Dissertations / Theses on the topic 'G protein coupled receptor (GPCR)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'G protein coupled receptor (GPCR).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sheng, Yinglun. "G protein signaling and G protein coupled receptor (GPCR) pathway in Xenopus oocyte maturation." Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/29262.
Full textPark, Jung Hee. "Crystal structure of ligand-free G-protein-coupled receptor opsin." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16049.
Full textRhodopsin as the visual pigment in photoreceptor cells is one of the most actively studied GPCRs. It consists of the apoprotein opsin and the inverse agonist, 11-cis-retinal. The inactivating ligand is bound in the seven-transmembrane helix (TM) bundle and cis/trans-isomerized by light to activate the receptor. The active receptor state is capable of catalyzing nucleotide exchange in the G protein and decays within minutes into opsin and all-trans-retinal. The visual pigment is then restored by reloading opsin with new 11-cis-retinal. In the present work, the successful crystallization of native opsin from bovine retinal rod cells and determination of the protein structure to 2.9 Å resolution is presented. Compared with the known structure of inactive rhodopsin, opsin displays prominent structural changes in the conserved E(D)RY and NPxxY(x)5,6F regions and TM5-TM7. At the cytoplasmic side, TM6 is tilted outwards by 6-7 Å, whereas the helix structure of TM5 is more elongated and close to TM6. These structural changes, of which some are attributed to an active GPCR state, reorganize the empty retinal binding pocket to disclose two openings for exit and entry of retinal. The opsin structure thus sheds new light on binding of hydrophobic ligands to GPCRs, GPCR activation and signal transfer to the G protein.
Younkin, Jason W. "Allosteric Effects of G-Protein Coupled Receptor Heteromerization: Relevance to Psychosis." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4457.
Full textKumas, Gozde. "Detecting G-protein Coupled Receptor Interactions Using Enhanced Green Fluorescent Protein Reassembly." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614136/index.pdf.
Full textis an innovative approach based on the reassembly of protein fragments which directly report interactions. In our study we implemented this technique for detecting and visualizing the GPCR interactions in yeast cells. The enhanced green fluorescent protein (EGFP) fractionated into two fragments at genetic level which does not possess fluorescent function. The target proteins which are going to be tested in terms of interaction are modified with the non-functional fragments, to produce the fusion proteins. The interaction between two target proteins, in this study Ste2p receptors which are alpha pheromone receptors from Saccharomyces cerevisiae, enable the fragments to come in a close proximity and reassemble. After reassembly, EGFP regains its fluorescent function which provides a direct read-out for the detection of interaction. Further studies are required to determine subcellular localization of the interaction. Moreover, by using the fusion protein partners constructed in this study, effects of agonist/antagonist binding and post-translational modifications such as glycosylation and phosphorylation can be examined. Apart from all, optimized conditions for BiFC technique will guide for revealing new protein-protein interactions.
Sherrill, Joseph D. "Functional Analysis of the Murine Cytomegalovirus G Protein-coupled Receptor M33." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1225745444.
Full textBahena, Silvia. "Computational Methods for the structural and dynamical understanding of GPCR-RAMP interactions." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-416790.
Full textTroupiotis-Tsaïlaki, Anastassia. "Lipid-GPCR interactions: from activation of sphingosine-1-phosphate receptors to modulation of vasopressin V2 receptor function." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/216727.
Full textLes récepteurs couplés aux protéines G (GPCRs) forment la plus grande famille de protéines membranaires du génome humain et contribuent à une kyrielle de processus physiologiques essentiels, qui leur confèrent un intérêt pharmacologique majeur. Étudier l'interaction de ces protéines avec leurs ligands et leur environnement membranaire est primordial pour appréhender leur fonctionnement à l’échelle moléculaire. Bien que de remarquables avancées dans la détermination de structures à haute résolution de GPCRs à l'état inactif et actif aient permis de comprendre certaines bases structurales du fonctionnement des récepteurs, des approches complémentaires donnant un aperçu des aspects dynamiques et dans un environnement natif sont nécessaires pour cerner pleinement leur mécanisme d'activation. Notre travail de thèse s'inscrit dans cette problématique et s'articule autour de deux sujets: d'une part, comprendre quelles caractéristiques structurales du ligand sous-tendent l'activation de la famille des récepteurs au sphingosine-1-phosphate (S1P); d'autre part, déterminer si les lipides de la membrane plasmique modulent la structure et la fonction du récepteur à la vasopressine V2. Pour répondre à notre première question, nous avons étudié la réponse fonctionnelle en système cellulaire des récepteurs S1P1, S1P2, S1P4 et S1P5 à des composés synthétiques dérivés du S1P, portant des chaînes alkyles de longueur variable. Nos données mettent en évidence que la longueur de la chaîne hydrocarbonée du ligand est un paramètre crucial dans sa capacité d'induire l'activation du récepteur et ce pour l'ensemble des sous-types étudiés. De plus, nos résultats suggèrent que le comportement vis-à-vis de la longueur de chaîne dépend du sous-type de récepteur considéré. Nos résultats expérimentaux, combinés à une approche de modélisation dynamique, ont abouti à proposer un mécanisme d'activation pour la famille des récepteurs au S1P. Dans le second volet de notre travail, nous avons reconstitué le récepteur V2 purifié dans des systèmes de composition lipidique contrôlée, mimant la bicouche membranaire. Nous avons procédé à la caractérisation structurale et fonctionnelle du récepteur inséré dans différentes types de lipides, par des méthodes spectroscopiques infrarouge et de fluorescence. Les données obtenues suggèrent que la composition lipidique affecte la conformation et la fonction du récepteur. L'ensemble de nos travaux contribue ainsi à une meilleure compréhension du mécanisme d'activation des GPCRs et de leur régulation par l'environnement lipidique.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Bucco, Olgatina, and olgatina@gmail com. "Preparing, measuring and capturing G-protein coupled receptor (GPCR) signalling complexes for future development of cell-free assay technologies." Flinders University. medicine, 2006. http://catalogue.flinders.edu.au./local/adt/public/adt-SFU20060703.114912.
Full textByrne, Eamon. "Molecular mechanisms of Hedgehog signal transduction by the G-protein coupled receptor smoothened." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:38abef20-ae98-4835-919c-73afc21a6252.
Full textGata, Gabriel. "Regulated export of G-protein coupled receptors." Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05T066.
Full textThe largest family of membrane receptors is constituted by conserved seven-membrane domain spanning receptors, the G-protein coupled receptors (GPCRs). They are involved in numerous cell responses and diseases thus being a major drug target. Receptor function is determined by the amount of active receptors at the cell surface, which depends on various parameters, such as the biosynthetic rate, the export to the cell surface from internal stores, the endocytosis and post-transcriptional modifications (i.e. phosphorylation). Only recently, the importance of the regulated export has emerged, shedding new light on the physiological role of receptor retention, release, chaperoning and escorting. This work concerns the regulated export mechanisms of two members of the GPCRs family, the chemokine receptor 5 (CCR5) and the metabotropic receptor of the g amino butyric acid (GABAB). Whereas CCR5 is likely a homo-dimer of 2 identical protomers, GABAB is an obligatory hetero-dimer of 2 distinct subunit known as GB1 and GB2. Both CCR5 and GB1 are retained in intracellular compartments (the ER and the Golgi) from which they are released in response to external signals (CCR5) and/or interaction with “private escort proteins” (CD4 for CCR5 and GB2 for GB1). The main goal of our work was to understand the mechanism of retention of these receptors and its regulation. In this context, we determined using biochemical and biophysical approaches that these GPCRs specifically interact with the members of the Prenylated Rab Acceptor Family (PRAF). These proteins are resident either in the ER (PRAF2 and PRAF3) or in the Golgi apparatus (PRAF1) where they function as receptor gatekeepers. Indeed, we could document for PRAF2 that this protein likely interacts directly with previously identified receptor retention motifs and inhibits receptor egress from the ER and subsequent trafficking to the plasma membrane. In the context of the GABAB receptor, PRAF2-dependent retention of GB1 can be overridden by GB2 via simple competition. Perturbing the stoichiometry of PRAF gatekeepers respective to that of receptors significantly perturbs receptor function both in vitro and in vivo. Because PRAFs are ubiquitous and seem to interact with many other GPCRs, they might represent major regulators of receptor function both in physiological and pathological conditions
Bittencourt, Fabiola M. "Examination of the Function of the Murine Cytomegalovirus Encoded G Protein-Coupled Receptor M33 in vivo." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1397234044.
Full textSheffler, Douglas James. "The Regulation of G Protein-Coupled Receptor (GPCR) Signal Transduction by p90 Ribosomal S6 Kinase 2 (RSK2)." Connect to text online, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=case1130777469.
Full textSallander, Eva Jessica. "The mechanism of G protein coupled receptor activation: the serotonin receptors." Doctoral thesis, Universitat Pompeu Fabra, 2011. http://hdl.handle.net/10803/77901.
Full textOne of the main questions in G protein coupled receptors (GPCRs) molecular pharmacology is to understand the structural arrangements of the seven transmembrane (TM) helices that occur to stabilize either the ground state (Rg) or different active states (R*) of the receptors. In order to understand the mechanism that shift the equilibrium of the ensemble to an active R* state models of the inactive and the active state of three serotonin receptors (5-HT4, 5-HT6, and 5-HT7) were built based on the latest information from X-ray crystallography. The resulting models were mainly used to understand the interaction between a ligand and its receptor and the mechanism of action. With the help of pharmacological and chemical data these models and complexes were improved and evaluated. These findings may prove valuable for structural based drug discovery efforts and facilitate the design of more effective and selective pharmaceuticals.
Gloriam, David E. "G Protein-Coupled Receptors; Discovery of New Human Members and Analyses of the Entire Repertoires in Human, Mouse and Rat." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6745.
Full textNojima, Shingo. "Cryo-EM Structure of the Prostaglandin E Receptor EP4 Coupled to G Protein." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263574.
Full textGulati, Sahil Gulati. "Modulating G Protein-Coupled Receptor Signaling Pathways with Selective Chemical- and Protein-Based Effector Molecules." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1530642105672697.
Full textGRILLO, Maria. "IDENTIFICATION AND FUNCTIONAL CHARACTERIZATION OF GPCR23/LPA4 AS A CANDIDATE G PROTEIN-COUPLED RECEPTOR FOR GUANOSINE." Doctoral thesis, Università degli Studi di Palermo, 2014. http://hdl.handle.net/10447/90984.
Full textSeveral studies have shown that guanine-based purines exert biological effects on the central nervous system (CNS), possibly through membrane receptors, but at the present there are not reports related to the identification of such specific receptor(s). According to the results shown in this thesis, we have identified the first guanosine G protein-coupled receptor GPCR23, also known as LPA4 receptor. [3H]-Guanosine radioligand binding assay reveals that [3H]-Guanosine binding to membrane fractions is greatly enhanced by GPCR23 overexpression and reduced by GPCR23 silencing. Furthermore, in [35S] GTPγS binding assay experiments, Guanosine causes a functional G-protein coupled receptor activation in U87-GPCR23 overexpressing cells with an EC50= 8,067 nM. The binding site for [3H]-guanosine is highly specific as well as both lysophosphatidic acid (LPA) and guanine agonists are 10 times less effective than guanosine in displacing 50 nM [3H]-guanosine binding. In order to correlate the effects of guanosine in the CNS to a putative interaction with specific binding sites and in particular to GPCR activation, we performed, in different brain areas [3H]-Guanosine radioligand binding assay and [35S]-GTPγS binding assay. Among the examined brain tissues, the cerebral cortex showed the highest maximal number of binding sites for Guanosine as compared to other brain regions. In each tested brain area, the saturation curves indicates the presence of a single high affinity binding site since it is resolved by non-linear regression analysis with a one-site model. In cortical membranes KD value is 143,8 nM and Bmax 3713 fmol/mg protein. The other considered areas show lower Bmax values for [3H]-Guanosine, with the following rank order: cerebral cortex>hippocampus>striatum>spinal cord. The existence of a specific receptor coupled to a G protein for guanosine in cortical membranes, thus compatible with GPCR23, is also validated by [35S] GTPγS binding assay experiments that demonstrate the activation of a G protein-coupled receptor in response to guanosine both in autoradiography sagittal sections and in cerebral cortex membranes. With the purpose of evaluate downstream signaling activated by guanosine interaction with its binding sites; we conducted in vivo and in vitro experiments. According to our Dott.ssa Maria Grillo Pagina 4 results, Guanosine effects in cerebral cortex may be mediated by ERK1/2 and/or PLC pathways activation. In particular, i.p. administration of 7,5 mg/kg in rats induced ERK enhanced phosphorylation in cortical tissue, with a peak effect at 30 minutes after injection . On the other hand, treatment of cortical neurons with guanosine causes at 7,5 minutes both PLCγ and ERK1/2 pathways activation. Taken together, our findings demonstrate that GPCR23 is the first Receptor for Guanosine and suggest an involvement of GPCR23 in the functional response of cerebral cortex to Guanosine. Even if these observations do not exclude a possible involvement of other unidentified receptors, our study lays the foundation for identification of receptors responsive to Guanine-based purines (GBPs), both in nervous system and in other peripheral tissues and may provide new targets for neuroprotection and neuromodulation.
Sreedharan, Smitha. "Functional Characterization of Centrally Expressed Solute Carriers and G Protein-Coupled Receptors." Doctoral thesis, Uppsala universitet, Funktionell farmakologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-156832.
Full textMaxwell, Stropes Melissa Page. "Signaling and Regulation of the Human Cytomegalovirus G-Protein Coupled Receptor US28 in HCMV Infected Cells." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1236016578.
Full textGaudio, Sabrina. "Functional characterization of the interaction between G protein coupled receptors (GPCR) and regulators of G protein signaling (RGS) in yeast." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97959.
Full textFischer, Liane, Caroline Wilde, Torsten Schöneberg, and Ines Liebscher. "Functional relevance of naturally occurring mutations in adhesion G protein-coupled receptor ADGRD1 (GPR133)." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-208803.
Full textBjarnadóttir, Þóra Kristín. "The Gene Repertoire of G protein-coupled Receptors : New Genes, Phylogeny, and Evolution." Doctoral thesis, Uppsala University, Department of Neuroscience, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6627.
Full textThe superfamily of G protein-coupled receptors (GPCRs) is one of the largest protein families of mammalian genomes and can be divided into five main families; Glutamate, Rhodopsin, Adhesion, Frizzled, and Secretin. GPCRs participate in most major physiological functions, contributing to the fact that they are important targets in drug discovery. In paper I we mined the human and mouse genomes for new Adhesion GPCR genes. We found two new human genes (GPR133 and GPR144) and 17 mouse Adhesion genes, bringing the number up to 33 human and 31 mouse genes. In paper II we describe 53 new splice variants for human Adhesion receptors supported by expressed sequence tags (EST) data. 29 of these variants seem to code for functional proteins, several of which lack one or more functional domains in the N-termini. Lack of certain domains is likely to affect ligand binding or interaction with other proteins. Paper III describes the Glutamate GPCR in human, mouse, Fugu, and zebrafish. We gathered a total of 22 human, 79 mouse, 30 Fugu, and 32 zebrafish sequences and grouped these into eight clans using phylogenetic methods. The report provides an overview of the expansion or deletions among the different branches of the Glutamate receptor family. Paper IV focuses on the trace amine (TA) clan of Rhodopsin GPCRs. We identified 18 new rodent genes, 57 zebrafish genes, and eight Fugu genes belonging to the clan. Chromosomal mapping together with phylogenetic relationships suggests that the family arose through several mechanisms involving tetraploidisation, block duplications, and local duplication events. Paper V provides a comprehensive dataset of the GPCR superfamily of human and mouse containing 495 mouse and 400 human non-olfactory GPCRs. Phylogenetic analyses showed that 329 of the receptors are found in one-to-one orthologous pairs, whereas other receptors may have originated from species-specific expansions.
Meoli, Luca. "Comprehensive phenotyping of two mouse mutants reveals a potential novel role of G protein-coupled receptor 30." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16263.
Full textRecent studies identified the G protein-coupled receptor 30 (Gpr30) as a potential new estrogen receptor. However, these findings remain still controversial and the physiological role of Gpr30 has not been clarified yet. In order to decipher the role of Gpr30 in vivo, we investigated the phenotype of a Gpr30 mutant mouse line, generated by the insertion of a beta-galactosidase-neomycin cassette into the Gpr30 open reading frame, in a primary and a secondary screen. The primary screen revealed a decrease of T cell levels in both male and female mutants. Thymus gene expression analysis allowed to detect some of the genes potentially involved in regulating T cell levels in these mice. On this basis a hypothesis of an increase in T cell calcium-mediated apoptosis was formulated. The secondary screen aimed at unraveling a potential metabolic and cardiovascular phenotype, being Gpr30 mainly expressed in the vasculature of several organs, as well as in the pancreas and in the chief gastric cells of the stomach. Therefore, mice were challenged with a defined high fat diet, and metabolic and hemodynamic tests were performed. To confirm the phenotype achieved in this first mouse line, a second one, devoid of any selection marker, was analyzed. Altogether the results achieved may contribute to a better understanding of Gpr30 function in vivo, disproving a role of Gpr30 in body weight regulation, suggesting a role in lipid and muscular metabolism, and providing evidence that Gpr30 may not be required for several estrogen-regulated physiological processes.
Morizzo, Erika. "G Protein-Coupled Receptors as Potential Drug Target: From Receptor Topology to Rational Drug Design, an in-silico Approach." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426081.
Full textI recettori accoppiati alle proteine G (GPCR) costituiscono una grande famiglia di proteine integrali di membrana caratterizzate da sette eliche transmenmbrana, che mediano un'ampia gamma di processi fisiologici che vanno dalla trasmissione della luce e dei segnali olfattivi alla mediazione della neurotrasmissione e dell'azione degli ormoni. I GPCR mancano di una corretta regolazione in molte patologie umane ed è stato stimato che costituiscano il target del 40% dei medicinali utilizzati attualmente in clinica. La struttura cristallografica della rodopsina e le strutture più recenti del recettore beta adrenergico e del recettore adenosinico A2A forniscono l'informazione strutturale che sta alla base della costruzione di modelli per omologia e degli approcci di structure-based drug design dei GPCR. La costruzione di modelli di GPCR per omologia basati sulla struttura della rodopsina ha rappresentato per molti anni un approccio ampiamente utilizzato. Questi modelli possono essere usati per descrivere le interazioni interatomiche tra ligando e recettore e come le informazioni sono trasmesse attraverso il recettore. Diversi stati conformazionali del recettore possono essere in grado di descrivere la conformazione del recettore che lega l'agonista e quella che lega l'antagonista, a seconda della natura di ligando e recettore. Se si considerano diverse complementarietà, si possono esplorare diversi stati conformazionali di uno stesso stato farmacologico. Noi abbiamo studiato la farmacologia molecolare dei recettori adenosinici e, in particolare, del recettore adenosinico A3 umano (hA3AR), utilizzando un approccio interdisciplinare al fine di massimizzare la scoperta e l'ottimizzazione strutturale di nuovi antagonisti potenti e selettivi per il hA3AR. Il hA3AR fa parte della famiglia dei recettori adenosinici che consiste in quattro diversi sottotipi (A1, A2A, A2B, A3) che sono espressi in tutto il corpo umano. Il recettore adenosinico A3 è stato identificato più recentemente ed è implicato in importanti processi fisologici. L'attivazione del hA3AR aumenta il rilascio di mediatori dell'infiammazione, come l'istamina dalle mastcellule, e inibisce la produzione del TNF-alpha. L'attivazione del hA3AR sembra essere coinvolta nell'immunosoppressione e nella risposta ischemica di cuore e cervello. Agonisti o antagonisti del hA3AR sono potenziali agenti terapeutici nel trattamento di patologie ischemiche e infiammatorie. Il primo modello di hA3AR è stato costruito usando un approccio convenzionale di homology modeling basato sulla rodopsina ed è nel suo stato che lega l'antagonista. Dopo essere stato utilizzato per verificare le interazioni a livello molecolare che erano state evidenziate da studi di mutagenesi, il modello è stato rivisto prendendo in considerazione una nuova strategia che simula la possibile riorganizzazione del recettore indotta dal legame con l'antagonista. Abbiamo chiamato questa strategia ligand-based homology modeling. E' un'evoluzione dell'algoritmo convenzionale di homology modeling: ogni atomo selezionato viente preso in considerazione nei test energetici e nelle fasi di minimizzazione della procedura di modeling. L'opzione ligand-based è molto utile quando si vuole costruire un modello per omologia in presenza di un ligando nella sua ipotetica conformazione di legame nel templato iniziale. A partire dal modello ottenuto dalla rodopsina e applicando la tecnica del LBHM, possiamo generare altri stati conformazionali del recettore hA3AR che legano l'antagonista, nei quali la cavità di riconoscimento del ligando è espansa. Usando diversi stati conformazionali che legano l'antagonista, possiamo razionalizzare l'attività misurata sperimentalmente di tutti i composti analizzati. Sono condotte severe analisi relative a falsi positivi e falsi negativi. Per validare la metodologia come nuovo strumento per indirizzare lo spazio multiconformazionale dei GPCR, abbiamo analizzato diverse classi di antagonisti con attività nota sul hA3AR: ad esempio derivati triazolo-chinossalinonici, derivati arilpirazolo-chinolinici e derivati pirazolo-triazolo-pirimidinici. Questi studi hanno portato all'identificazione di gruppi per ogni classe di antagonisti che, se introdotti in una precisa posizione, portano ad un'alta affinità e ad una buona selettività per il hA3AR. A partire dalle caratteristiche risultate importanti per il legame, abbiamo applicato una tecnica di semplificazione molecolare in silico per identificare una possibile via di frammentazione della struttura 4-amino-triazolochinoassalin-1-onica ed esplorare quali sono le caratteristiche strutturali essenziali per garantire un'efficiente riconoscimento ligando-recettore. Con la disponibilità di nuove strutture tridimensionali da utilizzare come templati diversi dalla rodopsina, abbiamo costruito nuovi modelli del recettore hA3AR. Tutti i modelli sono stati usati per una simulazione di dinamica molecolare in un doppio strato fosfolipidico, per analizzare le fluttuazioni topologiche della tasca di legame.
Diness, Frederik. "Solid-phase reactions of N-carbamyliminium ions : from amino aldehydes to on-bead GPCR-screening /." Cph. ; Valby : Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences : Center for solid-phase organic combinatiorial chemistry, Carlsberg Laboratory, 2006. http://www.dfuni.dk/index.php/Frederik-Diness/3031/0/.
Full textRitscher, Lars. "Die Agonistspezifität des G-Protein-gekoppelten Rezeptors GPR34." Doctoral thesis, Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-97551.
Full textLyso-PS (lyso-phosphatidylserine) has been shown to activate the G(i/o)-protein-coupled receptor GPR34. Since in vitro and in vivo studies provided controversial results in assigning lyso-PS as the endogenous agonist for GPR34, we investigated the evolutionary conservation of agonist specificity in more detail. Except for some fish GPR34 subtypes, lyso-PS has no or very weak agonistic activity at most vertebrate GPR34 orthologues investigated. Using chimaeras we identified single positions in the second extracellular loop and the transmembrane helix 5 of carp subtype 2a that, if transferred to the human orthologue, enabled lyso-PS to activate the human GPR34. Significant improvement of agonist efficacy by changing only a few positions strongly argues against the hypothesis that nature optimized GPR34 as the receptor for lyso-PS. Phylogenetic analysis revealed several positions in some fish GPR34 orthologues which are under positive selection. These structural changes may indicate functional specification of these orthologues which can explain the species- and subtype-specific pharmacology of lyso-PS. Furthermore, we identified aminoethyl-carbamoyl ATP as an antagonist of carp GPR34, indicating ligand promiscuity with non-lipid compounds. The results of the present study suggest that lyso-PS has only a random agonistic activity at some GPR34 orthologues and the search for the endogenous agonist should consider additional chemical entities
Ahmed, Mohaned S. A. "New C-C chemokine receptor type 7 antagonists." Thesis, University of Bradford, 2016. http://hdl.handle.net/10454/14623.
Full textCordomí, Montoya Arnau. "Molecular dynamics simulations of seven-transmembrane receptors." Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/6464.
Full textThe current limitations in the experimental techniques necessary for microscopic studies of the membrane as well as membrane proteins emerged the use of computational methods and specifically molecular dynamics simulations. The lead motif of this thesis is the study of GPCR by means of this technique, with the ultimate goal of developing a methodology that can be generalized to the study of most 7-TM as well as other membrane proteins. Since the bovine rhodopsin was the only protein of the GPCR family with a known threedimensional structure at an atomic level until very recently, most of the effort is centered in the study of this receptor as a model of GPCR.
The scope of this thesis is twofold. On the one hand it addresses the study of the simulation conditions, including the procedure as well as the sampling box to get optimal results, and on the other, the biological implications of the structural and dynamical behavior observed in the simulations. Specifically, regarding the methodological aspects of the work, the bovine rhodopsin has been studied using different treatments of long-range electrostatic interactions and sampling conditions, as well as the effect of sampling the protein embedded in different one-component lipid bilayers. The binding of ions to lipid bilayers in the absence of the protein has also been investigated.
Regarding the biological consequences of the analysis of the MD trajectories, it has been carefully addressed the binding site of retinal and its implications in the process of isomerization after photon uptake, the alteration a group of residues constituting the so-called electrostatic lock between helices TM3 and TM6 in rhodopsin putatively used as common activation mechanism of GPCR, and the structural effects caused by the dimerization based on a recent semi-empirical model. Finally, the specific binding of ions to bacteriorhodopsin has also been studied.
The main conclusion of this thesis is provide support to molecular dynamics as technique capable to provide structural and dynamical informational about membranes and membrane proteins, not currently accessible from experimental methods). Moreover, the use of an explicit lipidic environment is crucial for the study the membrane protein dynamics as well as for the protein-protein and lipidprotein interactions.
Nordström, Karl J. V. "Characterization and Evolution of Transmembrane Proteins with Focus on G-protein coupled receptors in Pre-vertebrate Species." Doctoral thesis, Uppsala universitet, Funktionell farmakologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121696.
Full textThomas, Jennifer Ann. "Engineering the angiotensin II type 1 receptor for structural studies." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/247919.
Full textZaidi, Saheem. "Understanding ligand binding, selectivity and functions on the G protein-coupled receptors: A molecular modeling approach." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/596.
Full textHöglund, Pär J. "Identification, Characterization and Evolution of Membrane-bound Proteins." Doctoral thesis, Uppsala universitet, Institutionen för neurovetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9329.
Full textCharrette, Andrew. "The Role of the Central Region of the Third Intracellular Loop of D1-Class Receptors in Signalling." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23080.
Full textGandía, Sánchez Jorge. "Oligomerización del receptor A2A de adenosina: interpretando el receptorsoma." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/134352.
Full textG protein-coupled receptors (GPCR) consitute the biggest family of membrane receptors. Since they detect a large and diverse number of signals, they have a growing pharmacological interest. Furthermore, the interactions between different types of GPCR form oligomeric complexes that show different biochemical properties than the protomers they are made of. Different aspects of these interactions have been studied in this Doctoral Thesis, focusing the experiments around the adenosine A2A receptor, being adenosine an important modulator of the Central Nervous System. Firstly, by means of the combination of the bioluminescent ressonant energy transfer (BRET) and bimolecular fluorescent combination (BiFC) techniques we have detected in vivo that A2AR is able to form oligomers made up of more than two protomers, leading to homomeric complexes (Gandía et al., 2008) as well as others of heteromeric nature. In this latter case, we have studied the oligomer of A2AR with the dopamine D2 and glutamate metabotropic 5 receptors (Cabello et al., 2009). Following these experiments, we have applied a modified version of the yeast two-hybrid technique set up for membrane proteins (MYTH) in order to detect A2AR-interacting proteins. Thanks to this approach, we have found new potential interactors, and among them an orphan GPCR has stood out: GPR37. By means of physical and functional techniques in cell culture and animal models we have validated the A2AR/GPR37 interaction and we have demonstrated that the presence of GPR37 modifies the functionality of A2AR. Finally, in order to better understand the rather less studied structural characteristics of GPR37, we have studied its C-terminal tail. Thus, we have observed the presence of a cysteine-rich region that regulates the trafficking of the receptor to the plasma membrane. Furthermore, this cystein-rich domain modulates the GPR37-dependent endoplasmic reticulum stress, as well as the induction of apoptotic pathways (capase-3 activity) (Gandía et al., 2013).
Åkerberg, Helena. "Functional Studies of the Neuropeptide Y System : Receptor-Ligand Interaction and Regulation of Food Intake." Doctoral thesis, Uppsala universitet, Institutionen för neurovetenskap, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9533.
Full textMorgan, Rachel. "STRUCTURE-FUNCTION ANALYSIS OF THE DROSOPHILA STUBBLE TYPE II TRANSMEMBRANE SERINE PROTEASE." Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3536.
Full textM.S.
Department of Biology
Sciences
Biology MS
van, Bysterveldt Katherine. "Role of G Protein-coupled Receptor Kinase 5 in Desensitisation of the V1b Vasopressin Receptor in Response to Arginine Vasopressin." Thesis, University of Canterbury. Biological Sciences, 2011. http://hdl.handle.net/10092/6214.
Full textDavidsson, Anton. "Challenging specificity of chemicalcompounds targeting GPCRs with cellprofiling." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-420682.
Full textBoukharta, Lars. "Computational Modelling of Ligand Complexes with G-Protein Coupled Receptors, Ion Channels and Enzymes." Doctoral thesis, Uppsala universitet, Beräknings- och systembiologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-212103.
Full textNoël, Cynthia Jenny. "Modulation orthostérique et allostérique du PAFR par des molécules synthétiques." Mémoire, Université de Sherbrooke, 2008. http://savoirs.usherbrooke.ca/handle/11143/3974.
Full textNiescierowicz, Katarzyna. "Développement de la technologie des récepteurs couplés à un canal ionique pour des études structure-fonction des récepteurs couplés aux protéines G et du canal Kir6.2." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-01067669.
Full textLadarré, Delphine. "Neuronal polarization shapes the targeting and signaling of G-protein coupled receptors (GPCRs) : type-1 cannabinoid receptors and 5-HT1B serotonin receptors show highly contrasted trafficking and signaling patterns in axons and dendrites." Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05T070/document.
Full textPolarized neuronal architecture is achieved and maintained mainly through highly controlled targeting of proteins to axons versus to the somatodendritic compartment. Among these proteins, neuronal G protein coupled receptors (GPCRs) are key therapeutic targets. However, their pharmacology is generally studied in non-polarized cell lines, and results obtained in such systems likely do not fully characterize the physiological effects of brain GPCR activation. Therefore, a main research subject of our group is to understand how neuronal polarity influences GPCR pharmacology, by studying one of the most abundant GPCR in the brain: the type-1 cannabinoid receptor (CB1R). Previous studies of the group suggested that CB1Rs achieve axonal polarization through transcytotic targeting: after their synthesis, these receptors appear on the somatodendritic plasma membrane from where they are removed rapidly by constitutive endocytosis and then targeted to the axonal plasma membrane where they accumulate due to relatively reduced endocytosis rate. At the beginning of my PhD project we directly demonstrated this differential endocytosis and transcytotic transport of CB1Rs by using cultured neurons in microfluidic devices. Moreover, we showed that chronic pharmacological treatments may strongly change neuronal GPCR distribution on the neuronal surface. These results demonstrate that subdomain-dependent steady-state endocytosis, which is pharmacologically controllable, is important for GPCR distribution in neurons. In a second part, we asked if differential traffic of CB1Rs between axons and dendrites is correlated with differential pharmacology. CB1R is predominantly coupled to Gi/o proteins and is known to inhibit cAMP production. Thus, we developed live Föster Resonance Energy Transfer (FRET) imaging in cultured hippocampal neurons in order to measure basal cAMP/PKA pathway modulation downstream of endogenous CB1Rs in all neuronal compartments: in somata, in dendrites but also in the very thin mature axons. Our results show that CB1R displays differential pharmacology between axon and dendrites. Notably, its activation leads to a stronger decrease of PKA activity in axons compared to dendrites, due to increased number of membrane receptors in this compartment. Moreover, we demonstrate that somatodendritic CB1Rs constitutively inhibit cAMP/PKA pathway, while axonal receptors do not. This difference is due to polarized distribution of DAGLipase, the enzyme that synthesizes the major endocannabinoid 2-arachidonoylglycerol (2-AG). Moreover, blocking DAGL by pharmacological treatment modifies somatodendritic, but not axonal effects of several CB1R agonists, possibly through allosteric action. In a third part, we asked if the above results may be generalized to other GPCRs. Because the axonal targeting and in vitro pharmacology of 5-HT1B serotonin receptors demonstrate strong similarities with CB1Rs, we studied their neuronal pharmacology by using the previously developed FRET technique. We found similar differential responses to pharmacological treatments between axon and dendrites. In a fourth part, we investigated the role of the threonine 210 (T210) residue in the constitutive activity of neuronal CB1R. We showed that the hypoactive mutant T210A-CB1R do not constitutively recruit signaling pathways even in somatodendritic compartment, where 2-AG is present. This result demonstrates that T210 is necessary for constitutive CB1R activation by 2-AG.Finally, previous results of our group demonstrated the involvement of CB1R in neuronal development. Notably, CB1R activation was shown to have an overall inhibitory effect on the development of polarized neuronal morphology. We established a bibliographic review on this subject. The published literature data suggest that not only neuronal polarization influences both CB1R traffic and pharmacology but CB1Rs also contribute to the achievement of neuronal polarization. (...)
Cummings, Siobhan Anne. "Desensitisation of the Pituitary Vasopressin Receptor: Development and Use of a Stably-Transfected Model Cell System to Assess the Role of G Protein-Coupled Receptor Kinases." Thesis, University of Canterbury. School of Biological Sciences, 2011. http://hdl.handle.net/10092/5351.
Full textDeupí, i. Corral Xavier. "Influence of Ser and Thr residues in the geometry of transmembrane helices: implications on the structure and function of G protein-coupled receptors." Doctoral thesis, Universitat Autònoma de Barcelona, 2003. http://hdl.handle.net/10803/4426.
Full textSe sap que determinats residus, com prolina, serina o treonina, provoquen distorsions locals en l'estructura de les hèlices a. L'anàlisi de bases de dades de seqüències de segments transmembrana mostra com certes combinacions d'aquests residus són més comunes que d'altres, i que algunes d'elles estan sobre-representades de manera significativa, mentre que d'altres estan clarament sots-representades. La restricció d'aquesta anàlisi de seqüències a la regió transmembrana dels GPCRs de la Classe A mostra com aquestes combinacions es troben en posicions específiques i, a més, es troben conservades en certes subfamílies de receptors.
L'estructura i la dinàmica de les hèlices transmembrana que contenen aquestes combinacions de prolina i serina o treonina s'han estudiat mitjançant simulacions de dinàmica molecular en un entorn hidrofòbic explícit. Els resultats mostren com algunes d'aquestes combinacions indueixen distorsions importants en l'estructura de l'hèlix a, degut al seu efecte desestabilitzador de la xarxa de ponts d'hidrogen que dóna estabilitat a l'hèlix.
Aquests resultats s'han aplicat a la construcció d'un model tridimensional del receptor de quimiocines CCR5 , utilitzant tècniques de modelització molecular per homologia. En aquest model es proposa que les hèlices transmembrana (TMH) 2 i 3 del receptor CCR5 són estructuralment diferents del patró de rodopsina. TMH2 està més doblegada degut a la presència d'un motiu Thr-X-Pro, que, a més, fa que aquesta hèlix es doblegui cap a TMH3. Així doncs, es proposa que, en aquest receptor, aquestes dues hèlices interaccionen. Aquesta interacció estaria mediada per la presència de residus hidrofòbics conservats i específics en les dues hèlices. Aquestes hipòtesis han estat posades a prova mitjançant experiments de mutagènesi dirigida, gràcies a la col·laboració amb l'Institut de Recherche Interdisciplinaire en Biologie Humaine et Nucléaire (IRIBHN), Université Libre de Bruxelles. Els resultats experimentals permeten establir la hipòtesi que la interfície TMH2-TMH3 participa en l'activació induïda per quimiocines del receptor CCR5.
Com a conclusió, aquesta tesi pretén mostrar com, mitjançant la utilització d'eines bioinformàtiques, és possible traduir les seqüències primàries de proteïnes i les interaccions a nivell atòmic en estructures tridimensionals de proteïnes. A més, aquesta tesi mostra que, encara que l'estructura tridimensional de la rodopsina bovina és un patró útil per la modelització per homologia de GPCRs, s'han de tenir en compte de manera explícita les especificitats de seqüència de cada receptor per tal de construir models de receptors particulars. Aquestes especificitats de seqüència consisteixen en patrons de seqüència conservats en determinades famílies, que es tradueixen en divergències estructurals. Entre aquests patrons de seqüència, es proposa que els residus de serina i treonina, sols o combinats amb residus de prolina propers, poden modular la geometria de les TMHs, degut a la seva capacitat d'interferir amb la xarxa de ponts d'hidrogen que dóna estabilitat a les hèlices a.
Finalment, es proposa que la influència dels motius de serina, treonina i prolina en l'estructura de les TMHs pot estar relacionada amb els processos d'activació dels GPCRs de la Classe A i, possiblement, d'altres proteïnes de membrana. En els GPCRs, aquests motius poden haver evolucionat per tal d'adaptar uns mecanismes d'activació conservats als lligands característics de cada família de receptors.
This thesis is framed in the study of particular biological systems through the use of bioinformatics. In particular, the theoretical study of the influence of certain amino acids on the structure and dynamics of the secondary structure elements of proteins has been applied to homology modelling of G protein-coupled receptors (GPCRs) and to the study of their mechanisms of activation.
Certain residues, as proline, serine or threonine, are known to induce local distortions in the a-helical structure. Analysis of sequence databases of transmembrane segments evidence that certain combinations of these residues are more common than others, and that some of them are significantly over-represented, while others are clearly under-represented. The focusing this sequence analysis on the transmembrane region of Class A GPCRs illustrates that these combinations are located in some specific locations and conserved within certain subfamilies of receptors.
The structure and dynamics of transmembrane a-helices containing these combinations of proline and serine or threonine have been studied using molecular dynamics simulations in an explicit hydrophobic environment. The results show how some of these combinations induce significant distortions in the a-helical structure, due to their effect on the hydrogen bond network that stabilizes the helix.
These results have been applied to the building of a three-dimensional model of the chemokine CCR5 receptor, using homology modelling techniques. In this model, transmembrane helices (TMH) 2 and 3 of CCR5 are proposed to be different from the bovine rhodopsin template. TMH2 is more bent due to the presence of a Thr-X-Pro motif, which, in turn, induces this helix to lean towards TMH3. As a consequence, an interaction between these two helices is proposed for this particular receptor. This interaction would be mediated through the presence of specific and conserved hydrophobic and aromatic residues in both helices. These hypothesis have been tested through site-directed mutagenesis experiments, thanks to a collaboration with the Institut de Recherche Interdisciplinaire en Biologie Humaine et Nucléaire (IRIBHN), Université Libre de Bruxelles. The experimental results let us to hypothesize that the TMH2-TMH3 interface is involved in the chemokine-induced activation of the CCR5 receptor.
As a conclusion, this thesis aims to show how through the use of bioinformatics tools, primary sequences of proteins and interactions at an atomic level can be translated to three-dimensional protein structures. In addition, this thesis illustrates that, even though the three-dimensional structure of bovine rhodopsin is a very useful template for homology modelling of GPCRs, the sequence specificities of each receptor have to be explicitly taken into account in order to build models. These sequence specificities consist in sequence patterns conserved within certain families, which are translated into structural divergences. Among these sequence patterns, we hypothesize that serine and threonine, alone or combined with nearby proline residues, can modulate the geometry of TMHs, due to its capability to interfere with the hydrogen bond network that stabilize a-helices.
Finally, we propose that the influence of serine, threonine and proline motifs in the structure of TMHs may be related to processes of activation in the Class A of GPCRs, and, possibly, other membrane proteins as well. In GPCRs, these motifs may have evolved in order to adapt a conserved mechanism of activation of the G protein to the cognate ligands of each receptor family.
Adams, Mark N. "In vitro and in vivo studies on protease-activated receptor-2." Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/54338/1/Mark__Adams_Thesis.pdf.
Full textRöser, Claudia. "Charakterisierung der Serotonin-Rezeptoren in den Speicheldrüsen von Calliphora vicina." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/6148/.
Full textCellular communication is a fundamental property of living cells and essential for normal functioning of multicellular organisms. The salivary glands of the blowfly Calliphora vicina are a well established physiological model system to study cellular signaling in an intact organ. Fluid secretion in this gland is hormonally regulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT). In the secretory cells, 5-HT causes a parallel activation of the InsP3/Ca2+- and the cAMP-signaling pathways through binding and stimulation of at least two G protein coupled receptors (GPCR). In order to characterize the respective 5-HT receptors on the secretory cells, we have cloned two cDNAs (Cv5-ht2α, Cv5-ht7) that share high similarity with mammalian 5-HT2 and 5-HT7 receptor classes. Analysis of the deduced amino acid sequences postulates the typical heptahelical architecture of GPCRs for both receptors. Sequence motifs that are essential for ligand binding, receptor activation and coupling to G-proteins are well conserved. Interestingly, a computer-based structural analysis of Cv5-HT7 predicts an additional eighth hydrophobic region in the N-terminus of the receptor. We also found an alternative splice variant of the Cv5-HT2α mRNA. Using RT-PCR experiments, transcripts of both receptor mRNAs could be detected in brain and salivary gland tissue. An antiserum raised against the Cv5 HT7 receptor stained the basolateral region of the salivary glands. Heterologous receptor expression in HEK 293 cells leads to a dose-dependent increase in the intracellular Ca2+-concentration ([Ca2+]i) for Cv5-HT2α (EC50 = 24 nM) and cAMP-concentration for Cv5-HT7 (EC50 = 4,1 nM) upon application of 5-HT. A pharmacological profile was established for both receptors. Ligands that appeared to act as specific ligands of either Cv5-HT2α or Cv5-HT7 in this approach, were then tested for their effect on the transepithelial potential (TEP) of intact blowfly salivary gland preparations. Three 5-HT receptor agonists: AS 19, R-(+)-lisuride and 5-carboxamidotryptamine showed a cAMP dependent positivation of the TEP, caused by a selective activation of the Cv5-HT7 receptor. 5-methoxytryptamine exclusively activates the Ca2+ pathway via Cv5-HT2α. Clozapine antagonizes the effects of 5-HT in blowfly salivary glands and was confirmed as a Cv5-HT7 antagonist. The combination of a molecular approach with physiological measurements enabled us to identify selective ligands for 5-HT2 and 5-HT7 receptors of Calliphora vicina. These results facilitate a selective activation of the intracellular signaling pathways activated by 5-HT and will facilitate future research on different aspects of intracellular signaling and crosstalk mechanisms.
Ramsay, Andrew John. "Kallikrein-related peptidase 4 activation of protease-activated receptor family members and association with prostate cancer." Thesis, Queensland University of Technology, 2008. https://eprints.qut.edu.au/29886/1/Andrew_Ramsay_Thesis.pdf.
Full textRamsay, Andrew John. "Kallikrein-related peptidase 4 activation of protease-activated receptor family members and association with prostate cancer." Queensland University of Technology, 2008. http://eprints.qut.edu.au/29886/.
Full textMohammed, Kader Hamno. "Development of a label-free biosensor method for the identification of sticky compounds which disturb GPCR-assays." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-220645.
Full textDupuis, Julien. "Couplage fonctionnel entre un récepteur et un canal ionique : étude du canal KATP et application pour la création de biocapteurs." Phd thesis, Grenoble 1, 2008. http://www.theses.fr/2008GRE10108.
Full textATP-sensitive potassium channels (KATP) play a critical role in pancreatic insulin secretion and participate in the vascular tone control as well as cardiac myocyte and neuron excitability. Formed by the unique association of a membrane receptor of the ABC transporters family, the sulfonylurea receptor SUR, and an inward rectifier potassium channel, Kir6. 2, they couple the membrane potential to the cell metabolism. Therefore, they can be considered as a natural example of biosensor. The unique property of this complex is that SUR adjusts Kir6. 2 gating as a function of physiological and pharmacological ligands (nucleotides, synthetic activators and inhibitors). We addressed the question of identifying the molecular elements underlying functional coupling between SUR and Kir6. 2. Following a chimerical strategy, we identified an essential C-terminal region of isoform SUR2A which functionally links ligand binding to SUR to Kir6. 2 upregulation. Using our knowledge of the KATP model, we also developed a new type of electrical biosensor, Ion Channel Coupled Receptors (ICCRs), based on the artificial functional coupling of Kir6. 2 with G-protein coupled receptors (GPCRs). Using protein engineering, we created two prototypes of ICCRs based on the muscarinic M2 and dopaminergic D2 receptors: agonist or antagonist binding to these receptors leads to real-time electrically measurable channel activations or inhibitions. ICCRs constitute the promising premises of a new generation of cell-free biosensors