Dissertations / Theses on the topic 'Fuzzy systems; Neural networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Fuzzy systems; Neural networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Pirovolou, Dimitrios K. "The tracking problem using fuzzy neural networks." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/14824.
Full textFrayman, Yakov, and mikewood@deakin edu au. "Fuzzy neural networks for control of dynamic systems." Deakin University. School of Computing and Mathematics, 1999. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20051017.145550.
Full textGabrys, Bogdan. "Neural network based decision support : modelling and simulation of water distribution networks." Thesis, Nottingham Trent University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387534.
Full textNukala, Ramesh Babu. "Neuro-fuzzy controllers for unstable systems." Thesis, Lancaster University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364362.
Full textMorphet, Steven Brian Işık Can. "Modeling neural networks via linguistically interpretable fuzzy inference systems." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2004. http://wwwlib.umi.com/cr/syr/main.
Full textDias, De Macedo Filho Antonio. "Microwave neural networks and fuzzy classifiers for ES systems." Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244066.
Full textHsu, Cheng-Yu. "Condition monitoring of fluid power systems using artificial neural networks." Thesis, University of Bath, 1995. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295443.
Full textVetcha, Sarat Babu. "Fault diagnosis in pumps by unsupervised neural networks." Thesis, University of Sussex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300604.
Full textJi, Wei. "Artificial neural networks and fuzzy systems in bladder cancer prognosis." Thesis, Coventry University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417616.
Full textIsmael, Ali. "Neural adaptive control systems /." free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9901244.
Full textWatanabe, Yukio. "Learning control of automotive active suspension systems." Thesis, Cranfield University, 1997. http://dspace.lib.cranfield.ac.uk/handle/1826/13865.
Full textStyliandidis, Orestis. "Knowledge from data : concept induction using fuzzy and neural methods." Thesis, University of Bristol, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361076.
Full textTurner, Kevin Michael. "Estimation of Ocean Water Chlorophyll-A Concentration Using Fuzzy C-Means Clustering and Artificial Neural Networks." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/TurnerKM2007.pdf.
Full textChan, Wing-chi. "Modelling of nonlinear stochastic systems using neural and neurofuzzy networks /." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22925843.
Full textGeng, Guang. "Modelling and control of some nonlinear processes in air-handling systems." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386699.
Full textBossley, Kevin Martin. "Neurofuzzy modelling approaches in system identification." Thesis, University of Southampton, 1997. https://eprints.soton.ac.uk/250027/.
Full textFeng, Ming. "Local modelling and control of nonlinear systems." Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326788.
Full textCoyne, Mark R. "Handling uncertainty in knowledge based systems using the theory of mass assignments." Thesis, University of Bristol, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357899.
Full textGottschling, Andreas Peter. "Three essays in neural networks and financial prediction /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1997. http://wwwlib.umi.com/cr/ucsd/fullcit?p9728773.
Full textLau, Chun Yin. "Extended adapative [i.e. adaptive] neuro-fuzzy inference systems." Access electronically, 2006. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20070130.170625/index.html.
Full text陳穎志 and Wing-chi Chan. "Modelling of nonlinear stochastic systems using neural and neurofuzzy networks." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31241475.
Full textWang, Bo-Hyeun. "Fuzzy associative memories identification and control of complex systems." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/13418.
Full textVasilic, Slavko. "Fuzzy neural network pattern recognition algorithm for classification of the events in power system networks." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/436.
Full textLiu, Ying Kin. "Load-distributing algorithm using fuzzy neural network and fault-tolerant framework /." access abstract and table of contents access full-text, 2006. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?mphil-ee-b21471423a.pdf.
Full text"Submitted to Department of Electronic Engineering in partial fulfillment of the requirements for the degree of Master of Philosophy" Includes bibliographical references (leaves 88-92)
Juang, Jih-Gau. "Robotic gait synthesis and control design using neural and fuzzy networks approaches /." free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9924894.
Full textChe, Fidelis Ndeh. "Object-oriented analysis and design of computational intelligence systems." Thesis, City University London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245861.
Full textWeeraprajak, Issarest. "Faster Adaptive Network Based Fuzzy Inference System." Thesis, University of Canterbury. Mathematics and Statistics, 2007. http://hdl.handle.net/10092/1234.
Full textHudgins, Billy E. "Implementation of fuzzy inference systems using neural network techniques." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23919.
Full textVan, Den Bosch Magali Marie. "Simulation of ion exchange processes using neuro-fuzzy reasoning." Thesis, Cape Peninsula University of Technology, 2009. http://hdl.handle.net/20.500.11838/2161.
Full textNeuro-fuzzy computing techniques have been approached and evaluated in areas of process control; researchers have recently begun to evaluate its potential in pattern recognition. Multi-component ion exchange is a non-linear process, which is difficult to model and simulate as there are many factors influencing the chemical process which are not well understood. In the past, empirical isotherm equations were used but there were definite shortcomings resulting in unreliable simulations. In this work, the use of artificial intelligence has therefore been researched to test the effectiveness in simulating ion exchange processes. The branch of artificial intelligence used was the adaptive neuro fuzzy inference system. The objective of this research was to develop a neuro-fuzzy software package to simulate ion exchange processes. The first step towards building this system was to collect data from laboratory scale ion exchange experiments. Different combinations of inputs (e.g. solution concentration, resin loading, impeller speed), were tested to determine whether it was necessary to monitor all available parameters. The software was developed in MSEXCEL where tools like SOLVER could be utilised whilst the code was written in Visual Basic. In order to compare the neuro-fuzzy simulations to previously used empirical methods, the Fritz and Schluender isotherm was used to model and simulate the same data. The results have shown that both methods were adequate but the neuro-fuzzyapproach was the more appropriate method. After completion of this study, it could be concluded that a neuro-fuzzy system does not always have the ability to describe ion exchange processes adequately.
Wu, Kwok-Chiu, and 胡國釗. "Development of electric vehicle battery capacity estimation using neuro-fuzzy systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B27777716.
Full textMok, Hing-tung. "Online fault detection and isolation of nonlinear systems based on neurofuzzy networks." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B39794064.
Full textMok, Hing-tung, and 莫興東. "Online fault detection and isolation of nonlinear systems based on neurofuzzy networks." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B39794064.
Full textDaneshpooy, Alireza. "Artificial neural network and fuzzy logic control for HVDC systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq23593.pdf.
Full textConroy, Justin Anderson. "Analysis of adaptive neuro-fuzzy network structures." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/19684.
Full textReutzel, Edward W. "On the limitations and extensions of bidirectional associative memories in neural networks and fuzzy logic control theory." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/16870.
Full textChan, Yat-fei. "Neurofuzzy network based adaptive nonlinear PID controllers." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43958357.
Full textChan, Yat-fei, and 陳一飛. "Neurofuzzy network based adaptive nonlinear PID controllers." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43958357.
Full textBush, Brian O. "Development of a fuzzy system design strategy using evolutionary computation." Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1178656308.
Full textNETO, LUIZ SABINO RIBEIRO. "ARTIFICIAL NEURAL NETWORKS, FUZZY LOGIC AND NEURO-FUZZY SYSTEM IN THE ROLE OF SHORT TERM LOAD FORECAST." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1999. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7419@1.
Full textELETROBRAS - CENTRAIS ELÉTRICAS BRASILEIRAS S. A.
Esta dissertação investiga o desempenho de técnicas de inteligência computacional na previsão de carga em curto prazo. O objetivo deste trabalho foi propor e avaliar sistemas de redes neurais, lógica nebulosa, neuro-fuzzy e híbridos para previsão de carga em curto prazo, utilizando como entradas variáveis que influenciam o comportamento da carga, tais como: temperatura, índice de conforto e perfil de consumo. Este trabalho envolve 4 etapas principais: um estudo sobre previsão de carga e sobre as variáveis que influenciam o comportamento da carga; um estudo da aplicação de técnicas de inteligência computacional em previsão de carga; a definição de sistemas de redes neurais, lógica fuzzy e neuro-fuzzy em previsão de carga; e estudo de casos. No estudo sobre previsão de carga, foi observada a influência de algumas variáveis no comportamento da curva de carga de uma empresa de energia elétrica. Entre estas variáveis se encontram alguns dados meteorológicos (Temperatura, Umidade, Luminosidade, Índice de conforto, etc.), além de informações sobre o perfil de consumo de carga das empresas. Também foi observado o comportamento da série de carga com relação ao dia da semana, sua sazonalidade e a correlação entre o valor atual e valores passados. Foi realizado um levantamento bibliográfico sobre a aplicação de técnicas de inteligência computacional na previsão de carga. Os modelos de redes neurais, são os mais explorados até o momento. Os modelos de lógica fuzzy começaram a ser utilizados mais recentemente. Modelos neuro-fuzzy são mais recentes que os demais, não existindo portanto, muita bibliografia a respeito. Os projetos de aplicação dos três modelos foram classificados quanto à sua arquitetura, desempenho, erros medidos, entradas utilizadas e horizonte da previsão. Foram propostos e implementados 4 sistemas de previsão de carga: lógica fuzzy, redes neurais, sistema neuro-fuzzy hierárquico e um sistema híbrido neural/neuro- fuzzy. Os sistemas foram especializados para cada dia da semana, pelo fato do comportamento da carga ser distinto entre estes dias. Para os sistemas neural, neuro-fuzzy e híbrido os dados também foram separados em inverno e verão, pois o perfil de consumo de carga é diferente nestas estações. O sistema com lógica fuzzy foi modelado para realizar previsões de curtíssimo prazo (10 em 10 minutos), utilizando para isto o histórico de carga, hora do dia e intervalo de dez minutos dentro da hora do dia. As regras do sistema foram geradas automaticamente a partir do histórico de carga e os conjuntos nebulosos foram pré-definidos. O sistema com redes neurais teve sua arquitetura definida através de experimentos, utilizando- se apenas dados de carga, hora do dia e mês como entradas. O modelo de rede escolhido foi com retropropagação do erro (backpropagation). Foram realizados testes incluindo outras entradas como temperatura e perfil de consumo. Para o sistema neuro-fuzzy foi escolhido um sistema neuro-fuzzy hierárquico, que define automaticamente sua estrutura e as regras a partir do histórico dos dados. Em uma última etapa, foi estudado um sistema híbrido neural/ neuro- fuzzy, no qual a previsão da rede neural é uma entrada do sistema neuro-fuzzy. Para os três últimos modelos as previsões realizadas foram em curto prazo, com um horizonte de uma hora Os sistemas propostos foram testados em estudos de casos e os resultados comparados entre si e com os resultados obtidos em outros projetos na área. Os dados de carga utilizados no sistema com lógica fuzzy foram da CEMIG, no período de 1994 a 1996, em intervalos de 10 minutos, para previsões em curtíssimo prazo. Os resultados obtidos podem ser considerados bons em comparação com um sistema de redes neurais utilizando os mesmos dados. Para os demais modelos foram utilizados os seguintes dados: dados horários de carga da Light e da CPFL, no períod
This thesis examines the performance of computational intelligence in short term load forecasting. The main objective of the work was to propose and evaluate neural network, fuzzy logic, neurofuzzy and hybrid systems in the role of short term load forecast, considering some variables that affect the load behavior such as temperature, comfort indexes and consumption profile. The work consisted in four main steps: a study about load forecasting; the modeling of neural network systems, fuzzy logic and neurofuzzy related to load forecast; and case studies. In the load forecasting studies, some variables appeared to affect the behavior of the load curve in the case of electrical utilities. These variables include meteorological data like temperature, humidity, lightening, comfort indexes etc, and also information about the consumption profile of the utilities. It was also noted the distinct behavior of the load series related to the day of the week, the seasonableness and the correlation between the past and present values. A bibliographic research concerning the application of computational intelligence techniques in load forecasting was made. This research showed that neural network models have been largely employed. The fuzzy logic models have just started to be used recently. Neuro-fuzzy are very recent, and there are almost no references on it. The surveyed application projects using the three models were classified by its architecture, performance, measured errors, inputs considered and horizon of the forecast. In this work four systems were proposed and implemented for load forecasting: fuzzy logic, neural network, hierarchical neuro-fuzzy and hybrid neural/neuro- fuzzy. The systems were specialized for each day of the week, due to the different behavior of the load found for each of the days. For the neural network, neuro-fuzzy and hybrid, the data were separated in winter and summer, due to the different behavior of the load in each of the seasons. The fuzzy logic system was modeled for very short term forecasting using the historic load for each hour of the day, in steps of 10 minutes within each hour. The fuzzy system rules were generated automatically based on the historic load and the fuzzy sets were pre-defined. The system with neural network had its architecture defined through experiments using only load data, hour of the day and month as input. The network model chosen was the back- propagation. Tests were performed adding other inputs such as temperature and consumption profile. For the neural- fuzzy, a hierarchical neuro-fuzzy system, which defines automatically its structure and rules based on the historical data, was employed. In a further step, a hybrid neural/neuro-fuzzy was studied, so as the neural network forecast is the input for the neuro-fuzzy system. For the last three models, short term forecasting was made for one hour period. The proposed systems were tested in case studies, and the results were compared themselves and with results obtained in other projects in the same area. The load data of CEMIG between 1994 and 1996 was used in the fuzzy logic system in steps of 10 minutes for very short term forecasting. The performance was good compared with a neural network system using the same data. For the other models, short term load forecasting (I hour, 24 steps ahead) was done using the following data: load data of LIGHT and CPFL between 1996 and 1998; temperature (hourly for LIGHT and daily for CPFL); the codification of month and hour of the day; and a profile of load by consumption class. For doing. The error results obtained by the models were around 1,15% for the fuzzy logic, 2,0% for the neural network, 1,5% for the neuro-fuzzy system, and 2,0% for the hybrid system. This work has showed the applicability of the computational intelligence techniques on load forecasting, demonstrating that a preliminary study of the series and their relation with
Liut, Daniel Armando. "Neural-Network and Fuzzy-Logic Learning and Control of Linear and Nonlinear Dynamic Systems." Diss., Virginia Tech, 1999. http://hdl.handle.net/10919/29163.
Full textPh. D.
Wanous, Mohammed. "A neurofuzzy expert system for competitive tendering in civil engineering." Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343683.
Full textMounce, Stephen Robert. "A hybrid neural network fuzzy rule-based system applied to leak detection in water pipeline distribution networks." Thesis, University of Bradford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.695062.
Full textAra?jo, J?nior Jos? Medeiros de. "Identifica??o n?o linear usando uma rede fuzzy wavelet neural network modificada." Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15249.
Full textConselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico
In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
Nas ?ltimas d?cadas, as redes neurais t?m se estabelecido como uma das principais ferramentas para a identifica??o de sistemas n?o lineares. Entre os diversos tipos de redes utilizadas em identifica??o, uma que se pode destacar ? a rede neural wavelet (ou Wavelet Neural Network - WNN). Esta rede combina as caracter?sticas de multirresolu??o da teoria wavelet com a capacidade de aprendizado e generaliza??o das redes neurais, podendo fornecer modelos mais exatos do que os obtidos pelas redes tradicionais. Uma evolu??o das redes WNN consiste em combinar a estrutura neuro-fuzzyANFIS (Adaptive Network Based Fuzzy Inference System) com estas redes, gerando-se a estrutura Fuzzy Wavelet Neural Network - FWNN. Essa rede ? muito similar ?s redes ANFIS, com a diferen?a de que os tradicionais polin?mios presentes nos consequentes desta rede s?o substitu?dos por redes WNN. O presente trabalho prop?e uma rede FWNN modificada para a identifica??o de sistemas din?micos n?o lineares. Nessa estrutura, somente fun??es waveletss?o utilizadas nos consequentes. Desta forma, ? poss?vel obter uma simplifica??o da estrutura com rela??o a outras estruturas descritas na literatura, diminuindo o n?mero de par?metros ajust?veis da rede. Para avaliar o desempenho da rede FWNN com essa modifica??o, ? realizada uma an?lise das caracter?sticas da rede, verificando-se as vantagens, desvantagens e o custo-benef?cio quando comparada com outras estruturas FWNNs. As avalia??es s?o realizadas a partir da identifica??o de dois sistemas simulados tradicionalmente encontrados na literatura e um sistema real n?o linear, consistindo de um tanque de multisse??es e n?o linear. Por fim, a rede foi utilizada para inferir valores de temperatura e umidade no interior de uma incubadora neonatal. A execu??o dessa an?lise baseia-se em v?rios crit?rios, tais como: erro m?dio quadr?tico, n?mero de ?pocas de treinamento, n?mero de par?metros ajust?veis, vari?ncia do erro m?dio quadr?tico, entre outros. Os resultados encontrados evidenciam a capacidade de generaliza??o da estrutura modificada, apesar da simplifica??o realizada
Ollé, Tamás. "Klasifikace vzorů pomocí fuzzy neuronových sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219728.
Full textJuma, Sarah Awuor. "A comparison of the classification accuracy of neural and neurofuzzy approaches in credit approval." Diss., Online access via UMI:, 2005.
Find full textAbdullah, Rudwan Ali Abolgasim. "Intelligent methods for complex systems control engineering." Thesis, University of Stirling, 2007. http://hdl.handle.net/1893/257.
Full textSouza, Aline Cristina de 1991. "Memórias associativas recorrentes exponenciais fuzzy baseadas em medidas de similaridade." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306025.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-27T12:11:26Z (GMT). No. of bitstreams: 1 Souza_AlineCristinade_M.pdf: 2392301 bytes, checksum: 8b771e0b97302577daaf84624b0c4751 (MD5) Previous issue date: 2015
Resumo: Memórias associativas são modelos matemáticos inspirados pela capacidade do cérebro humano de armazenar e recordar informações por meio de associações. Tais modelos são projetados para armazenar um conjunto finito de associações chamado de conjunto das memórias fundamentais. Além disso, espera-se que a memória associativa seja capaz de recuperar uma informação armazenada mesmo a partir de um item incompleto ou ruidoso. As Memórias Associativas Recorrentes Exponenciais Fuzzy (REFAMs, acrônimo do termo em inglês Recurrent Exponential Fuzzy Associative Memories) podem ser efetivamente utilizadas para o armazenamento e recordação de uma família finita de conjuntos fuzzy. Em geral, uma REFAM define recursivamente uma sequência de conjuntos fuzzy obtidos usando médias ponderadas e exponenciais dos valores de medida de similaridade. Experimentos computacionais relacionados à recuperação de imagens em tons de cinza ruidosas mostraram que os novos modelos podem apresentar ótima capacidade absoluta de armazenamento bem como excelente tolerância a ruído
Abstract: Associative memories are mathematical models inspired by the human brain ability to store and recall information by means of associations. Such models are designed for the storage of a finite set of associations called the fundamental memories set. Furthermore, the associative memory is expected to be able to retrieve a stored information even from an incomplete or noisy item. The Recurrent Exponential Fuzzy Associative Memories (REFAMs) can be effectively used for storage and recall of a finite family of fuzzy sets. In general, a REFAM defines recursively a sequence of fuzzy sets obtained using weighted averages and exponentials of similarity measure values. Computational experiments concerning the retrieval of noisy gray-scale images revealed that the novel models may exhibit optimal absolute storage capacity as well as excellent noise tolerance
Mestrado
Matematica Aplicada
Mestra em Matemática Aplicada
Sandmann, Humberto Rodrigo. "Predição não-linear de séries temporais usando sistemas de arquitetura neuro-fuzzy." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-01042009-095125/.
Full textThis master dissertation has as main objetive applies systems of neuro-fuzzy architecture for functions prediction in serie times. The architecture carried out is the Adaptive Neuro-Fuzzy Inference System (ANFIS). This architecture is a kind of Fuzzy Inference Systems (FIS) implemen- tation under a paradigm of arti¯cial neural networks. Making use of technology of arti¯cial neural networks, the ANFIS has the capacity of learning with environ- ment data that inserted on. As the same, the ANFIS had been implemented to be a FIS. Then it can process simbolic variables. So, an ANFIS can be described like a hibrid system. All over the chapters are showed some concepts and fundaments of Fuzzy theory, arti¯cial neural networks and hidrid systems. The purpose of the tests the ANFIS, it were been made from a logistic function and a Mackey-Glass function. This tests were against with an estimation function made by MLP net. At the end of the work are some discussions, analyses and conclusions that allows futures possibilites of applications and extensions of this work.
Mossin, Eduardo André. "Diagnóstico automático de redes Profibus." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/18/18153/tde-10102012-162642/.
Full textThis thesis proposes the use of intelligent systems to automatically perform diagnostics and locate faults during the installation and operation of industrial communication networks that use the Profibus DP protocol. For such tasks, some analyzes are performed from the signals transmitted by the physical layer, from telegrams transmitted by the data link layer and from some user layer functions of the Profibus DP protocol. For physical layer analysis, the transmitted electrical signals samples are processed and submitted for some artificial neural networks that classifies each signal according to its waveshape. If these signals have some deformation, the system indicates a probable cause for the problem, after all, the Profibus problems originate specific and characteristic patterns printed on the digital signal waveform. Still analyzing the physical layer signal samples, some problems sources are detected from the signal voltage analysis. Such analysis is performed from an Expert System. Also using expert systems, the data link layer telegrams are analyzed and configuration faults are detected. Finally, it is proposed a fuzzy system responsible for specify a value close to ideal for the target rotation time variable. The proposal has been tested and validated with data from Profibus networks established in laboratory. Besides, some synthetic data were generated by software. The results were sufficient to prove the thesis that intelligent computational systems can contribute effectively to diagnose problems in Profibus DP networks and even in other types of networks.
Weerasinghe, Manori. "Fault detection and diagnosis for complex multivariable processes using neural networks." Thesis, Liverpool John Moores University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298141.
Full text