Journal articles on the topic 'G2/M checkpoint'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'G2/M checkpoint.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xu, Bo, Seong-Tae Kim, Dae-Sik Lim, and Michael B. Kastan. "Two Molecularly Distinct G2/M Checkpoints Are Induced by Ionizing Irradiation." Molecular and Cellular Biology 22, no. 4 (2002): 1049–59. http://dx.doi.org/10.1128/mcb.22.4.1049-1059.2002.
Full textOsman, Fekret, Irina R. Tsaneva, Matthew C. Whitby, and Claudette L. Doe. "UV Irradiation Causes the Loss of Viable Mitotic Recombinants in Schizosaccharomyces pombe Cells Lacking the G2/M DNA Damage Checkpoint." Genetics 160, no. 3 (2002): 891–908. http://dx.doi.org/10.1093/genetics/160.3.891.
Full textXu, Zhiheng, and David Norris. "The SFP1 Gene Product of Saccharomyces cerevisiae Regulates G2/M Transitions During the Mitotic Cell Cycle and DNA-Damage Response." Genetics 150, no. 4 (1998): 1419–28. http://dx.doi.org/10.1093/genetics/150.4.1419.
Full textQiu, Ling, Andrew Burgess, David P. Fairlie, Helen Leonard, Peter G. Parsons, and Brian G. Gabrielli. "Histone Deacetylase Inhibitors Trigger a G2 Checkpoint in Normal Cells That Is Defective in Tumor Cells." Molecular Biology of the Cell 11, no. 6 (2000): 2069–83. http://dx.doi.org/10.1091/mbc.11.6.2069.
Full textXu, Bo, Seong-tae Kim, and Michael B. Kastan. "Involvement of Brca1 in S-Phase and G2-Phase Checkpoints after Ionizing Irradiation." Molecular and Cellular Biology 21, no. 10 (2001): 3445–50. http://dx.doi.org/10.1128/mcb.21.10.3445-3450.2001.
Full textDhar, Sonu, Jeremy A. Squire, M. Prakash Hande, Raymund J. Wellinger та Tej K. Pandita. "Inactivation of 14-3-3ς Influences Telomere Behavior and Ionizing Radiation-Induced Chromosomal Instability". Molecular and Cellular Biology 20, № 20 (2000): 7764–72. http://dx.doi.org/10.1128/mcb.20.20.7764-7772.2000.
Full textMeng, Xiangbing, Jianling Bi, Yujun Li, et al. "AZD1775 Increases Sensitivity to Olaparib and Gemcitabine in Cancer Cells with p53 Mutations." Cancers 10, no. 5 (2018): 149. http://dx.doi.org/10.3390/cancers10050149.
Full textKumar, Subodh, Srikanth Talluri, Mariateresa Fulciniti, Masood A. Shammas, and Nikhil C. Munshi. "Elevated APEX1 Disrupts G2/M Checkpoint, Contributing to Evolution and Survival of Myeloma Cells." Blood 126, no. 23 (2015): 2997. http://dx.doi.org/10.1182/blood.v126.23.2997.2997.
Full textNaiki, Takahiro, Toshiyasu Shimomura, Tae Kondo, Kunihiro Matsumoto, and Katsunori Sugimoto. "Rfc5, in Cooperation with Rad24, Controls DNA Damage Checkpoints throughout the Cell Cycle inSaccharomyces cerevisiae." Molecular and Cellular Biology 20, no. 16 (2000): 5888–96. http://dx.doi.org/10.1128/mcb.20.16.5888-5896.2000.
Full textFurnari, Beth, Alessandra Blasina, Michael N. Boddy, Clare H. McGowan, and Paul Russell. "Cdc25 Inhibited In Vivo and In Vitro by Checkpoint Kinases Cds1 and Chk1." Molecular Biology of the Cell 10, no. 4 (1999): 833–45. http://dx.doi.org/10.1091/mbc.10.4.833.
Full textHayashi, S. "A Cdc2 dependent checkpoint maintains diploidy in Drosophila." Development 122, no. 4 (1996): 1051–58. http://dx.doi.org/10.1242/dev.122.4.1051.
Full textForbes, Kristi Chrispell, Timothy Humphrey, and Tamar Enoch. "Suppressors of Cdc25p Overexpression Identify Two Pathways That Influence the G2/M Checkpoint in Fission Yeast." Genetics 150, no. 4 (1998): 1361–75. http://dx.doi.org/10.1093/genetics/150.4.1361.
Full textDeckbar, Dorothee, Julie Birraux, Andrea Krempler, et al. "Chromosome breakage after G2 checkpoint release." Journal of Cell Biology 176, no. 6 (2007): 749–55. http://dx.doi.org/10.1083/jcb.200612047.
Full textChoudhuri, Tathagata, Subhash C. Verma, Ke Lan, Masanao Murakami, and Erle S. Robertson. "The ATM/ATR Signaling Effector Chk2 Is Targeted by Epstein-Barr Virus Nuclear Antigen 3C To Release the G2/M Cell Cycle Block." Journal of Virology 81, no. 12 (2007): 6718–30. http://dx.doi.org/10.1128/jvi.00053-07.
Full textPoggioli, George J., Roberta L. DeBiasi, Ryan Bickel, et al. "Reovirus-Induced Alterations in Gene Expression Related to Cell Cycle Regulation." Journal of Virology 76, no. 6 (2002): 2585–94. http://dx.doi.org/10.1128/jvi.76.6.2585-2594.2002.
Full textMoser, Bettina A., Jean-Marc Brondello, Beth Baber-Furnari, and Paul Russell. "Mechanism of Caffeine-Induced Checkpoint Override in Fission Yeast." Molecular and Cellular Biology 20, no. 12 (2000): 4288–94. http://dx.doi.org/10.1128/mcb.20.12.4288-4294.2000.
Full textSánchez-Molina, Sara, Oliver Mortusewicz, Béatrice Bieber, et al. "Role for hACF1 in the G2/M damage checkpoint." Nucleic Acids Research 39, no. 19 (2011): 8445–56. http://dx.doi.org/10.1093/nar/gkr435.
Full textSheppard, Karen E., Richard B. Pearson, and Ross D. Hannan. "Unexpected role of CDK4 in a G2/M checkpoint." Cell Cycle 14, no. 9 (2015): 1351–52. http://dx.doi.org/10.1080/15384101.2015.1022060.
Full textRabouille, Catherine, and Vangelis Kondylis. "Golgi Ribbon Unlinking: An Organelle-Based G2/M Checkpoint." Cell Cycle 6, no. 22 (2007): 2723–29. http://dx.doi.org/10.4161/cc.6.22.4896.
Full textHasthorpe, Suzanne, Kellie Tainton, Melissa Peart, et al. "G2/M checkpoint gene expression in developing germ cells." Molecular Reproduction and Development 74, no. 5 (2007): 531–38. http://dx.doi.org/10.1002/mrd.20549.
Full textWang, X. W., Q. Zhan, J. D. Coursen, et al. "GADD45 induction of a G2/M cell cycle checkpoint." Proceedings of the National Academy of Sciences 96, no. 7 (1999): 3706–11. http://dx.doi.org/10.1073/pnas.96.7.3706.
Full textMikhailov, Alexei, Mio Shinohara, and Conly L. Rieder. "Topoisomerase II and histone deacetylase inhibitors delay the G2/M transition by triggering the p38 MAPK checkpoint pathway." Journal of Cell Biology 166, no. 4 (2004): 517–26. http://dx.doi.org/10.1083/jcb.200405167.
Full textZhu, Wenge, and Anindya Dutta. "An ATR- and BRCA1-Mediated Fanconi Anemia Pathway Is Required for Activating the G2/M Checkpoint and DNA Damage Repair upon Rereplication." Molecular and Cellular Biology 26, no. 12 (2006): 4601–11. http://dx.doi.org/10.1128/mcb.02141-05.
Full textHoffmann, Michèle J., Sarah Meneceur, Katrin Hommel, Wolfgang A. Schulz, and Günter Niegisch. "Downregulation of Cell Cycle and Checkpoint Genes by Class I HDAC Inhibitors Limits Synergism with G2/M Checkpoint Inhibitor MK-1775 in Bladder Cancer Cells." Genes 12, no. 2 (2021): 260. http://dx.doi.org/10.3390/genes12020260.
Full textShibata, Atsushi, Olivia Barton, Angela T. Noon, et al. "Role of ATM and the Damage Response Mediator Proteins 53BP1 and MDC1 in the Maintenance of G2/M Checkpoint Arrest." Molecular and Cellular Biology 30, no. 13 (2010): 3371–83. http://dx.doi.org/10.1128/mcb.01644-09.
Full textSturgeon, Christopher M., and Michel Roberge. "G2 Checkpoint Kinase Inhibitors Exert Their Radiosensitizing Effects Prior to the G2/M Transition." Cell Cycle 6, no. 5 (2007): 572–75. http://dx.doi.org/10.4161/cc.6.5.3926.
Full textScott, Kenneth L., and Sharon E. Plon. "Loss of Sin3/Rpd3 Histone Deacetylase Restores the DNA Damage Response in Checkpoint-Deficient Strains of Saccharomyces cerevisiae." Molecular and Cellular Biology 23, no. 13 (2003): 4522–31. http://dx.doi.org/10.1128/mcb.23.13.4522-4531.2003.
Full textYasutis, Kimberly, Marissa Vignali, Matthew Ryder, et al. "Zds2p Regulates Swe1p-dependent Polarized Cell Growth inSaccharomyces cerevisiaevia a Novel Cdc55p Interaction Domain." Molecular Biology of the Cell 21, no. 24 (2010): 4373–86. http://dx.doi.org/10.1091/mbc.e10-04-0326.
Full textLiu, Li-Li, Ji-Min Zhu, Xiang-Nan Yu, et al. "UBE2T promotes proliferation via G2/M checkpoint in hepatocellular carcinoma." Cancer Management and Research Volume 11 (September 2019): 8359–70. http://dx.doi.org/10.2147/cmar.s202631.
Full textChung, Jon H., and Fred Bunz. "Cdk2 Is Required for p53-Independent G2/M Checkpoint Control." PLoS Genetics 6, no. 2 (2010): e1000863. http://dx.doi.org/10.1371/journal.pgen.1000863.
Full textYan, Y., C. P. Black, and K. H. Cowan. "Irradiation-induced G2/M checkpoint response requires ERK1/2 activation." Oncogene 26, no. 32 (2007): 4689–98. http://dx.doi.org/10.1038/sj.onc.1210268.
Full textBusch, Corinna, Olivia Barton, Eberhard Morgenstern, et al. "The G2/M checkpoint phosphatase cdc25C is located within centrosomes." International Journal of Biochemistry & Cell Biology 39, no. 9 (2007): 1707–13. http://dx.doi.org/10.1016/j.biocel.2007.04.022.
Full textShinohara, Mio, Alexei V. Mikhailov, Julio A. Aguirre-Ghiso, and Conly L. Rieder. "Extracellular Signal-regulated Kinase 1/2 Activity Is Not Required in Mammalian Cells during Late G2 for Timely Entry into or Exit from Mitosis." Molecular Biology of the Cell 17, no. 12 (2006): 5227–40. http://dx.doi.org/10.1091/mbc.e06-04-0284.
Full textYamada, Ayumi, Brad Duffy, Jennifer A. Perry, and Sally Kornbluth. "DNA replication checkpoint control of Wee1 stability by vertebrate Hsl7." Journal of Cell Biology 167, no. 5 (2004): 841–49. http://dx.doi.org/10.1083/jcb.200406048.
Full textLynch, Katherine N., Joyce F. Liu, Nikolas Kesten, et al. "Enhanced Efficacy of Aurora Kinase Inhibitors in G2/M Checkpoint Deficient TP53 Mutant Uterine Carcinomas Is Linked to the Summation of LKB1–AKT–p53 Interactions." Cancers 13, no. 9 (2021): 2195. http://dx.doi.org/10.3390/cancers13092195.
Full textAdamson, Aaron W., Dillon I. Beardsley, Wan-Ju Kim, Yajuan Gao, R. Baskaran, and Kevin D. Brown. "Methylator-induced, Mismatch Repair-dependent G2 Arrest Is Activated through Chk1 and Chk2." Molecular Biology of the Cell 16, no. 3 (2005): 1513–26. http://dx.doi.org/10.1091/mbc.e04-02-0089.
Full textÖdborn Jönsson, Linnéa, Maryam Sahi, Ximena Lopez-Lorenzo, et al. "Heterogeneities in Cell Cycle Checkpoint Activation Following Doxorubicin Treatment Reveal Targetable Vulnerabilities in TP53 Mutated Ultra High-Risk Neuroblastoma Cell Lines." International Journal of Molecular Sciences 22, no. 7 (2021): 3664. http://dx.doi.org/10.3390/ijms22073664.
Full textYu, Xiaochun, and Junjie Chen. "DNA Damage-Induced Cell Cycle Checkpoint Control Requires CtIP, a Phosphorylation-Dependent Binding Partner of BRCA1 C-Terminal Domains." Molecular and Cellular Biology 24, no. 21 (2004): 9478–86. http://dx.doi.org/10.1128/mcb.24.21.9478-9486.2004.
Full textSaldivar, Joshua C., Stephan Hamperl, Michael J. Bocek, et al. "An intrinsic S/G2 checkpoint enforced by ATR." Science 361, no. 6404 (2018): 806–10. http://dx.doi.org/10.1126/science.aap9346.
Full textWade, Mark, and Martin J. Allday. "Epstein-Barr Virus Suppresses a G2/M Checkpoint Activated by Genotoxins." Molecular and Cellular Biology 20, no. 4 (2000): 1344–60. http://dx.doi.org/10.1128/mcb.20.4.1344-1360.2000.
Full textSimhadri, Srilatha, Gabriele Vincelli, Yanying Huo, et al. "PALB2 connects BRCA1 and BRCA2 in the G2/M checkpoint response." Oncogene 38, no. 10 (2018): 1585–96. http://dx.doi.org/10.1038/s41388-018-0535-2.
Full textErson, Ayse E., and Elizabeth M. Petty. "CHFR-associated early G2/M checkpoint defects in breast cancer cells." Molecular Carcinogenesis 39, no. 1 (2003): 26–33. http://dx.doi.org/10.1002/mc.10161.
Full textKrauer, Kenia G., Andrew Burgess, Marion Buck, James Flanagan, Tom B. Sculley, and Brian Gabrielli. "The EBNA- 3 gene family proteins disrupt the G2/M checkpoint." Oncogene 23, no. 7 (2003): 1342–53. http://dx.doi.org/10.1038/sj.onc.1207253.
Full textMelixetian, Marina, Ditte Kjærsgaard Klein, Claus Storgaard Sørensen, and Kristian Helin. "NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint." Nature Cell Biology 11, no. 10 (2009): 1247–53. http://dx.doi.org/10.1038/ncb1969.
Full textFunk, J. O., T. Herzinger, K. Hillmer, D. A. Wolf, D. Eick, and P. Kind. "Mechanisms of G2/M-checkpoint control in ultraviolet B-irradiated keratinocytes." Journal of Cancer Research and Clinical Oncology 121, S1 (1995): A10. http://dx.doi.org/10.1007/bf02572004.
Full textGotoh, Tetsuya, Keita Ohsumi, Tomoko Matsui, Haruhiko Takisawa, and Takeo Kishimoto. "Inactivation of the checkpoint kinase Cds1 is dependent on cyclin B-Cdc2 kinase activation at the meiotic G2/M-phase transition in Xenopus oocytes." Journal of Cell Science 114, no. 18 (2001): 3397–406. http://dx.doi.org/10.1242/jcs.114.18.3397.
Full textLottersberger, Francisca, Fabio Rubert, Veronica Baldo, Giovanna Lucchini, and Maria Pia Longhese. "Functions of Saccharomyces cerevisiae 14-3-3 Proteins in Response to DNA Damage and to DNA Replication Stress." Genetics 165, no. 4 (2003): 1717–32. http://dx.doi.org/10.1093/genetics/165.4.1717.
Full textKandel, Eugene S., Jennifer Skeen, Nathan Majewski, et al. "Activation of Akt/Protein Kinase B Overcomes a G2/M Cell Cycle Checkpoint Induced by DNA Damage." Molecular and Cellular Biology 22, no. 22 (2002): 7831–41. http://dx.doi.org/10.1128/mcb.22.22.7831-7841.2002.
Full textBalcer-Kubiczek, Elizabeth K., Mona Attarpour, Jian Z. Wang, and William F. Regine. "The Effect of Docetaxel (Taxotere®) on Human Gastric Cancer Cells Exhibiting Low-Dose Radiation Hypersensitivity." Clinical medicine. Oncology 2 (January 2008): CMO.S463. http://dx.doi.org/10.4137/cmo.s463.
Full textPike, Brietta L., Suganya Yongkiettrakul, Ming-Daw Tsai, and Jörg Heierhorst. "Mdt1, a Novel Rad53 FHA1 Domain-Interacting Protein, Modulates DNA Damage Tolerance and G2/M Cell Cycle Progression in Saccharomycescerevisiae." Molecular and Cellular Biology 24, no. 7 (2004): 2779–88. http://dx.doi.org/10.1128/mcb.24.7.2779-2788.2004.
Full text