Academic literature on the topic 'G protein coupled receptor (GPCR)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'G protein coupled receptor (GPCR).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "G protein coupled receptor (GPCR)"
Jastrzebska, Beata, Yaroslav Tsybovsky, and Krzysztof Palczewski. "Complexes between photoactivated rhodopsin and transducin: progress and questions." Biochemical Journal 428, no. 1 (April 28, 2010): 1–10. http://dx.doi.org/10.1042/bj20100270.
Full textPellissier, Lucie P., Gaël Barthet, Florence Gaven, Elisabeth Cassier, Eric Trinquet, Jean-Philippe Pin, Philippe Marin, et al. "G Protein Activation by Serotonin Type 4 Receptor Dimers." Journal of Biological Chemistry 286, no. 12 (January 19, 2011): 9985–97. http://dx.doi.org/10.1074/jbc.m110.201939.
Full textBhattacharya, M., A. V. Babwah, and S. S. G. Ferguson. "Small GTP-binding protein-coupled receptors." Biochemical Society Transactions 32, no. 6 (October 26, 2004): 1040–44. http://dx.doi.org/10.1042/bst0321040.
Full textErlandson, Sarah C., Conor McMahon, and Andrew C. Kruse. "Structural Basis for G Protein–Coupled Receptor Signaling." Annual Review of Biophysics 47, no. 1 (May 20, 2018): 1–18. http://dx.doi.org/10.1146/annurev-biophys-070317-032931.
Full textHay, Debbie L., Christopher S. Walker, Joseph J. Gingell, Graham Ladds, Christopher A. Reynolds, and David R. Poyner. "Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins." Biochemical Society Transactions 44, no. 2 (April 11, 2016): 568–73. http://dx.doi.org/10.1042/bst20150237.
Full textGupte, Tejas M., Rabia U. Malik, Ruth F. Sommese, Michael Ritt, and Sivaraj Sivaramakrishnan. "Priming GPCR signaling through the synergistic effect of two G proteins." Proceedings of the National Academy of Sciences 114, no. 14 (March 21, 2017): 3756–61. http://dx.doi.org/10.1073/pnas.1617232114.
Full textN'Diaye, Elsa-Noah, Aylin C. Hanyaloglu, Kimberly K. Kajihara, Manojkumar A. Puthenveedu, Ping Wu, Mark von Zastrow, and Eric J. Brown. "The Ubiquitin-like Protein PLIC-2 Is a Negative Regulator of G Protein-coupled Receptor Endocytosis." Molecular Biology of the Cell 19, no. 3 (March 2008): 1252–60. http://dx.doi.org/10.1091/mbc.e07-08-0775.
Full textAyoub, Mohammed Akli, and Ranjit Vijayan. "Hemorphins Targeting G Protein-Coupled Receptors." Pharmaceuticals 14, no. 3 (March 7, 2021): 225. http://dx.doi.org/10.3390/ph14030225.
Full textVidad, Ashley Ryan, Stephen Macaspac, and Ho Leung Ng. "Locating ligand binding sites in G-protein coupled receptors using combined information from docking and sequence conservation." PeerJ 9 (September 24, 2021): e12219. http://dx.doi.org/10.7717/peerj.12219.
Full textWhorton, Matthew R., Michael P. Bokoch, Søren G. F. Rasmussen, Bo Huang, Richard N. Zare, Brian Kobilka, and Roger K. Sunahara. "A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein." Proceedings of the National Academy of Sciences 104, no. 18 (April 23, 2007): 7682–87. http://dx.doi.org/10.1073/pnas.0611448104.
Full textDissertations / Theses on the topic "G protein coupled receptor (GPCR)"
Sheng, Yinglun. "G protein signaling and G protein coupled receptor (GPCR) pathway in Xenopus oocyte maturation." Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/29262.
Full textPark, Jung Hee. "Crystal structure of ligand-free G-protein-coupled receptor opsin." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16049.
Full textRhodopsin as the visual pigment in photoreceptor cells is one of the most actively studied GPCRs. It consists of the apoprotein opsin and the inverse agonist, 11-cis-retinal. The inactivating ligand is bound in the seven-transmembrane helix (TM) bundle and cis/trans-isomerized by light to activate the receptor. The active receptor state is capable of catalyzing nucleotide exchange in the G protein and decays within minutes into opsin and all-trans-retinal. The visual pigment is then restored by reloading opsin with new 11-cis-retinal. In the present work, the successful crystallization of native opsin from bovine retinal rod cells and determination of the protein structure to 2.9 Å resolution is presented. Compared with the known structure of inactive rhodopsin, opsin displays prominent structural changes in the conserved E(D)RY and NPxxY(x)5,6F regions and TM5-TM7. At the cytoplasmic side, TM6 is tilted outwards by 6-7 Å, whereas the helix structure of TM5 is more elongated and close to TM6. These structural changes, of which some are attributed to an active GPCR state, reorganize the empty retinal binding pocket to disclose two openings for exit and entry of retinal. The opsin structure thus sheds new light on binding of hydrophobic ligands to GPCRs, GPCR activation and signal transfer to the G protein.
Younkin, Jason W. "Allosteric Effects of G-Protein Coupled Receptor Heteromerization: Relevance to Psychosis." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4457.
Full textKumas, Gozde. "Detecting G-protein Coupled Receptor Interactions Using Enhanced Green Fluorescent Protein Reassembly." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614136/index.pdf.
Full textis an innovative approach based on the reassembly of protein fragments which directly report interactions. In our study we implemented this technique for detecting and visualizing the GPCR interactions in yeast cells. The enhanced green fluorescent protein (EGFP) fractionated into two fragments at genetic level which does not possess fluorescent function. The target proteins which are going to be tested in terms of interaction are modified with the non-functional fragments, to produce the fusion proteins. The interaction between two target proteins, in this study Ste2p receptors which are alpha pheromone receptors from Saccharomyces cerevisiae, enable the fragments to come in a close proximity and reassemble. After reassembly, EGFP regains its fluorescent function which provides a direct read-out for the detection of interaction. Further studies are required to determine subcellular localization of the interaction. Moreover, by using the fusion protein partners constructed in this study, effects of agonist/antagonist binding and post-translational modifications such as glycosylation and phosphorylation can be examined. Apart from all, optimized conditions for BiFC technique will guide for revealing new protein-protein interactions.
Sherrill, Joseph D. "Functional Analysis of the Murine Cytomegalovirus G Protein-coupled Receptor M33." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1225745444.
Full textBahena, Silvia. "Computational Methods for the structural and dynamical understanding of GPCR-RAMP interactions." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-416790.
Full textTroupiotis-Tsaïlaki, Anastassia. "Lipid-GPCR interactions: from activation of sphingosine-1-phosphate receptors to modulation of vasopressin V2 receptor function." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/216727.
Full textLes récepteurs couplés aux protéines G (GPCRs) forment la plus grande famille de protéines membranaires du génome humain et contribuent à une kyrielle de processus physiologiques essentiels, qui leur confèrent un intérêt pharmacologique majeur. Étudier l'interaction de ces protéines avec leurs ligands et leur environnement membranaire est primordial pour appréhender leur fonctionnement à l’échelle moléculaire. Bien que de remarquables avancées dans la détermination de structures à haute résolution de GPCRs à l'état inactif et actif aient permis de comprendre certaines bases structurales du fonctionnement des récepteurs, des approches complémentaires donnant un aperçu des aspects dynamiques et dans un environnement natif sont nécessaires pour cerner pleinement leur mécanisme d'activation. Notre travail de thèse s'inscrit dans cette problématique et s'articule autour de deux sujets: d'une part, comprendre quelles caractéristiques structurales du ligand sous-tendent l'activation de la famille des récepteurs au sphingosine-1-phosphate (S1P); d'autre part, déterminer si les lipides de la membrane plasmique modulent la structure et la fonction du récepteur à la vasopressine V2. Pour répondre à notre première question, nous avons étudié la réponse fonctionnelle en système cellulaire des récepteurs S1P1, S1P2, S1P4 et S1P5 à des composés synthétiques dérivés du S1P, portant des chaînes alkyles de longueur variable. Nos données mettent en évidence que la longueur de la chaîne hydrocarbonée du ligand est un paramètre crucial dans sa capacité d'induire l'activation du récepteur et ce pour l'ensemble des sous-types étudiés. De plus, nos résultats suggèrent que le comportement vis-à-vis de la longueur de chaîne dépend du sous-type de récepteur considéré. Nos résultats expérimentaux, combinés à une approche de modélisation dynamique, ont abouti à proposer un mécanisme d'activation pour la famille des récepteurs au S1P. Dans le second volet de notre travail, nous avons reconstitué le récepteur V2 purifié dans des systèmes de composition lipidique contrôlée, mimant la bicouche membranaire. Nous avons procédé à la caractérisation structurale et fonctionnelle du récepteur inséré dans différentes types de lipides, par des méthodes spectroscopiques infrarouge et de fluorescence. Les données obtenues suggèrent que la composition lipidique affecte la conformation et la fonction du récepteur. L'ensemble de nos travaux contribue ainsi à une meilleure compréhension du mécanisme d'activation des GPCRs et de leur régulation par l'environnement lipidique.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Bucco, Olgatina, and olgatina@gmail com. "Preparing, measuring and capturing G-protein coupled receptor (GPCR) signalling complexes for future development of cell-free assay technologies." Flinders University. medicine, 2006. http://catalogue.flinders.edu.au./local/adt/public/adt-SFU20060703.114912.
Full textByrne, Eamon. "Molecular mechanisms of Hedgehog signal transduction by the G-protein coupled receptor smoothened." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:38abef20-ae98-4835-919c-73afc21a6252.
Full textGata, Gabriel. "Regulated export of G-protein coupled receptors." Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05T066.
Full textThe largest family of membrane receptors is constituted by conserved seven-membrane domain spanning receptors, the G-protein coupled receptors (GPCRs). They are involved in numerous cell responses and diseases thus being a major drug target. Receptor function is determined by the amount of active receptors at the cell surface, which depends on various parameters, such as the biosynthetic rate, the export to the cell surface from internal stores, the endocytosis and post-transcriptional modifications (i.e. phosphorylation). Only recently, the importance of the regulated export has emerged, shedding new light on the physiological role of receptor retention, release, chaperoning and escorting. This work concerns the regulated export mechanisms of two members of the GPCRs family, the chemokine receptor 5 (CCR5) and the metabotropic receptor of the g amino butyric acid (GABAB). Whereas CCR5 is likely a homo-dimer of 2 identical protomers, GABAB is an obligatory hetero-dimer of 2 distinct subunit known as GB1 and GB2. Both CCR5 and GB1 are retained in intracellular compartments (the ER and the Golgi) from which they are released in response to external signals (CCR5) and/or interaction with “private escort proteins” (CD4 for CCR5 and GB2 for GB1). The main goal of our work was to understand the mechanism of retention of these receptors and its regulation. In this context, we determined using biochemical and biophysical approaches that these GPCRs specifically interact with the members of the Prenylated Rab Acceptor Family (PRAF). These proteins are resident either in the ER (PRAF2 and PRAF3) or in the Golgi apparatus (PRAF1) where they function as receptor gatekeepers. Indeed, we could document for PRAF2 that this protein likely interacts directly with previously identified receptor retention motifs and inhibits receptor egress from the ER and subsequent trafficking to the plasma membrane. In the context of the GABAB receptor, PRAF2-dependent retention of GB1 can be overridden by GB2 via simple competition. Perturbing the stoichiometry of PRAF gatekeepers respective to that of receptors significantly perturbs receptor function both in vitro and in vivo. Because PRAFs are ubiquitous and seem to interact with many other GPCRs, they might represent major regulators of receptor function both in physiological and pathological conditions
Books on the topic "G protein coupled receptor (GPCR)"
Annette, Gilchrist, ed. GPCR molecular pharmacology and drug targeting: Shifting paradigms and new directions. Hoboken, N.J: Wiley, 2010.
Find full textR, George Susan, and O'Dowd Brian Francis 1950-, eds. G protein-coupled receptor-protein interactions. Hoboken, N.J: Wiley-Liss, 2005.
Find full textHerrick-Davis, Katharine, Graeme Milligan, and Giuseppe Di Giovanni, eds. G-Protein-Coupled Receptor Dimers. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60174-8.
Full textStevens, Craig W., ed. G Protein-Coupled Receptor Genetics. Totowa, NJ: Humana Press, 2014. http://dx.doi.org/10.1007/978-1-62703-779-2.
Full textGurevich, Vsevolod V., Eugenia V. Gurevich, and John J. G. Tesmer, eds. G Protein-Coupled Receptor Kinases. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3798-1.
Full textTiberi, Mario, ed. G Protein-Coupled Receptor Signaling. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9121-1.
Full textMartins, Sofia Aires M., and Duarte Miguel F. Prazeres, eds. G Protein-Coupled Receptor Screening Assays. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1221-7.
Full textPrazeres, Duarte Miguel F., and Sofia Aires M. Martins, eds. G Protein-Coupled Receptor Screening Assays. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2336-6.
Full textAdhesion-GPCRs structure to function. New York, N.Y: Springer Science+Business Media, 2010.
Find full textRunning, Mark P., ed. G Protein-Coupled Receptor Signaling in Plants. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-532-3.
Full textBook chapters on the topic "G protein coupled receptor (GPCR)"
Grinde, Ellinor, and Katharine Herrick-Davis. "Class A GPCR: Serotonin Receptors." In G-Protein-Coupled Receptor Dimers, 129–72. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60174-8_6.
Full textGingell, Joseph J., Christopher S. Walker, and Debbie L. Hay. "Class B GPCR: Receptors and RAMPs." In G-Protein-Coupled Receptor Dimers, 289–305. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60174-8_11.
Full textFerré, Sergi. "Allosterism Within GPCR Oligomers: Back to Symmetry." In G-Protein-Coupled Receptor Dimers, 433–50. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60174-8_17.
Full textFan, Qing R., William Y. Guo, Yong Geng, and Marisa G. Evelyn. "Class C GPCR: Obligatory Heterodimerization of GABAB Receptor." In G-Protein-Coupled Receptor Dimers, 307–25. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60174-8_12.
Full textHarikumar, Kaleeckal G., and Laurence J. Miller. "Secretin Receptor Dimerization. Prototypic of Class B GPCR Behavior." In G-Protein-Coupled Receptor Dimers, 273–87. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60174-8_10.
Full textSleno, Rory, Dominic Devost, and Terence E. Hébert. "Understanding the Physiological Significance of GPCR Dimers and Oligomers." In G-Protein-Coupled Receptor Dimers, 451–65. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60174-8_18.
Full textHanyaloglu, Aylin C., F. Fanelli, and K. C. Jonas. "Class A GPCR: Di/Oligomerization of Glycoprotein Hormone Receptors." In G-Protein-Coupled Receptor Dimers, 207–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60174-8_8.
Full textKnapp, Barbara, and Uwe Wolfrum. "Adhesion GPCR-Related Protein Networks." In Adhesion G Protein-coupled Receptors, 147–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41523-9_8.
Full textJastrzebska, Beata. "Class A GPCR: Light Sensing G Protein-Coupled Receptor – Focus on Rhodopsin Dimer." In G-Protein-Coupled Receptor Dimers, 79–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60174-8_4.
Full textHamann, Jörg, and Alexander G. Petrenko. "Introduction: History of the Adhesion GPCR Field." In Adhesion G Protein-coupled Receptors, 1–11. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41523-9_1.
Full textConference papers on the topic "G protein coupled receptor (GPCR)"
Fang, Ye, Anthony G. Frutos, and Joydeep Lahiri. "G protein-coupled receptor (GPCR) microarrays." In International Symposium on Biomedical Optics, edited by Darryl J. Bornhop, David A. Dunn, Raymond P. Mariella, Jr., Catherine J. Murphy, Dan V. Nicolau, Shuming Nie, Michelle Palmer, and Ramesh Raghavachari. SPIE, 2002. http://dx.doi.org/10.1117/12.472073.
Full textSadova, A. A., D. A. Dmitrieva, N. A. Safronova, M. B. Shevtsov, T. S. Kurkin, V. I. Borshevskiy, and A. V. Mishin. "PREPARATION OF GPCR ANTIBODY COMPLEX SAMPLES FOR CRYO-ELECTRON MICROSCOPY." In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-211.
Full textVoli, Florida, Hangyu Yi, Estrella Gonzales-Aloy, and Jenny Yingzi Wang. "Abstract 3906: Targeting a novel G-protein coupled receptor (GPCR) for elimination of leukemia stem cells (LSC)." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3906.
Full textMartins, SAM, J. Mateus, V. Chu, DMF Prazeres, and JP Conde. "Thin-film amorphous silicon photodiodes with integrated fluorescent filters for monitoring live-cell G-protein coupled receptors (GPCR)." In 2014 IEEE Sensors. IEEE, 2014. http://dx.doi.org/10.1109/icsens.2014.6985298.
Full textJala, Venkatakrishna R., Haribabu Bodduluri, Brandie Radde, and Carolyn M. Klinge. "Abstract 4548: The role of GPR30/G-protein coupled estrogen receptor (GPER) in lung cancer development." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-4548.
Full textGuillamat Prats, R., P. Goncalves Romeu, G. Li, and S. Steffens. "G-protein coupled receptor (GPR)55 deficiency affects neutrophil function and regulates lung injury in mice." In ERS Lung Science Conference 2023 abstracts. European Respiratory Society, 2023. http://dx.doi.org/10.1183/23120541.lsc-2023.196.
Full textCastillo, Maryann, Angelique M. Wimbley, Jacob J. Mayfield, Jenifer C. Lascano, and Kevin D. Houston. "Abstract 1305: Activation of G-protein coupled estrogen receptor (GPER) inhibits ELT-3 uterine leiomyoma cell proliferation." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-1305.
Full textLv, Xiangmin, Guohua Hua, Chunbo He, John S. Davis, and Cheng Wang. "Abstract B82: G-protein coupled estrogen receptor (GPER) agonist G-1 inhibits growth of human granulosa cell tumor cells via blocking microtubule assembly." In Abstracts: AACR Special Conference on Advances in Ovarian Cancer Research: From Concept to Clinic; September 18-21, 2013; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1078-0432.ovca13-b82.
Full textWang, Cheng, Chao Jiang, Xiangmin Lv, Lan Fu, and John S. Davis. "Abstract 3920: Off-target effects of the putative G-protein coupled estrogen receptor 1 (GPER) agonist G1 in ovarian and breast cancer cells." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3920.
Full textNatale, Chris, Tina Garyantes, and Todd Ridky. "Abstract 1225: LNS8801: A novel, enantiomerically pure, small molecule agonist of the G protein-coupled estrogen receptor (GPER) for the treatment of cancer." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-1225.
Full textReports on the topic "G protein coupled receptor (GPCR)"
Rafaeli, Ada, Russell Jurenka, and Daniel Segal. Isolation, Purification and Sequence Determination of Pheromonotropic-Receptors. United States Department of Agriculture, July 2003. http://dx.doi.org/10.32747/2003.7695850.bard.
Full textRafaeli, Ada, and Russell Jurenka. Molecular Characterization of PBAN G-protein Coupled Receptors in Moth Pest Species: Design of Antagonists. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7593390.bard.
Full textLiu, Mingyao. Role of a Novel Prostate-Specific G-Protein Coupled Receptor (PSGR) in Prostate Tumor Development. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada415521.
Full textYe, Libin, Christopher Andrew Neale, Adnan Sljoka, Brent Lyda, Dmitry Pichugin, Nobuyuki Tsuchimura, Sacha T. Larda, et al. Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1434450.
Full text