary Space Partitioning) en problemas de clasificación de padrones y de extracción de reglas fuzzy en bases de datos. El objetivo de este trabajo fue crear modelos específicos para clasificación de registros a partir del modelo Neuro-Fuzzy Jerárquico BSP que es capaz de generar automáticamente su propia extructura y extraer reglas fuzzy, lingüisticamente interpretables, que explican la extructura de los datos. El principio de la clasificación de padrones es descubrir relaciones entre los datos con la intención de prever la clase de un padrón desconocido. El trabajo está constituido por cuatro partes: un estudio sobre los principales métodos de clasificación de padrones; análisis del sistema Neuro-Fuzzy Jerárquico BSP (NFHB) original en la clasificación; definición e implementación de dos sistemas NFHB específicos para clasificación de padrones; y el estudio de casos. En el estudio de los métodos de clasificación se realizó un levatamiento bibliográfico, creando un "survey" donde se presentan las principales técnicas utilizadas. Entre las principales técnicas se destacan: los métodos estadísticos, algoritmos genéticos, árboles de decisión fuzzy, redes neurales, y los sistemas neuro-fuzzy. En el análisis del sistema NFHB para clasificación de datos se tuvieron en cuenta las peculiaridades del modelo, que posee : aprendizaje de la extructura, particionamiento recursivo del espacio de entrada, acepta mayor número de entradas que los otros sistemas neuro-fuzzy, además de reglas fuzzy recursivas. El sistema NFHB, sin embargo, no es un modelo exactamente desarrollado para clasificación de padrones. El modelo NFHB original posee apenas una salida y para utilizarlo conmo un clasificador fue necesario crear un criterio de intervalos de valores (ventanas) para representar las clases. Así, se decidió crear nuevos modelos que supriman esta deficiencia. Se definieron dos nuevos sistemas NFHB para clasificación de padrones: NFHB- Invertido y NFHB-Clas. El primero utiliza la arquitectura del modelo NFHB original en el aprendizaje y en seguida la inversión de la arquitectura para la validación de los resultados. La inversión del sistema es un medio para adaptar el nuevo sistema, específicamente a la clasificación, ya que el sistema pasó a tener número de salidas igual al número de clases, al contrario del criterio de intervalo de valores utilizado en el modelo NFHB original. En el sistema NFHB-Clas se utilizó, tanto para la fase de aprendizajeo, cuanto para la fase de validación, el modelo NFHB original invertido. Ambos sistemas poseen el número de salidas igual al número de clases de los padrones, lo que representa una gran diferencia en relación al modelo NFHB original. Además del objetivo de clasificación de padrones, el sistema NFHB-Clas fue capaz de extraer conocimento en forma de reglas fuzzy interpretables. Esas reglas se expresan de la siguiente manera: Si x es A e y es B entonces el padrón pertenece a la clase Z. Se realizó un amplio estudio de casos, utilizando diversas bases de datos Benchmark para la clasificación, tales como: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders y Heart Disease. Los resultados se compararon con diversos modelos y algoritmos de clasificación de padrones. Los resultados encontrados con los modelos NFHB-Invertido y NFHB-Clas se mostraron, en la mayoría de los casos, superiores o iguales a los mejores resultados encontrados por los otros modelos y algoritmos con los cuales fueron comparados. El desempeño de los modelos NFHB-Invertido y NFHB-Clas en relación al tiempo de procesamiento tambiém se mostró muy bien. Para todas las bases de datos descritas en el estudio de casos (capítulo 8), los modelos convergieron para una solución óptima, además de la extracción de las reglas fuzzy, con tiemp
Power, Conrad. "Hierarchical fuzzy pattern matching for the regional comparison of land use maps." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0005/MQ42427.pdf.
Full textOstrowski, Dominic Jan. "Training fuzzy rulebases and handwriting recognition." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286440.
Full textSolbakken, Lester Johan. "Fuzzy Oscillations : a Novel Model for Solving Pattern Segmentation." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8547.
Full textBooks on the topic "Fuzzy pattern"
1932-, Dutta Majumder D., ed. Fuzzy mathematical approach to pattern recognition. New York: Wiley, 1986.
Find full textScherer, Rafał. Multiple Fuzzy Classification Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textPalm, Rainer. Model Based Fuzzy Control: Fuzzy Gain Schedulers and Sliding Mode Fuzzy Controllers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997.
Find full textBezdek, James C. Fuzzy logic and neural networks for pattern recognition. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 1992.
Find full textPattern classification: Neuro-fuzzy methods and their comparison. London: Springer, 2001.
Find full textZeng, Jia, and Zhi-Qiang Liu. Type-2 Fuzzy Graphical Models for Pattern Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44690-4.
Full textRotshtein, Alexander P. Fuzzy Evidence in Identification, Forecasting and Diagnosis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textDynamic fuzzy pattern recognition with applications to finance and engineering. Boston: Kluwer Academic, 2001.
Find full textBook chapters on the topic "Fuzzy pattern"
Abe, Shigeo. "Fuzzy Rule Generation." In Pattern Classification, 263–86. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0285-4_15.
Full textAbe, Shigeo. "Static Fuzzy Rule Generation." In Pattern Classification, 81–107. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0285-4_5.
Full textAbe, Shigeo. "Dynamic Fuzzy Rule Generation." In Pattern Classification, 177–96. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0285-4_9.
Full textKuncheva, Ludmila I. "Statistical pattern recognition." In Fuzzy Classifier Design, 15–36. Heidelberg: Physica-Verlag HD, 2000. http://dx.doi.org/10.1007/978-3-7908-1850-5_2.
Full textAbe, Shigeo. "Fuzzy Rule Representation and Inference." In Pattern Classification, 257–61. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0285-4_14.
Full textIshibuchi, H., and H. Tanaka. "Approximate Pattern Classification Using Neural Networks." In Fuzzy Logic, 225–36. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2014-2_22.
Full textZimmermann, H. J. "Pattern Recognition." In Fuzzy Set Theory — and Its Applications, 217–40. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7949-0_11.
Full textZimmermann, H. J. "Pattern Recognition." In Fuzzy Set Theory — and Its Applications, 187–212. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-7153-1_11.
Full textBorgelt, Christian, and David Picado-Muiño. "Significant Frequent Item Sets Via Pattern Spectrum Filtering." In Fuzzy Technology, 73–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26986-3_4.
Full textBiewer, Benno. "„Fuzzy-Pattern-Matching“ — Maße der Kompatibilität und Vergleichsalgorithmen." In Fuzzy-Methoden, 333–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59164-8_10.
Full textConference papers on the topic "Fuzzy pattern"
Rodrigues dos Santos, Anderson, Jorge Luis Machado do Amaral, Carlos Augusto Ribeiro Soares, and Adriano Valladao de Barros. "Multi-objective Fuzzy Pattern Trees." In 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2018. http://dx.doi.org/10.1109/fuzz-ieee.2018.8491689.
Full textHong, Tzung-Pei, Chun-Wei Lin, Tsung-Ching Lin, and Shyue-Liang Wang. "Incremental multiple fuzzy frequent pattern tree." In 2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2012. http://dx.doi.org/10.1109/fuzz-ieee.2012.6251351.
Full textLi, Tianjun, Long Chen, and C. L. Philip Chen. "Fuzzy clustering based traffic pattern identification." In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2016. http://dx.doi.org/10.1109/fuzz-ieee.2016.7737822.
Full textZhiheng Huang and T. D. Gedeon. "Pattern Trees." In 2006 IEEE International Conference on Fuzzy Systems. IEEE, 2006. http://dx.doi.org/10.1109/fuzzy.2006.1681947.
Full textHong, Tzung-Pei, Chun-Wei Lin, Tsung-Ching Lin, and Shing-Tai Pan. "Upper-bound multiple fuzzy frequent-pattern trees." In 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2011. http://dx.doi.org/10.1109/fuzzy.2011.6007678.
Full textYang, Tai-ning, Chih-jen Lee, and Shi-jim Yen. "Fuzzy objective functions for robust pattern recognition." In 2009 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2009. http://dx.doi.org/10.1109/fuzzy.2009.5277269.
Full textPizzi, Nick J., Aleksander Demko, and Witold Pedrycz. "Variance analysis and biomedical pattern classification." In 2010 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2010. http://dx.doi.org/10.1109/fuzzy.2010.5584204.
Full textSenge, Robin, and Eyke Hullermeier. "Pattern trees for regression and fuzzy systems modeling." In 2010 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2010. http://dx.doi.org/10.1109/fuzzy.2010.5584231.
Full textPapakostas, G. A., E. I. Papageorgiou, and V. G. Kaburlasos. "Linguistic Fuzzy Cognitive Map (LFCM) for pattern recognition." In 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2015. http://dx.doi.org/10.1109/fuzz-ieee.2015.7338018.
Full textJabbour, Said, Jerry Lonlac, and Lakhdar Sais. "Mining Gradual Itemsets Using Sequential Pattern Mining." In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2019. http://dx.doi.org/10.1109/fuzz-ieee.2019.8858864.
Full textReports on the topic "Fuzzy pattern"
Knapp, Benjamin, Mitra Dastmalchi, Eric Jacobs, and Shahab Layeghi. The Use of Fuzzy Set Classification for Pattern Recognition of the Polygraph. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada279148.
Full text