Academic literature on the topic 'Fuzzy Support Vector Machine (FSVM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fuzzy Support Vector Machine (FSVM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fuzzy Support Vector Machine (FSVM)"
Zhang, Rui, Tong Bo Liu, and Ming Wen Zheng. "An New Fuzzy Support Vector Machine for Binary Classification." Advanced Materials Research 433-440 (January 2012): 2856–61. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.2856.
Full textZhou, Huaping, and Huangli Qin. "Self-Adjusting Fuzzy Support Vector Machine Based on Analysis of Potential Support Vector Sample Point." International Journal of Pattern Recognition and Artificial Intelligence 33, no. 10 (September 2019): 1959035. http://dx.doi.org/10.1142/s0218001419590353.
Full textShanmugapriya, P., and Y. Venkataramani. "Analysis of Speaker Verification System Using Support Vector Machine." JOURNAL OF ADVANCES IN CHEMISTRY 13, no. 10 (February 25, 2017): 6531–42. http://dx.doi.org/10.24297/jac.v13i10.5839.
Full textKe, Hong Xia, Guo Dong Liu, and Guo Bing Pan. "Fuzzy Support Vector Machine for PolSAR Image Classification." Advanced Materials Research 639-640 (January 2013): 1162–67. http://dx.doi.org/10.4028/www.scientific.net/amr.639-640.1162.
Full textDuan, Hua, and Yan Mei Hou. "A Solving Algorithm of Fuzzy Support Vector Machines Based on Determination of Membership." Advanced Materials Research 756-759 (September 2013): 3399–403. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.3399.
Full textYu, Lean. "Credit Risk Evaluation with a Least Squares Fuzzy Support Vector Machines Classifier." Discrete Dynamics in Nature and Society 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/564213.
Full textHou, Yuan Bin, Ning Li, Fan Guo, and Jing Chen. "Fault Diagnosis of Conveyance Machine Based on Fuzzy Support Vector." Applied Mechanics and Materials 135-136 (October 2011): 547–52. http://dx.doi.org/10.4028/www.scientific.net/amm.135-136.547.
Full textLi, Kai, and Xiao Xia Lu. "A Rough Margin Based Fuzzy Support Vector Machine." Advanced Materials Research 204-210 (February 2011): 879–82. http://dx.doi.org/10.4028/www.scientific.net/amr.204-210.879.
Full textGu, Xiaoqing, Tongguang Ni, and Hongyuan Wang. "New Fuzzy Support Vector Machine for the Class Imbalance Problem in Medical Datasets Classification." Scientific World Journal 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/536434.
Full textChen, Hao Guang, Xiao Xi Li, and Da Xi Li. "New Fuzzy Support Vector Machine Method Based on Entropy and Ant-Colony Optimization." Applied Mechanics and Materials 380-384 (August 2013): 1580–84. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.1580.
Full textDissertations / Theses on the topic "Fuzzy Support Vector Machine (FSVM)"
Kannan, Anand. "Performance evaluation of security mechanisms in Cloud Networks." Thesis, KTH, Kommunikationssystem, CoS, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-99464.
Full textInfrastructure as a Service (IaaS) är en Cloudtjänstmodell som huvudsakligen är inriktat på att tillhandahålla ett datacenter för behandling och lagring av data. Nätverksaspekterna av en cloudbaserad infrastruktur som en tjänst utanför datacentret utgör en begränsande faktor som förhindrar känsliga kommunikationstjänster från att anamma denna teknik. Cloudnätverk är en ny teknik som integrerar nätverkstillgång med befintliga cloudtjänstmodeller och därmed fullbordar föreställningen av cloud data genom att ta itu med nätverkaspekten. I cloudnätverk virtualiseras delade nätverksresurser, de avsätts till kunder och slutanvändare vid efterfrågan på ett flexibelt sätt. Denna teknik tillåter olika typer av möjligheter, t.ex. att minska latens och belastningen på nätet. Vidare ger detta tjänsteleverantörer ett sätt att tillhandahålla garantier för nätverksprestandan som en del av deras tjänsteutbud. Men denna nya strategi introducerar nya säkerhetsutmaningar, exempelvis VM migration genom offentligt nätverk. Många av dessa säkerhetsutmaningar behandlas i CloNe’s Security Architecture. Denna rapport presenterar en rad av potentiella tekniker för att säkra olika resurser i en cloudbaserad nätverksmiljö som inte behandlas i den redan existerande CloNe Security Architecture. Rapporten inleds med en helhetssyn på cloudbaserad nätverk som beskrivs i Scalable and Adaptive Internet Solutions (SAIL)-projektet, tillsammans med dess föreslagna arkitektur och säkerhetsmål. Detta följs av en översikt över de problem som måste lösas och några av de olika metoder som kan tillämpas för att lösa delar av det övergripande problemet. Speciellt behandlas en omfattande och tätt integrerad multi-säkerhetsarkitektur, en nyckelhanteringsalgoritm som stödjer mekanismens åtkomstkontroll och en mekanism för intrångsdetektering. För varje metod eller för varje uppsättning av metoder, presenteras ståndpunkten för respektive teknik. Dessutom har experimenten för att förstå prestandan av dessa mekanismer utvärderats på testbädd av ett enkelt cloudnätverk. Den föreslagna nyckelhantering system använder en hierarkisk nyckelhantering strategi som ger snabb och säker viktig uppdatering när medlemmar ansluta sig till och medlemmarna lämnar utförs. Försöksresultat visar att den föreslagna nyckelhantering system ökar säkerheten och ökar tillgänglighet och integritet. En nyligen föreslagna genetisk algoritm baserad funktion valet teknik har använts för effektiv funktion val. Fuzzy SVM har använts på de uppgifter som för effektiv klassificering. Försök har visat att den föreslagna genetiska baserad funktion selekteringsalgoritmen minskar antalet funktioner och därmed minskar klassificering tiden, och samtidigt förbättra upptäckt noggrannhet fuzzy SVM klassificeraren genom att minimera de motstående regler som kan förvirra klassificeraren. De främsta fördelarna med detta intrångsdetekteringssystem är den minskning av falska positiva och ökad säkerhet.
Benbrahim, Houda. "A fuzzy semi-supervised support vector machine approach to hypertext categorization." Thesis, University of Portsmouth, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.494145.
Full textUslan, Volkan. "Support vector machine-based fuzzy systems for quantitative prediction of peptide binding affinity." Thesis, De Montfort University, 2015. http://hdl.handle.net/2086/11170.
Full textOLIVEIRA, A. B. "Modelo de Predição para análise comparativa de Técnicas Neuro-Fuzzy e de Regressão." Universidade Federal do Espírito Santo, 2010. http://repositorio.ufes.br/handle/10/4218.
Full textOs Modelos de Predição implementados pelos algoritmos de Aprendizagem de Máquina advindos como linha de pesquisa da Inteligência Computacional são resultantes de pesquisas e investigações empíricas em dados do mundo real. Neste contexto; estes modelos são extraídos para comparação de duas grandes técnicas de aprendizagem de máquina Redes Neuro-Fuzzy e de Regressão aplicadas no intuito de estimar um parâmetro de qualidade do produto em um ambiente industrial sob processo contínuo. Heuristicamente; esses Modelos de Predição são aplicados e comparados em um mesmo ambiente de simulação com intuito de mensurar os níveis de adequação dos mesmos, o poder de desempenho e generalização dos dados empíricos que compõem este cenário (ambiente industrial de mineração).
Abo, Al Ahad George, and Abbas Salami. "Machine Learning for Market Prediction : Soft Margin Classifiers for Predicting the Sign of Return on Financial Assets." Thesis, Linköpings universitet, Produktionsekonomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151459.
Full textChida, Anjum A. "Protein Tertiary Model Assessment Using Granular Machine Learning Techniques." Digital Archive @ GSU, 2012. http://digitalarchive.gsu.edu/cs_diss/65.
Full textThomas, Rodney H. "Machine Learning for Exploring State Space Structure in Genetic Regulatory Networks." Diss., NSUWorks, 2018. https://nsuworks.nova.edu/gscis_etd/1053.
Full textDíaz, Jorge Luis Guevara. "Modelos de aprendizado supervisionado usando métodos kernel, conjuntos fuzzy e medidas de probabilidade." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-03122015-155546/.
Full textThis thesis proposes a methodology based on kernel methods, probability measures and fuzzy sets, to analyze datasets whose individual observations are itself sets of points, instead of individual points. Fuzzy sets and probability measures are used to model observations; and kernel methods to analyze the data. Fuzzy sets are used when the observation contain imprecise, vague or linguistic values. Whereas probability measures are used when the observation is given as a set of multidimensional points in a $D$-dimensional Euclidean space. Using this methodology, it is possible to address a wide range of machine learning problems for such datasets. Particularly, this work presents data description models when observations are modeled by probability measures. Those description models are applied to the group anomaly detection task. This work also proposes a new class of kernels, \\emph{the kernels on fuzzy sets}, that are reproducing kernels able to map fuzzy sets to a geometric feature spaces. Those kernels are similarity measures between fuzzy sets. We give from basic definitions to applications of those kernels in machine learning problems as supervised classification and a kernel two-sample test. Potential applications of those kernels include machine learning and patter recognition tasks over fuzzy data; and computational tasks requiring a similarity measure estimation between fuzzy sets.
Hu, Linlin. "A novel hybrid technique for short-term electricity price forecasting in deregulated electricity markets." Thesis, Brunel University, 2010. http://bura.brunel.ac.uk/handle/2438/4498.
Full textChen, Xiujuan. "Computational Intelligence Based Classifier Fusion Models for Biomedical Classification Applications." Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/cs_diss/26.
Full textBooks on the topic "Fuzzy Support Vector Machine (FSVM)"
The nonlinear workbook: Chaos, fractals, cellular automata, genetic algorithms, gene expression programming, support vector machine, wavelets, hidden Markov models, fuzzy logic with C++, Java and symbolic C++ programs. 6th ed. Hackensack, New Jersey: World Scientific, 2015.
Find full textThe nonlinear workbook: Chaos, fractals, cellular automata, neural networks, genetic algorithms, gene expression programming, support vector machine, wavelets, hidden Markov models, Fuzzy logic with C++, Java and SymbolicC++ programs. 5th ed. New Jersey: World Scientific, 2011.
Find full textThe nonlinear workbook: Chaos, fractals, cellular automata, neural networks, genetic algorithms, gene expression programming, support vector machine, wavelets, hidden Markov models, Fuzzy logic with C++, Java and SymbolicC++ programs. 3rd ed. Hackensack, NJ: World Scientific, 2005.
Find full textThe nonlinear workbook: Chaos, fractals, cellular automata, neural networks, genetic algorithms, gene expression programming, support vector machine, wavelets, hidden Markov models, Fuzzy logic with C++, Java and SymbolicC++ programs. 5th ed. New Jersey: World Scientific, 2011.
Find full textThe nonlinear workbook: Chaos, fractals, cellular automata, neural networks, genetic algorithms, gene expression programming, support vector machine, wavelets, hidden Markov models, Fuzzy logic with C++, Java and SymbolicC++ programs. 4th ed. New Jersey: World Scientific, 2008.
Find full textComputational Intelligence and Its Applications: Evolutionary Computation, Fuzzy Logic, Neural Network and Support Vector Machine Techniques. Imperial College Press, 2012.
Find full textBook chapters on the topic "Fuzzy Support Vector Machine (FSVM)"
Zhang, Hao, Kang Li, and Cheng Wu. "Fuzzy Chance Constrained Support Vector Machine." In Lecture Notes in Computer Science, 270–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15621-2_30.
Full textBenbrahim, Houda. "Fuzzy Semi-supervised Support Vector Machines." In Machine Learning and Data Mining in Pattern Recognition, 127–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23199-5_10.
Full textGanji, Hamed, and Shahram Khadivi. "ASVMFC: Adaptive Support Vector Machine Based Fuzzy Classifier." In Information Retrieval Technology, 340–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25631-8_31.
Full textHao, Pei-Yi. "A New Fuzzy Support Vector Data Description Machine." In Modern Advances in Applied Intelligence, 118–27. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07455-9_13.
Full textWu, Xiao, Yan Wei, and Xia Wu. "Improved Double Memberships of Fuzzy Support Vector Machine." In Lecture Notes in Electrical Engineering, 764–71. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2386-6_99.
Full textYang, Tao, and Bo Hu. "Study of Multiuser Detection: The Support Vector Machine Approach." In Fuzzy Systems and Knowledge Discovery, 442–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11540007_54.
Full textHwang, Changha, Dug Hun Hong, Eunyoung Na, Hyejung Park, and Jooyong Shim. "Interval Regression Analysis Using Support Vector Machine and Quantile Regression." In Fuzzy Systems and Knowledge Discovery, 100–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11539506_12.
Full textChoi, YoungSik, and KiJoo Kim. "Video Summarization Using Fuzzy One-Class Support Vector Machine." In Computational Science and Its Applications – ICCSA 2004, 49–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24707-4_7.
Full textWu, Kui, and Kim-Hui Yap. "Soft-Labeling Image Scheme Using Fuzzy Support Vector Machine." In Studies in Computational Intelligence, 271–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-76827-2_11.
Full textHao, Yanyou, Zhongxian Chi, Deqin Yan, and Xun Yue. "An Improved Fuzzy Support Vector Machine for Credit Rating." In Lecture Notes in Computer Science, 495–505. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74784-0_50.
Full textConference papers on the topic "Fuzzy Support Vector Machine (FSVM)"
Lakshmanan, B., A. Jeril Priscilla, S. Ponni, and V. Sankari. "Evaluation of imbalanced datasets using fuzzy support vector machine-class imbalance learning (FSVM-CIL)." In 2011 International Conference on Recent Trends in Information Technology (ICRTIT). IEEE, 2011. http://dx.doi.org/10.1109/icrtit.2011.5972431.
Full textXiao, Xiaoling, and Xiang Zhang. "An Improved Fuzzy Support Vector Machine." In 2009 International Symposium on Intelligent Ubiquitous Computing and Education, IUCE. IEEE, 2009. http://dx.doi.org/10.1109/iuce.2009.101.
Full textShilton, Alistair, and Daniel T. H. Lai. "Iterative Fuzzy Support Vector Machine Classification." In 2007 IEEE International Fuzzy Systems Conference. IEEE, 2007. http://dx.doi.org/10.1109/fuzzy.2007.4295570.
Full textWu, Qing, and Kaiyue Sun. "An improved fuzzy twin support vector machine based on support vector." In 2017 13th IEEE Conference on Automation Science and Engineering (CASE 2017). IEEE, 2017. http://dx.doi.org/10.1109/coase.2017.8256256.
Full textXue, Zhenxia, and Wanli Liu. "A fuzzy rough support vector regression machine." In 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2012. http://dx.doi.org/10.1109/fskd.2012.6234232.
Full textCheng, Gong, and Xiaojun Tong. "Fuzzy Clustering Multiple Kernel Support Vector Machine." In 2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). IEEE, 2018. http://dx.doi.org/10.1109/icwapr.2018.8521307.
Full textLi, Xuehua, and Lan Shu. "Fuzzy Theory Based Support Vector Machine Classifier." In 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2008. http://dx.doi.org/10.1109/fskd.2008.440.
Full textSevakula, Rahul K., and Nishchal K. Verma. "Fuzzy Support Vector Machine using Hausdorff distance." In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622475.
Full textWang, Xi-zhao, and Shu-xia Lu. "Improved Fuzzy Multicategory Support Vector Machines Classifier." In 2006 International Conference on Machine Learning and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icmlc.2006.258575.
Full textHao, Pei-Yi. "Possibilistic regression analysis by support vector machine." In 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2011. http://dx.doi.org/10.1109/fuzzy.2011.6007433.
Full text