Journal articles on the topic 'G - sets'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'G - sets.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lizasoain, I., and G. Ochoa. "Projective G-sets." Journal of Pure and Applied Algebra 126, no. 1-3 (1998): 287–96. http://dx.doi.org/10.1016/s0022-4049(96)00138-7.
Full textO., Nethaji, and Premkumar R. "Locally closed sets and g-locally closed sets in binary topological spaces." Asia Mathematika 7, no. 2 (2023): 21——26. https://doi.org/10.5281/zenodo.8368982.
Full textHamant, Kumar Hamant. "On Q*g-closed sets." EPRA International Journal of Research and Development (IJRD) 9, no. 7 (2025): 189–90. https://doi.org/10.5281/zenodo.14872515.
Full textVijayalakshmi, S., and T. Indira. "?_1 ?_2-g ?-Closed sets in Bitopological Spaces." International Journal of Scientific Engineering and Research 5, no. 5 (2017): 83–86. https://doi.org/10.70729/2051701.
Full textHARANT, JOCHEN, ANJA PRUCHNEWSKI, and MARGIT VOIGT. "On Dominating Sets and Independent Sets of Graphs." Combinatorics, Probability and Computing 8, no. 6 (1999): 547–53. http://dx.doi.org/10.1017/s0963548399004034.
Full textAtkinswestley, A., and S. Chandrasekar. "NEUTROSOPHIC WEAKLY G*-CLOSED SETS." Advances in Mathematics: Scientific Journal 9, no. 5 (2020): 2853–61. http://dx.doi.org/10.37418/amsj.9.5.47.
Full textAttila, Nagy. "On congruence permutable $G$-sets." Commentationes Mathematicae Universitatis Carolinae 61, no. 2 (2020): 139–45. http://dx.doi.org/10.14712/1213-7243.2020.019.
Full textPeralta, J., and B. Torrecillas. "Graded codes by G-sets." ACM SIGSAM Bulletin 33, no. 3 (1999): 18. http://dx.doi.org/10.1145/347127.347316.
Full textBlass, Andreas. "On exponentiation of G-sets." Discrete Mathematics 135, no. 1-3 (1994): 69–79. http://dx.doi.org/10.1016/0012-365x(93)e0109-h.
Full textParzanchevski, Ori. "On G-sets and isospectrality." Annales de l’institut Fourier 63, no. 6 (2013): 2307–29. http://dx.doi.org/10.5802/aif.2831.
Full textBaker, C. W. "On g*m-closed sets." International Journal of Contemporary Mathematical Sciences 9 (2014): 507–14. http://dx.doi.org/10.12988/ijcms.2014.4780.
Full textAmir, Assari, and Kasiri Hossein. "ON MEASURE TRANSITIVE G-SETS." JP Journal of Algebra, Number Theory and Applications 40, no. 5 (2018): 823–31. http://dx.doi.org/10.17654/nt040050823.
Full textKannan, K., and D. Rajalakshmi. "Soft g-Locally Closed Sets." National Academy Science Letters 38, no. 3 (2015): 239–41. http://dx.doi.org/10.1007/s40009-014-0326-4.
Full textUc, Mehmet, and Mustafa Alkan. "On Modules over G-sets." Journal of Mathematics and Statistics Studies 4, no. 4 (2023): 47–55. http://dx.doi.org/10.32996/jmss.2023.4.4.5.
Full textAL-Jarrah, Heyam H., Amani Rawshdeh, Khalid Y. Al-Zoubi, and Shefa A. Bani Melhem. "On $g \mu$-Paracompact Sets." European Journal of Pure and Applied Mathematics 18, no. 2 (2025): 5899. https://doi.org/10.29020/nybg.ejpam.v18i2.5899.
Full textDurga, N., R. Raja, and P. Thangavelu. "Approximations of Rough Sets via Filter by using g-increasing and g-decreasing Sets." International Journal of Computer Applications 161, no. 8 (2017): 23–30. http://dx.doi.org/10.5120/ijca2017913246.
Full textitra, V. Ch, та A. V. Vis hnu. "G-Nαg Closed Sets and G-Ngα Closed Sets in Grill Nano Topological Spaces". International Journal of Mathematics Trends and Technology 62, № 1 (2018): 20–26. http://dx.doi.org/10.14445/22315373/ijmtt-v62p505.
Full textRajakumar, S., A. Vadivel, and K. Vairamanickam. "Minimal \(\tau^*\)-\(g\)-Open Sets and Maximal \(\tau^*\)-\(g\)-Closed Sets in Topological Spaces." Journal of Advanced Studies in Topology 3, no. 3 (2012): 48. http://dx.doi.org/10.20454/jast.2012.195.
Full textHamant, Kumar Hamant. "On beeta*g-closed sets and beeta*-normal spaces." Acta Ciencia Indica XLI M, no. 1 (2025): 67–72. https://doi.org/10.5281/zenodo.14866811.
Full textV., Gopalakrishnan*1 M. Murugalingam2 &. R. Mariappan3. "ON πµ∗g-CLOSED SETS IN IDEAL GENERALIZED TOPOLOGICAL SPACES". GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES 5, № 11 (2018): 348–52. https://doi.org/10.5281/zenodo.1624669.
Full textJournal, Baghdad Science. "ON G-OPEN SET." Baghdad Science Journal 4, no. 3 (2007): 482–84. http://dx.doi.org/10.21123/bsj.4.3.482-484.
Full textÜlger, A. "Characterizations of Riesz sets." MATHEMATICA SCANDINAVICA 108, no. 2 (2011): 264. http://dx.doi.org/10.7146/math.scand.a-15171.
Full textAbbott, H. L. "Sidon Sets." Canadian Mathematical Bulletin 33, no. 3 (1990): 335–41. http://dx.doi.org/10.4153/cmb-1990-056-6.
Full textG.Helen, Rajapushpam, Sivagami P., and Hari Siva Annam G. "mu I g-Dense sets and mu I g- Baire spaces in GITS." Asia Mathematika 5, no. 1 (2021): 158–67. https://doi.org/10.5281/zenodo.4734085.
Full textAhn, Seung-Ho, and Dae Heui Park. "G-CW COMPLEX STRUCTURES OF PROPER SEMIALGEBRAIC G-SETS." Honam Mathematical Journal 39, no. 1 (2017): 101–13. http://dx.doi.org/10.5831/hmj.2017.39.1.101.
Full textLópez, John J., H. Mauricio Ruiz, and Carlos A. Trujillo. "g-SIDON MODULAR SETS AND g-GOLOMB MODULAR RULERS." JP Journal of Algebra, Number Theory and Applications 39, no. 4 (2017): 401–15. http://dx.doi.org/10.17654/nt039040401.
Full textCaicedo, Yadira, Jhonny C. Gómez, and Carlos A. Trujillo. "B_{h}[g] MODULAR SETS FROM B_{h} MODULAR SETS." JP Journal of Algebra, Number Theory and Applications 37, no. 1 (2015): 1–19. http://dx.doi.org/10.17654/jpantaaug2015_001_019.
Full textR., Dr Ravikumar. "Soft s∗∗g-Locally Closed Sets." International Journal of Innovative Research in Information Security 10, no. 03 (2024): 228–37. http://dx.doi.org/10.26562/ijiris.2024.v1003.21.
Full textSchneider, Carsten, and Claudius Wagemann. "Fuzzy sets are sets- a reply to Goertz and Mahoney." Qualitative & Multi-Method Research 11, no. 1 (2013): 20–23. https://doi.org/10.5281/zenodo.911094.
Full textN., Balamani A. Parvathi. "SEPARATION AXIOMS BY *𝛼 -CLOSED SETS". INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY 5, № 10 (2016): 183–86. https://doi.org/10.5281/zenodo.159457.
Full textGranirer, Edmond E. "Strong and Extremely Strong Ditkin sets for the Banach Algebras Apr(G) = Ap ⋂ Lr(G)." Canadian Journal of Mathematics 63, no. 1 (2011): 123–35. http://dx.doi.org/10.4153/cjm-2010-077-0.
Full textP., Padma. "( τi , τj ) * - Q* g closed sets in Bitopological spaces". Journal of Progressive Research in Mathematics 2, № 1 (2015): 69–79. https://doi.org/10.5281/zenodo.3980807.
Full textWaner, Stefan. "Fixed Sets of Framed G-Manifolds." Transactions of the American Mathematical Society 298, no. 1 (1986): 421. http://dx.doi.org/10.2307/2000627.
Full textCostenoble, Steven R., Michael Steiner, and Stefan Waner. "Fixed Sets of Unitary G-Manifolds." Proceedings of the American Mathematical Society 121, no. 4 (1994): 1275. http://dx.doi.org/10.2307/2161243.
Full textAl-Kadi, Deena, and Rodyna A. Hosny. "G+-algebra, Filters and Upper sets." Applied Mathematics & Information Sciences 10, no. 6 (2016): 2131–36. http://dx.doi.org/10.18576/amis/100616.
Full textCostenoble, Steven R., Michael Steiner, and Stefan Waner. "Fixed sets of unitary $G$-manifolds." Proceedings of the American Mathematical Society 121, no. 4 (1994): 1275. http://dx.doi.org/10.1090/s0002-9939-1994-1198453-4.
Full textWaner, Stefan. "Fixed sets of framed $G$-manifolds." Transactions of the American Mathematical Society 298, no. 1 (1986): 421. http://dx.doi.org/10.1090/s0002-9947-1986-0857451-8.
Full textB, Shanmugaraj, та Kosalai G. "On Nano ∏g*β- Closed Sets". International Journal of Mathematics Trends and Technology 65, № 3 (2019): 47–51. http://dx.doi.org/10.14445/22315373/ijmtt-v65i3p507.
Full textB, Shanmugaraj, та S. Meena Devi. "On nano π* g* - Closed Sets". International Journal of Mathematics Trends and Technology 65, № 3 (2019): 85–91. http://dx.doi.org/10.14445/22315373/ijmtt-v65i3p514.
Full textBulacu, D. "Injective modules graded by g-sets." Communications in Algebra 27, no. 7 (1999): 3537–43. http://dx.doi.org/10.1080/00927879908826644.
Full textHelen M, Pauline Mary, and Gayathri A. "g*-Closed Sets in Topological Spaces." International Journal of Mathematics Trends and Technology 6, no. 1 (2014): 60–74. http://dx.doi.org/10.14445/22315373/ijmtt-v6p506.
Full textMahanta, J., and P. K. Das. "On Fuzzy g*s-Closed Sets." International Journal of Computer Applications 43, no. 2 (2012): 17–21. http://dx.doi.org/10.5120/6076-8187.
Full textKeshvardoost, Khadijeh, and Mojgan Mahmoudi. "Free functor from the category of G-nominal sets to that of 01-G-nominal sets." Soft Computing 22, no. 11 (2017): 3637–48. http://dx.doi.org/10.1007/s00500-017-2793-2.
Full textNETHAJI, OCHANAN, SUBRAMANIYAN DEVI, MAYANDI RAMESHPANDI, and RAJENDARAN PREMKUMAR. "DECOMPOSITIONS OF NANO g^#-CONTINUITY VIA IDEALIZATION." Journal of Science and Arts 23, no. 2 (2023): 377–80. http://dx.doi.org/10.46939/j.sci.arts-23.2-a05.
Full textRajamani. "I_{\pi g}-Closed Sets and I_{\pi g}-Continuity." Journal of Advanced Research in Pure Mathematics 2, no. 4 (2010): 63–72. http://dx.doi.org/10.5373/jarpm.413.042010.
Full textHassan, Javier, Sergio R. Canoy, Jr., and Alkajim A. Aradais. "Hop Independent Sets in Graphs." European Journal of Pure and Applied Mathematics 15, no. 2 (2022): 467–77. http://dx.doi.org/10.29020/nybg.ejpam.v15i2.4350.
Full textAlikhani, Saeid, and Maryam Safazadeh. "Fair dominating sets of paths." Journal of Information and Optimization Sciences 44, no. 5 (2023): 855–64. http://dx.doi.org/10.47974/jios-1141.
Full textYielding, Amy, Taylor Hunt, Joel Jacobs, Jazmine Juarez, Taylor Rhoton, and Heath Sell. "Inertia Sets of Semicliqued Graphs." Electronic Journal of Linear Algebra 37 (December 22, 2021): 747–57. http://dx.doi.org/10.13001/ela.2021.4933.
Full textJeyanthi, P., P. Nalayini, and T. Noiri. "g ∆ ∗ µ −closed sets in generalized topological spaces." Boletim da Sociedade Paranaense de Matemática 39, no. 3 (2021): 9–16. http://dx.doi.org/10.5269/bspm.39495.
Full textBors, Cristina, María V. Ferrer, and Salvador Hernández. "Bounded Sets in Topological Spaces." Axioms 11, no. 2 (2022): 71. http://dx.doi.org/10.3390/axioms11020071.
Full text