Academic literature on the topic 'Fuzzy Pattern Classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fuzzy Pattern Classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fuzzy Pattern Classification"
ISHIBUCHI, Hisao, Ken NOZAKI, and Hideo TANAKA. "Pattern Classification by Fuzzy Rules." Journal of Japan Society for Fuzzy Theory and Systems 5, no. 1 (1993): 74–84. http://dx.doi.org/10.3156/jfuzzy.5.1_74.
Full textHamilton-Wright, A., D. W. Stashuk, and H. R. Tizhoosh. "Fuzzy Classification Using Pattern Discovery." IEEE Transactions on Fuzzy Systems 15, no. 5 (October 2007): 772–83. http://dx.doi.org/10.1109/tfuzz.2006.889930.
Full textMeher, Saroj K. "Explicit rough–fuzzy pattern classification model." Pattern Recognition Letters 36 (January 2014): 54–61. http://dx.doi.org/10.1016/j.patrec.2013.09.002.
Full textKulkarni, Arun, and Nikita kulkarni. "Fuzzy Neural Network for Pattern Classification." Procedia Computer Science 167 (2020): 2606–16. http://dx.doi.org/10.1016/j.procs.2020.03.321.
Full textRay, K. S., and T. K. Dinda. "Pattern classification using fuzzy relational calculus." IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 33, no. 1 (February 2003): 1–16. http://dx.doi.org/10.1109/tsmcb.2002.804361.
Full textRay, Kumar S. "Pattern Recognition Based on Fuzzy Set and Genetic Algorithm." International Journal of Image and Graphics 14, no. 03 (July 2014): 1450009. http://dx.doi.org/10.1142/s0219467814500090.
Full textPAPAKOSTAS, G. A., Y. S. BOUTALIS, D. E. KOULOURIOTIS, and B. G. MERTZIOS. "FUZZY COGNITIVE MAPS FOR PATTERN RECOGNITION APPLICATIONS." International Journal of Pattern Recognition and Artificial Intelligence 22, no. 08 (December 2008): 1461–86. http://dx.doi.org/10.1142/s0218001408006910.
Full textNakashima, Tomoharu, Yasuyuki Yokota, Hisao Ishibuchi, Gerald Schaefer, Aleš Drastich, and Michal Závišek. "Constructing Cost-Sensitive Fuzzy-Rule-Based Systems for Pattern Classification Problems." Journal of Advanced Computational Intelligence and Intelligent Informatics 11, no. 6 (July 20, 2007): 546–53. http://dx.doi.org/10.20965/jaciii.2007.p0546.
Full textLee, In-K., Chang-S. Son, and Soon-H. Kwon. "Ontology-based Fuzzy Classifier for Pattern Classification." Journal of Korean Institute of Intelligent Systems 18, no. 6 (December 25, 2008): 814–20. http://dx.doi.org/10.5391/jkiis.2008.18.6.814.
Full textLee, Sang-Bum, Sung-joo Lee, and Mai-Rey Lee. "Selecting Fuzzy Rules for Pattern Classification Systems." International Journal of Fuzzy Logic and Intelligent Systems 2, no. 2 (June 1, 2002): 159–65. http://dx.doi.org/10.5391/ijfis.2002.2.2.159.
Full textDissertations / Theses on the topic "Fuzzy Pattern Classification"
GONCALVES, LAERCIO BRITO. "NEURAL-FUZZY HIERARCHICAL MODELS FOR PATTERN CLASSIFICATION AND FUZZY RULE EXTRACTION FROM DATABASES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2001. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1326@1.
Full textEsta dissertação investiga a utilização de sistemas Neuro- Fuzzy Hierárquicos BSP (Binary Space Partitioning) para classificação de padrões e para extração de regras fuzzy em bases de dados. O objetivo do trabalho foi criar modelos específicos para classificação de registros a partir do modelo Neuro-Fuzzy Hierárquico BSP que é capaz de gerar sua própria estrutura automaticamente e extrair regras fuzzy, lingüisticamente interpretáveis, que explicam a estrutura dos dados. O princípio da tarefa de classificação de padrões é descobrir relacionamentos entre os dados com a intenção de prever a classe de um padrão desconhecido. O trabalho consistiu fundamentalmente de quatro partes: um estudo sobre os principais métodos de classificação de padrões; análise do sistema Neuro-Fuzzy Hierárquico BSP (NFHB) original na tarefa de classificação; definição e implementação de dois sistemas NFHB específicos para classificação de padrões; e o estudo de casos. No estudo sobre os métodos de classificação foi feito um levantamento bibliográfico da área, resultando em um "survey" onde foram apresentadas as principais técnicas utilizadas para esta tarefa. Entre as principais técnicas destacaram-se: os métodos estatísticos, algoritmos genéticos, árvores de decisão fuzzy, redes neurais, e os sistemas neuro-fuzzy. Na análise do sistema NFHB na classificação de dados levou- se em consideração as peculiaridades do modelo, que possui: aprendizado da estrutura, particionamento recursivo do espaço de entrada, aceita maior número de entradas que os outros sistemas neuro-fuzzy, além de regras fuzzy recursivas. O sistema NFHB, entretanto, não é um modelo exatamente desenvolvido para classificação de padrões. O modelo NFHB original possui apenas uma saída e para utilizá- lo como um classificador é necessário criar um critério de faixa de valores (janelas) para representar as classes. Assim sendo, decidiu-se criar novos modelos que suprissem essa deficiência. Foram definidos dois novos sistemas NFHB para classificação de padrões: NFHB-Invertido e NFHB-Class. O primeiro utiliza a arquitetura do modelo NFHB original no aprendizado e em seguida a inversão da mesma para a validação dos resultados. A inversão do sistema consistiu de um meio de adaptar o novo sistema à tarefa específica de classificação, pois passou-se a ter o número de saídas do sistema igual ao número de classes ao invés do critério de faixa de valores utilizado no modelo NFHB original. Já o sistema NFHB-Class utilizou, tanto para a fase de aprendizado, quanto para a fase de validação, o modelo NFHB original invertido. Ambos os sistemas criados possuem o número de saídas igual ao número de classes dos padrões, o que representou um grande diferencial em relação ao modelo NFHB original. Além do objetivo de classificação de padrões, o sistema NFHB-Class foi capaz de extrair conhecimento em forma de regras fuzzy interpretáveis. Essas regras são expressas da seguinte maneira: SE x é A e y é B então padrão pertence à classe Z. Realizou-se um amplo estudo de casos, abrangendo diversas bases de dados Benchmark para a tarefa de classificação, tais como: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders e Heart Disease, e foram feitas comparações com diversos modelos e algoritmos de classificação de padrões. Os resultados encontrados com os modelos NFHB-Invertido e NFHB-Class mostraram-se, na maioria dos casos, superiores ou iguais aos melhores resultados encontrados pelos outros modelos e algoritmos aos quais foram comparados.O desempenho dos modelos NFHB-Invertido e NFHB-Class em relação ao tempo de processamento também se mostrou muito bom. Para todas as bases de dados descritas no estudo de casos (capítulo 8), os modelos convergiram para uma ótima solução de classificação, além da extração das regras fuzzy, em
This dissertation investigates the use of Neuro-Fuzzy Hierarchical BSP (Binary Space Partitioning) systems for pattern classification and extraction of fuzzy rules in databases. The objective of this work was to create specific models for the classification of registers based on the Neuro-Fuzzy BSP model that is able to create its structure automatically and to extract linguistic rules that explain the data structure. The task of pattern classification is to find relationships between data with the intention of forecasting the class of an unknown pattern. The work consisted of four parts: study about the main methods of the pattern classification; evaluation of the original Neuro-Fuzzy Hierarchical BSP system (NFHB) in pattern classification; definition and implementation of two NFHB systems dedicated to pattern classification; and case studies. The study about classification methods resulted in a survey on the area, where the main techniques used for pattern classification are described. The main techniques are: statistic methods, genetic algorithms, decision trees, neural networks, and neuro-fuzzy systems. The evaluation of the NFHB system in pattern classification took in to consideration the particularities of the model which has: ability to create its own structure; recursive space partitioning; ability to deal with more inputs than other neuro-fuzzy system; and recursive fuzzy rules. The original NFHB system, however, is unsuited for pattern classification. The original NFHB model has only one output and its use in classification problems makes it necessary to create a criterion of band value (windows) in order to represent the classes. Therefore, it was decided to create new models that could overcome this deficiency. Two new NFHB systems were developed for pattern classification: NFHB-Invertido and NFHB-Class. The first one creates its structure using the same learning algorithm of the original NFHB system. After the structure has been created, it is inverted (see chapter 5) for the generalization process. The inversion of the structure provides the system with the number of outputs equal to the number of classes in the database. The second system, the NFHB-Class uses an inverted version of the original basic NFHB cell in both phases, learning and validation. Both systems proposed have the number of outputs equal to the number of the pattern classes, what means a great differential in relation to the original NFHB model. Besides the pattern classification objective, the NFHB- Class system was able to extract knowledge in form of interpretable fuzzy rules. These rules are expressed by this way: If x is A and y is B then the pattern belongs to Z class. The two models developed have been tested in many case studies, including Benchmark databases for classification task, such as: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders and Heart Disease, where comparison has been made with several traditional models and algorithms of pattern classification. The results found with NFHB-Invertido and NFHB-Class models, in all cases, showed to be superior or equal to the best results found by the others models and algorithms for pattern classification. The performance of the NFHB- Invertido and NFHB-Class models in terms of time-processing were also very good. For all databases described in the case studies (chapter 8), the models converged to an optimal classification solution, besides the fuzzy rules extraction, in a time-processing inferior to a minute.
Esta disertación investiga el uso de sistemas Neuro- Fuzzy Herárquicos BSP (Binary Space Partitioning) en problemas de clasificación de padrones y de extracción de reglas fuzzy en bases de datos. El objetivo de este trabajo fue crear modelos específicos para clasificación de registros a partir del modelo Neuro-Fuzzy Jerárquico BSP que es capaz de generar automáticamente su propia extructura y extraer reglas fuzzy, lingüisticamente interpretables, que explican la extructura de los datos. El principio de la clasificación de padrones es descubrir relaciones entre los datos con la intención de prever la clase de un padrón desconocido. El trabajo está constituido por cuatro partes: un estudio sobre los principales métodos de clasificación de padrones; análisis del sistema Neuro-Fuzzy Jerárquico BSP (NFHB) original en la clasificación; definición e implementación de dos sistemas NFHB específicos para clasificación de padrones; y el estudio de casos. En el estudio de los métodos de clasificación se realizó un levatamiento bibliográfico, creando un "survey" donde se presentan las principales técnicas utilizadas. Entre las principales técnicas se destacan: los métodos estadísticos, algoritmos genéticos, árboles de decisión fuzzy, redes neurales, y los sistemas neuro-fuzzy. En el análisis del sistema NFHB para clasificación de datos se tuvieron en cuenta las peculiaridades del modelo, que posee : aprendizaje de la extructura, particionamiento recursivo del espacio de entrada, acepta mayor número de entradas que los otros sistemas neuro-fuzzy, además de reglas fuzzy recursivas. El sistema NFHB, sin embargo, no es un modelo exactamente desarrollado para clasificación de padrones. El modelo NFHB original posee apenas una salida y para utilizarlo conmo un clasificador fue necesario crear un criterio de intervalos de valores (ventanas) para representar las clases. Así, se decidió crear nuevos modelos que supriman esta deficiencia. Se definieron dos nuevos sistemas NFHB para clasificación de padrones: NFHB- Invertido y NFHB-Clas. El primero utiliza la arquitectura del modelo NFHB original en el aprendizaje y en seguida la inversión de la arquitectura para la validación de los resultados. La inversión del sistema es un medio para adaptar el nuevo sistema, específicamente a la clasificación, ya que el sistema pasó a tener número de salidas igual al número de clases, al contrario del criterio de intervalo de valores utilizado en el modelo NFHB original. En el sistema NFHB-Clas se utilizó, tanto para la fase de aprendizajeo, cuanto para la fase de validación, el modelo NFHB original invertido. Ambos sistemas poseen el número de salidas igual al número de clases de los padrones, lo que representa una gran diferencia en relación al modelo NFHB original. Además del objetivo de clasificación de padrones, el sistema NFHB-Clas fue capaz de extraer conocimento en forma de reglas fuzzy interpretables. Esas reglas se expresan de la siguiente manera: Si x es A e y es B entonces el padrón pertenece a la clase Z. Se realizó un amplio estudio de casos, utilizando diversas bases de datos Benchmark para la clasificación, tales como: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders y Heart Disease. Los resultados se compararon con diversos modelos y algoritmos de clasificación de padrones. Los resultados encontrados con los modelos NFHB-Invertido y NFHB-Clas se mostraron, en la mayoría de los casos, superiores o iguales a los mejores resultados encontrados por los otros modelos y algoritmos con los cuales fueron comparados. El desempeño de los modelos NFHB-Invertido y NFHB-Clas en relación al tiempo de procesamiento tambiém se mostró muy bien. Para todas las bases de datos descritas en el estudio de casos (capítulo 8), los modelos convergieron para una solución óptima, además de la extracción de las reglas fuzzy, con tiemp
Hempel, Arne-Jens. "Netzorientierte Fuzzy-Pattern-Klassifikation nichtkonvexer Objektmengenmorphologien." Doctoral thesis, Universitätsbibliothek Chemnitz, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-77040.
Full textThis work contributes to the field of fuzzy classification. It dedicates itself to the subject of "Fuzzy-Pattern-Classification", a versatile method applied for classificatory modeling of complex, high dimensional systems based on metric and nonmetric data, i.e. sensor readings or expert statements. Uncertainties of data, their associated morphology and therewith classificatory states are incorporated in terms of fuzziness using a uniform and convex type of membership function. Based on the properties of the already existing convex Fuzzy-Pattern-Class models and their automatic, data-driven setup a method for modeling nonconvex relations without leaving the present classification concept is introduced. Key points of the elaborated approach are: 1.) The aggregation of Fuzzy-Pattern-Classes with the help of so called complementary objects. 2.) The sequential combination of Fuzzy-Pattern-Classes and complementary Fuzzy-Pattern-Classes in terms of a fuzzy set difference. 3.) A clustering based structuring of complementary Fuzzy-Pattern-Classes and therewith a structuring of the combination process. A result of this structuring process is the representation of the resulting nonconvex fuzzy classification model in terms of a classifier tree. Such a nonconvex Fuzzy-Classifier features high transparency, which allows a structured understanding of the classificatory decision in working mode. Both the automatic data-based design as well as properties of such tree-like fuzzy classifiers will be illustrated with the help of academic and real word data. Even though the proposed method is introduced for a specific type of membership function, the underlying idea may be applied to any convex membership function
Hofmann, Dirk. "Fuzzy-Pattern-Klassifikation von Last- und Einspeisergängen." Master's thesis, Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800144.
Full textFischer, Manfred M., and Sucharita Gopal. "Spectral Pattern Recognition and Fuzzy ARTMAP Classification: Design Features, System Dynamics and Real World Simulations." WU Vienna University of Economics and Business, 1996. http://epub.wu.ac.at/4163/1/WSG_DP_5296.pdf.
Full textSeries: Discussion Papers of the Institute for Economic Geography and GIScience
Vasilic, Slavko. "Fuzzy neural network pattern recognition algorithm for classification of the events in power system networks." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/436.
Full textBuani, Bruna Elisa Zanchetta. "Aplicação da Lógica Fuzzy kNN e análises estatísticas para seleção de características e classificação de abelhas." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-10012011-085835/.
Full textThis work presents a proposal to solve the bees classification problem by implementing an algorithm based on Geometrics Morphometrics and the Shape analysis of landmarks generated from bees wings images. The algorithm is based on the K-Nearest Neighbor (K-Nearest Neighbor) algorithm and Fuzzy Logic KNN applied to the analysis and selection of two-dimensional data points relating to landmarks. This work is part of the Architecture Reference Model for Automatic identification and Taxonomic Classification System of Stingless Bee using the Wing Morphometry. The study includes selection and ordering methods for landmarks used in the algorithm by developing a mathematical model to represent the significance order, generating the most significant mathematical landmarks as input variables for Fuzzy Logic kNN. The main objective of this work is to develop a classification system for bee species. The knowledge involved in the development of this work include an overview of feature selection, unsupervised clustering and data mining, analysis of data pre-processing, statistical approaches for estimation and prediction, study of Shape, Procrustes Analysis on data that comes from Geometric Morphometry and the modification of the k-Nearest Neighbors algorithm and the Fuzzy Logic kNN. The results show that the classification in bee samples of the same species presents a accuracy above 90%, depending on the specie in analysis. The classification done between the bees species reach accuracies of 97%.
Schmidt, Bernhard. "Nichtinvasive Erfassung des Hirndrucks mittels des transkraniellen Dopplersignals und der Blutdruckkurve unter Verwendung systemtheoretischer Methoden." Doctoral thesis, [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=969829299.
Full textMehlhorn, Klaus. "Netzverluste in Niederspannungsnetzen." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600489.
Full textThe major part of network operator of low voltage nets do not have digitised data of their nets. That’s why net losses must be calculated indirectly. This article describes an approach for getting results in a direct way
Antunes, João Francisco Gonçalves 1965. "Aplicação de logica fuzzy para estimativa de area plantada da cultura de soja utilizando imagens AVHRR-NOAA." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/257216.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agricola
Made available in DSpace on 2018-08-05T08:07:53Z (GMT). No. of bitstreams: 1 Antunes_JoaoFranciscoGoncalves_M.pdf: 7524504 bytes, checksum: e36a3c933615dc4ef031bf119f6c09ff (MD5) Previous issue date: 2005
Resumo: A estimativa precisa com antecedência à época da colheita de áreas plantadas com culturas agrícolas, como a soja, é de fundamental importância para a economia brasileira. A previsão do escoamento e comercialização da produção agrícola é estratégica para o Brasil, pois estão diretamente relacionados com o planejamento, custos e preço. Com o recente avanço tecnológico na obtenção de dados por sensoriamento remoto orbital é possível melhorar a previsão de safras, diminuindo cada vez mais o nível de subjetividade. Embora designadas para fins meteorológicos, as imagens AVHRR-NOAA de elevada repetitividade temporal, têm sido utilizadas para o monitoramento agrícola. Porém, a sua baixa resolução espacial faz com que possa ocorrer a mistura espectral das classes de cobertura do solo dentro de um mesmo pixel e isso pode acarretar problemas de imprecisão na estimativa de área plantada de uma cultura agrícola. O objetivo principal do trabalho foi desenvolver uma metodologia de classificação automática com a aplicação de lógica fuzzy para o reconhecimento de padrões em imagens AVHRR-NOAA, utilizando índices de vegetação para estimar a área plantada de soja no nível sub-pixel. Para oito municípios produtores de soja da região oeste do Estado do Paraná, foi possível obter a estimativa de área no final de janeiro de 2004, com antecedência em relação à época da colheita, ao contrário dos levantamentos oficiais que se estendem até o final da safra, além de utilizarem dados subjetivos vindos do campo. As estimativas de área de soja baseadas em classificação fuzzy mostraram-se altamente correlacionadas com as estimativas de área de referência obtidas a partir da máscara de soja e por expansão direta, sendo um indicativo de boa precisão. E também apresentaram alta correlação, balizadas com as estimativas oficiais da SEAB/DERAL e do IBGE. Em ambas comparações, o nível de erro relativo geral foi aceitável. O sistema desenvolvido para processamento e geração de produtos das imagens AVHRR-NOAA mostrou-se uma ferramenta fundamental de infra-estrutura, por aliar automação e precisão a metodologia do trabalho
Abstract: An early accurate estimation of agricultural crop areas, such as soybean, is fundamental for the Brazilian economy. The draining forecast and the estimation of agricultural production commercialization are strategic to Brazil, since they are directly related to planning, costs and price. Recent technological progress of data acquisition from orbital remote sensing makes possible to improve harvest forecast, reducing more and more the level of subjectivity. Although designed for meteorological aims, the AVHRR-NOAA images of high temporal resolution, have been used for the crop monitoring. However, its low spatial resolution might cause the spectral mixture of the different land cover classes within the same pixel and it can lead to accuracy problems on crop area estimation. The main objective of the work was to develop an automatic classification methodology with the application of fuzzy logic for pattern recognition in AVHRR-NOAA images, using vegetation indices to estimate the soybean crop areas at sub-pixel level. For eight soybean producer counties in the West region of the Paraná State, it was possible to obtain the crop area estimation at the end of january 2004, prior to the harvest period, on the contrary of the official surveys that extend until the end of the harvest, besides using subjective data collected on the field. The soybean crop area estimation based on fuzzy classification showed to be highly correlated with the reference area estimation obtained from the soybean mask and by direct expansion, being an indicative of good accuracy. And also presented high correlation, marked out with the official estimations from SEAB/DERAL and IBGE. In both comparisons, the level of general relative error was acceptable. The system developed for processing and products generation of AVHRR-NOAA images had proved to be a fundamental infrastructure tool, due to its capacity to combine automation and accuracy to the work methodology
Mestrado
Planejamento e Desenvolvimento Rural Sustentável
Mestre em Engenharia Agrícola
Santos, Anderson Rodrigues dos. "Síntese de árvores de padrões Fuzzy através de Programação Genética Cartesiana." Universidade do Estado do Rio de Janeiro, 2014. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=8026.
Full textThis work presents a system for induction of fuzzy classifiers. Instead of the traditional fuzzy based rules, it was used a model called Fuzzy Pattern Trees (FPT), which is a hierarchical tree-based model, having as internal nodes, fuzzy logical operators and the leaves are composed of a combination of fuzzy terms with the input attributes. The classifier was obtained by creating a tree for each class, this tree will be a logic class description which allows the interpretation of the results. The learning method originally designed for FPT was replaced by Cartesian Genetic Programming in order to provide a better exploration of the search space. The FPT classifier was compared against Support Vector Machines, K Nearest Neighbour, Random Forests and others Fuzzy-Genetics methods on several datasets from the UCI Machine Learning Repository and it presented competitive results. It was also compared with Fuzzy Pattern trees generated by the former learning method and presented comparable results with smaller trees and a lower number of functions evaluations.
Books on the topic "Fuzzy Pattern Classification"
Scherer, Rafał. Multiple Fuzzy Classification Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textLuukka, Pasi. Similarity measure based classification. Lappeenranta: Lappeenranta University of Technology, 2005.
Find full textPattern classification: Neuro-fuzzy methods and their comparison. London: Springer, 2001.
Find full textAbe, Shigeo. Pattern Classification: Neuro-fuzzy Methods and Their Comparison. Springer, 2012.
Find full textJoseph, Downs, ed. Application of the fuzzy ARTMAP neural network model to medical pattern classification tasks. Sheffield: University of Sheffield, Dept. of Automatic Control & Systems Engineering, 1995.
Find full textBook chapters on the topic "Fuzzy Pattern Classification"
Abe, Shigeo. "Fuzzy Rule Generation." In Pattern Classification, 263–86. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0285-4_15.
Full textAbe, Shigeo. "Static Fuzzy Rule Generation." In Pattern Classification, 81–107. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0285-4_5.
Full textAbe, Shigeo. "Dynamic Fuzzy Rule Generation." In Pattern Classification, 177–96. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0285-4_9.
Full textAbe, Shigeo. "Fuzzy Rule Representation and Inference." In Pattern Classification, 257–61. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0285-4_14.
Full textIshibuchi, H., and H. Tanaka. "Approximate Pattern Classification Using Neural Networks." In Fuzzy Logic, 225–36. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2014-2_22.
Full textAbe, Shigeo. "Maximum-Margin Fuzzy Classifiers." In Support Vector Machines for Pattern Classification, 367–94. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-098-4_10.
Full textBocklisch, Steffen F., and Norman Bitterlich. "Fuzzy Pattern Classification — Methodology and Application —." In Fuzzy-Systems in Computer Science, 295–301. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-322-86825-1_23.
Full textIchino, M., H. Yaguchi, and E. Diday. "A Fuzzy Symbolic Pattern Classifier." In Studies in Classification, Data Analysis, and Knowledge Organization, 92–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61159-9_8.
Full textDu, Hao, and Yan Qiu Chen. "Pattern Classification Using Rectified Nearest Feature Line Segment." In Fuzzy Systems and Knowledge Discovery, 81–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11540007_11.
Full textIshibuchi, Hisao, Tomoharu Nakashima, and Manabu Nii. "Fuzzy If-Then Rules for Pattern Classification." In Fuzzy If-Then Rules in Computational Intelligence, 267–95. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4513-2_12.
Full textConference papers on the topic "Fuzzy Pattern Classification"
Pizzi, Nick J., Aleksander Demko, and Witold Pedrycz. "Variance analysis and biomedical pattern classification." In 2010 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2010. http://dx.doi.org/10.1109/fuzzy.2010.5584204.
Full textPapakostas, George A., and Vassilis G. Kaburlasos. "Lattice computing (LC) meta-representation for pattern classification." In 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2014. http://dx.doi.org/10.1109/fuzz-ieee.2014.6891674.
Full textDehzangi, Omid, Bin Ma, Eng Siong Chng, and Haizhou Li. "Framewise Phone Classification Using Weighted Fuzzy Classification Rules." In 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, 2010. http://dx.doi.org/10.1109/icpr.2010.1017.
Full textSchmitt, E., C. Mazaud, V. Bombardier, and P. Lhoste. "A Fuzzy Reasoning Classification Method for Pattern Recognition." In 2006 IEEE International Conference on Fuzzy Systems. IEEE, 2006. http://dx.doi.org/10.1109/fuzzy.2006.1681844.
Full textChou, Te-Shun, Kang K. Yen, Liwei An, Niki Pissinou, and Kia Makki. "Fuzzy belief pattern classification of incomplete data." In 2007 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icsmc.2007.4413848.
Full textPizzi, Nick J., and Witold Pedrycz. "A fuzzy logic network for pattern classification." In NAFIPS 2009 - 2009 Annual Meeting of the North American Fuzzy Information Processing Society. IEEE, 2009. http://dx.doi.org/10.1109/nafips.2009.5156396.
Full textGuo, Xiaomeng, Fan Wu, and Xiaoyong Tang. "Fingerprint Pattern Identification and Classification." In 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). IEEE, 2018. http://dx.doi.org/10.1109/fskd.2018.8687199.
Full textLachhab, Abdellah, and Abdelaziz Bouroumi. "Benchmarking validity procedures for unsupervised fuzzy pattern classification." In 2009 International Conference on Multimedia Computing and Systems (ICMCS'09). IEEE, 2009. http://dx.doi.org/10.1109/mmcs.2009.5256684.
Full textGirish, Gandham, and Jatindra Kumar Dash. "Adaptive fuzzy local binary pattern for texture classification." In 2017 2nd International Conference on Man and Machine Interfacing (MAMI). IEEE, 2017. http://dx.doi.org/10.1109/mami.2017.8307876.
Full textKulkarni, Abhijit, Arnold Noronha, Sasanka Roy, and Savita Angadi. "Fuzzy pattern extraction for classification of protein sequences." In the International Symposium. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1722024.1722046.
Full textReports on the topic "Fuzzy Pattern Classification"
Knapp, Benjamin, Mitra Dastmalchi, Eric Jacobs, and Shahab Layeghi. The Use of Fuzzy Set Classification for Pattern Recognition of the Polygraph. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada279148.
Full text