Academic literature on the topic 'Ga)Se2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ga)Se2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ga)Se2"

1

Бородавченко, О. М., В. Д. Живулько, А. В. Мудрый, М. В. Якушев, and И. А. Могильников. "Излучательная рекомбинация на ионно-индуцированных дефектах в тонких пленках твердых растворов Cu(In, Ga)Se-=SUB=-2-=/SUB=-." Физика и техника полупроводников 55, no. 2 (2021): 127. http://dx.doi.org/10.21883/ftp.2021.02.50497.9532.

Full text
Abstract:
In thin films of Cu(In,Ga)Se2 solid solutions radiation-induced effects after irradiation of hydrogen ions with an energy of 2.5, 5 and 10 keV with dose of ~ 3∙10^15 cm-2 were studied. A comparative analysis of the optical characteristics of non-implanted and implanted Cu(In,Ga)Se2 thin films was carried out based on the measurements of photoluminescence spectra and the luminescence excitation spectra at liquid helium temperature of ~ 4.2 K. The bandgap of Cu(In,Ga)Se2 solid solutions determined from the data of mathematical processing of the luminescence excitation spectra was ~ 1.171 eV. An intense band with a maximum of ~ 1.089 eV was found in the photoluminescence spectra of non-implanted and hydrogen-implanted Cu(In,Ga)Se2 thin films caused by the recombination of free electrons with holes localized in the tails of the valence band. It was established that appearance of intense broad bands in the photoluminescence spectra with maxima in the energy range of ~ 0.92 eV and ~ 0.77 eV is due to radiative recombination of nonequilibrium charge carriers at deep energy levels of acceptor type ion-induced defects formed in the bandgap of Cu(In,Ga)Se2 solid solutions. The conditions for the appearance of the ionic passivation effect of dangling electronic bonds on the surface and in the bulk of Cu(In,Ga)Se2 polycrystalline films, possible nature of point defects in the structure and the mechanisms of radiative recombination are discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Gonçalves, Bruna F., Alec P. LaGrow, Sergey Pyrlin, Bryan Owens-Baird, Gabriela Botelho, Luis S. A. Marques, Marta M. D. Ramos, Kirill Kovnir, Senentxu Lanceros-Mendez, and Yury V. Kolen’ko. "Large-Scale Synthesis of Semiconducting Cu(In,Ga)Se2 Nanoparticles for Screen Printing Application." Nanomaterials 11, no. 5 (April 28, 2021): 1148. http://dx.doi.org/10.3390/nano11051148.

Full text
Abstract:
During the last few decades, the interest over chalcopyrite and related photovoltaics has been growing due the outstanding structural and electrical properties of the thin-film Cu(In,Ga)Se2 photoabsorber. More recently, thin film deposition through solution processing has gained increasing attention from the industry, due to the potential low-cost and high-throughput production. To this end, the elimination of the selenization procedure in the synthesis of Cu(In,Ga)Se2 nanoparticles with following dispersion into ink formulations for printing/coating deposition processes are of high relevance. However, most of the reported syntheses procedures give access to tetragonal chalcopyrite Cu(In,Ga)Se2 nanoparticles, whereas methods to obtain other structures are scarce. Herein, we report a large-scale synthesis of high-quality Cu(In,Ga)Se2 nanoparticles with wurtzite hexagonal structure, with sizes of 10–70 nm, wide absorption in visible to near-infrared regions, and [Cu]/[In + Ga] ≈ 0.8 and [Ga]/[Ga + In] ≈ 0.3 metal ratios. The inclusion of the synthesized NPs into a water-based ink formulation for screen printing deposition results in thin films with homogenous thickness of ≈4.5 µm, paving the way towards environmentally friendly roll-to-roll production of photovoltaic systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Nishiwaki, S., T. Satoh, S. Hayashi, Y. Hashimoto, T. Negami, and T. Wada. "Preparation of Cu(In,Ga)Se2 thin films from In–Ga–Se precursors for high-efficiency solar cells." Journal of Materials Research 14, no. 12 (December 1999): 4514–20. http://dx.doi.org/10.1557/jmr.1999.0613.

Full text
Abstract:
Growth of Cu(In,Ga)Se2 (CIGS) films from In–Ga–Se precursors was characterized by scanning Auger electron spectroscopy (SAES), secondary ion mass spectroscopy (SIMS), x-ray diffraction, scanning electron microscopy, and transmission electron microscopy (TEM). In–Ga–Se precursor layers were deposited on Mo-coated soda-lime glass, and then the layers were exposed to Cu and Se fluxes to form CIGS films. The SIMS and SAES analyses showed a homogeneous distribution of Cu throughout the CIGS films during the deposition of Cu and Se. The phase changes observed in the CIGS films during the deposition of Cu and Se on the In–Ga–Se precursor films were as follows: (In,Ga)2Se3 →[Cu(In,Ga)5Se8] →Cu(In,Ga)3Se5 →Cu(In,Ga)Se2. The grain size increased from the submicron grains of the (In,Ga)2Se3 precursor film to several micrometers in the stoichiometric Cu(In,Ga)Se2 film. A growth model of CIGS crystals is introduced on the basis of the results of TEM observations. CIGS crystals are mainly grown under (In,Ga)-rich conditions in the preparation from In–Ga–Se precursor films.
APA, Harvard, Vancouver, ISO, and other styles
4

Keller, Debora, Stephan Buecheler, Patrick Reinhard, Fabian Pianezzi, Darius Pohl, Alexander Surrey, Bernd Rellinghaus, Rolf Erni, and Ayodhya N. Tiwari. "Local Band Gap Measurements by VEELS of Thin Film Solar Cells." Microscopy and Microanalysis 20, no. 4 (April 2, 2014): 1246–53. http://dx.doi.org/10.1017/s1431927614000543.

Full text
Abstract:
AbstractThis work presents a systematic study that evaluates the feasibility and reliability of local band gap measurements of Cu(In,Ga)Se2 thin films by valence electron energy-loss spectroscopy (VEELS). The compositional gradients across the Cu(In,Ga)Se2 layer cause variations in the band gap energy, which are experimentally determined using a monochromated scanning transmission electron microscope (STEM). The results reveal the expected band gap variation across the Cu(In,Ga)Se2 layer and therefore confirm the feasibility of local band gap measurements of Cu(In,Ga)Se2 by VEELS. The precision and accuracy of the results are discussed based on the analysis of individual error sources, which leads to the conclusion that the precision of our measurements is most limited by the acquisition reproducibility, if the signal-to-noise ratio of the spectrum is high enough. Furthermore, we simulate the impact of radiation losses on the measured band gap value and propose a thickness-dependent correction. In future work, localized band gap variations will be measured on a more localized length scale to investigate, e.g., the influence of chemical inhomogeneities and dopant accumulations at grain boundaries.
APA, Harvard, Vancouver, ISO, and other styles
5

Vidal Lorbada, Ricardo, Thomas Walter, David Fuertes Marrón, Dennis Muecke, Tetiana Lavrenko, Oliver Salomon, and Raymund Schaeffler. "Phototransistor Behavior in CIGS Solar Cells and the Effect of the Back Contact Barrier." Energies 13, no. 18 (September 11, 2020): 4753. http://dx.doi.org/10.3390/en13184753.

Full text
Abstract:
In this paper, the impact of the back contact barrier on the performance of Cu (In, Ga) Se2 solar cells is addressed. This effect is clearly visible at lower temperatures, but it also influences the fundamental parameters of a solar cell, such as open-circuit voltage, fill factor and the efficiency at normal operation conditions. A phototransistor model was proposed in previous works and could satisfactorily explain specific effects associated with the back contact barrier, such as the dependence of the saturated current in the forward bias on the illumination level. The effect of this contribution is also studied in this research in the context of metastable parameter drift, typical for Cu (In, Ga) Se2 thin-film solar cells, as a consequence of different bias or light soaking treatments under high-temperature conditions. The impact of the back contact barrier on Cu (In, Ga) Se2 thin-film solar cells is analyzed based on experimental measurements as well as numerical simulations with Technology Computer-Aided Design (TCAD). A barrier-lowering model for the molybdenum/Cu (In, Ga) Se2 Schottky interface was proposed to reach a better agreement between the simulations and the experimental results. Thus, in this work, the phototransistor behavior is discussed further in the context of metastabilities supported by numerical simulations.
APA, Harvard, Vancouver, ISO, and other styles
6

Hariskos, Dimitrios, Wolfram Hempel, Richard Menner, and Wolfram Witte. "Influence of Substrate Temperature during InxSy Sputtering on Cu(In,Ga)Se2/Buffer Interface Properties and Solar Cell Performance." Applied Sciences 10, no. 3 (February 5, 2020): 1052. http://dx.doi.org/10.3390/app10031052.

Full text
Abstract:
Indium sulfide (InxSy)—besides CdS and Zn(O,S)—is already used as a buffer layer in chalcopyrite-type thin-film solar cells and modules. We discuss the influence of the substrate temperature during very fast magnetron sputtering of InxSy buffer layers on the interface formation and the performance of Cu(In,Ga)Se2 solar cells. The substrate temperature was increased from room temperature up to 240 °C, and the highest power conversion efficiencies were obtained at a temperature plateau around 200 °C, with the best values around 15.3%. Industrially relevant in-line co-evaporated polycrystalline Cu(In,Ga)Se2 absorber layers were used, which yield solar cell efficiencies of up to 17.1% in combination with a solution-grown CdS buffer. The chemical composition of the InxSy buffer as well as of the Cu(In,Ga)Se2/InxSy interface was analyzed by time-of-flight secondary ion mass spectrometry. Changes from homogenous and stoichiometric In2S3 layers deposited at RT to inhomogenous and more sulfur-rich and indium-deficient compositions for higher temperatures were observed. This finding is accompanied with a pronounced copper depletion at the Cu(In,Ga)Se2 absorber surface, and a sodium accumulation in the InxSy buffer and at the absorber/buffer interface. These last two features seem to be the origin for achieving the highest conversion efficiencies at substrate temperatures around 200 °C.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Xianfeng, Masakazu Kobayashi, and Akira Yamada. "Comparison of Ag(In,Ga)Se2/Mo and Cu(In,Ga)Se2/Mo Interfaces in Solar Cells." ACS Applied Materials & Interfaces 9, no. 19 (May 5, 2017): 16215–20. http://dx.doi.org/10.1021/acsami.7b02548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Jiang, Daming Zhuang, Hexin Luan, Mingjie Cao, Min Xie, and Xiaolong Li. "Preparation of Cu(In,Ga)Se2 thin film by sputtering from Cu(In,Ga)Se2 quaternary target." Progress in Natural Science: Materials International 23, no. 2 (April 2013): 133–38. http://dx.doi.org/10.1016/j.pnsc.2013.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Yong Ping, Cong Chun Zhang, Gui Fu Ding, and Yong Liang Wang. "Research and Characterization of an Absorber Layer Material — Cu(In,Ga)Se2 Sputtered on Polyimide Substrate in Material Engineering." Advanced Materials Research 583 (October 2012): 370–73. http://dx.doi.org/10.4028/www.scientific.net/amr.583.370.

Full text
Abstract:
Cu(In,Ga)Se2 is a very important type of absorber layer material for high efficiency solar cells in material engineering. Cu(In,Ga)Se2 thin films were prepared on polyimide (PI) substrates coated with Mo by RF magnetron sputtering in one-stage at temperature below 450 °C. Samples with high level crystallization were deposited on polyimide coated with Mo by optimizing process parameters. Lower electric resistivity, better quality of CIGS absorber layer was fabricated in lower temperature by sputtering.
APA, Harvard, Vancouver, ISO, and other styles
10

Simchi, Hamed, Brian E. McCandless, T. Meng, Jonathan H. Boyle, and William N. Shafarman. "MoO3 back contact for CuInSe2-based thin film solar cells." MRS Proceedings 1538 (2013): 173–78. http://dx.doi.org/10.1557/opl.2013.1018.

Full text
Abstract:
ABSTRACTMoO3 films with a high work function (5.5 eV), high transparency, and a wide bandgap (3.0 - 3.4 eV) are a potential candidate for the primary back contact of Cu(InGa)Se2 thin film solar cells. This may be advantageous to form ohmic contact in superstrate devices where the back contact will be deposited after the Cu(InGa)Se2 layer and MoSe2 layer doesn’t form during Cu(InGa)Se2 deposition. In addition, the MoO3 may be incorporated in a transparent back contact in tandem or bifacial cells. In this study, MoO3 films for use as a back contact for Cu(In,Ga)Se2 thin film solar cells were prepared by reactive rf sputtering with O2/(O2+Ar) = 35%. The effect of post processing on the structural properties of the deposited films were investigated using x-ray diffraction and scanning electron microscopy. Annealing resulted in crystallization of the films to the α-MoO3 phases at 400°C. Increasing the oxygen partial pressure had no significant effect on optical transmittance of the films, and bandgaps in the range of 2.6-2.9 eV and 3.1-3.4 eV were obtained for the as deposited and annealed films, respectively. Cu(In,Ga)Se2 thin film solar cells prepared using an as-deposited Mo-MoO3 back contact yielded an efficiency of >14% with VOC = 647 (mV), JSC = 28.4 (mA), and FF. = 78.1%. Cells with ITO-MoO3 back contact showed an efficiency of ∼12% with VOC = 642 (mV), JSC = 26.8 (mA), and FF. = 69.2%. The efficiency of cells with an annealed MoO3 back contact was limited to 4%, showing a blocking diode behavior in the forward bias J-V curve. This may be caused by the presence of a barrier between the valence bands of the Cu(In,Ga)Se2 and MoO3, due to the higher bandgap of the annealed MoO3 films. SEM cross section studies showed uniform coverage of the as-deposited MoO3 layer and formation of voids for the annealed MoO3 film. Structural orientation of the Cu(In,Ga)Se2 absorber layer was also altered by the MoO3 film and less-oriented films were observed for either cases.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Ga)Se2"

1

Grabitz, Peter. "Inhomogene Cu(In,Ga)Se2-Solarzellen." Aachen Shaker, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-32469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rega, Niklas. "Photolumineszenz epitaktischer Cu(In, Ga)Se2-Schichten." [S.l. : s.n.], 2004. http://www.diss.fu-berlin.de/2004/190/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dirnstorfer, Ingo. "Untersuchungen an CuIn(Ga)Se2-Dünnschichten und Solarzellen." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=958260028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grabitz, Peter [Verfasser]. "Inhomogene Cu(In,Ga)Se2 Solarzellen / Peter Grabitz." Aachen : Shaker, 2007. http://d-nb.info/1166511669/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schulmeyer, Thomas. "Mechanismen der Grenzflächenausbildung des Cu(In,Ga)Se2-Systems." [S.l.] : [s.n.], 2005. http://elib.tu-darmstadt.de/diss/000617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Daume, Felix. "Degradation of Flexible Cu(In,Ga)Se2 Solar Cells." Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-189708.

Full text
Abstract:
Untersuchungsgegenstand dieser Arbeit ist die Degradation flexibler Dünnschichtsolarzellen auf Basis von Cu(In,Ga)Se2 Absorbern. Zur beschleunigten Alterung unter Laborbedingungen wurden unverkapselte Solarzellen in Klimaschränken Wärme und Feuchte ausgesetzt. Die Auswirkungen von Wärme und Feuchte auf die Solarzellen wurden zunächst durch Messung von Strom–Spannungs–Kennlinien (IV) und Kapazitäts–Spannungs–Charakteristiken (CV) erschlossen. Mittels in–situ Messungen der IV–Kennlinien der Solarzellen unter Wärme und Feuchte konnte die Degradationskinetik untersucht werden. Es gelang zwei Phasen der Alterung, eine anfängliche Verbesserung und die eigentliche Degradation, zu unterscheiden. Außerdem war es dadurch möglich Degradationsraten zu bestimmen. Die Untersuchung der Stabilität der Flächenkontakte erfolgte im Schichtverbund der Solarzelle und separat. Dann wurde der Einfluss von Natrium, einem Bestandteil der Cu(In,Ga)Se2 Solarzellen, untersucht. Schichtzusammensetzung, Elementprofile und Oberflächenbeschaffenheit wurden mittels Laser–induzierter Plasmaspektroskopie (LIBS), Sekundärionen–Massenspektrometrie (SIMS), Rasterelektronenmikroskopie (SEM) und 3D–Lasermikroskopie gemessen. Die Rolle von Natrium für den Degradationsprozess konnte für zwei unterschiedliche Methoden der Natriumeinbringung in den Absorber (Ko–Verdampfung, Nachbehandlung) beschrieben werden. Schließlich wurde mittels Elektrolumineszenz (EL), Thermographie (DLIT) und der Messung Lichtstrahl–induzierter Ströme (LBIC) die Degradation ortsaufgelöst untersucht und Inhomogenitäten detektiert. Aus spannungsabhängigen Elektrolumineszenzaufnahmen gelang es Serienwiderstandskarten zu errechnen. Die Kombination der genannten Messmethoden erlaubte eine Identifizierung dominanter Degradationsprozesse in den flexiblen Cu(In,Ga)Se2 Solarzellen unter Wärme und Feuchte. Unter anderen wurde die Degradation der Grenzfläche zwischen Absorber und Rückkontakt diskutiert. Die Degradationskinetik konnte beschrieben, Solarzelllebensdauern abgeschätzt, die für die Wärme–Feuchte–Stabilität nachteilige Wirkung von Natrium identifiziert und laterale Inhomogenitäten des Degradationsprozesses aufgezeigt werden. Aus der Diskussion der Ergebnisse wurden Vorschläge zur Verbesserung der Wärme–Feuchte–Stabilität abgeleitet.
APA, Harvard, Vancouver, ISO, and other styles
7

Schleussner, Sebastian Michael. "ZrN Back-Contact Reflectors and Ga Gradients in Cu(In,Ga)Se2 Solar Cells." Doctoral thesis, Uppsala universitet, Fasta tillståndets elektronik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-151402.

Full text
Abstract:
Solar cells constitute the most direct way of converting solar energy to electricity, and thin-film solar-cell technologies have lately been growing in importance, allowing the fabrication of less expensive modules that nonetheless have good power-conversion efficiencies. This thesis focuses on solar cells based on Cu(In,Ga)Se2, which is the thin-film technology that has shown the highest conversion efficiency to date, reaching 20.3 % on the laboratory scale. Solar modules still have some way to go to become entirely competitive with existing energy technologies, and there are two possible paths to this goal: Firstly, reducing their manufacturing costs, for instance by minimizing the material usage per module and/or by increasing the throughput of a given factory; and secondly, increasing the power output per module in other words, the module efficiency. The subject matters of this thesis are related to those two approaches. The first issue investigated is the possibility for reducing the thickness of the Cu(In,Ga)Se2 layer and compensating for lost absorption by using a ZrN back reflector. ZrN layers are fabricated by reactive sputtering and I present a method for tuning the sputtering parameters so as to obtain a back reflector with good optical, electrical and mechanical properties. The reflector layer cannot be used directly in CIGS devices, but relatively good devices can be achieved with a precursor providing a homogeneous supply of Na, the addition of a very thin sacrificial Mo layer that allows the formation of a film of MoSe2 passivating the back contact, and optionally a Ga gradient that further keeps electrons away from the back contact. The second field of study concerns the three-stage CIGS coevaporation process, which is widely used in research labs around the world and has yielded small-area cells with highest efficiencies, but has not yet made it to large scale production. My focus lies on the development and the effect of gradients in the [Ga]/[In+Ga] ratio. On the one hand, I investigate 'intrinsic' gradients (ones that form autonomously during the evaporation), and present a formation model based on the differing diffusivity of Ga and In atoms in CIGS and on the development along the quasi-binary tie line between (In,Ga)2Se3 and Cu2Se. On the other hand, I determine how the process should be designed in order to preserve 'extrinsic' gradients due to interdiffusion. Lastly, I examine the electrical effects of Ga-enhancement at the back and at the front of the absorber and of In-enhancement at the front. Over a wide range, In-rich top layers prove to have no or a weakly beneficial effect, while Ga-rich top regions pose a high risk to have a devastating effect on device performance.
APA, Harvard, Vancouver, ISO, and other styles
8

Meyer, Thorsten. "Reversible Relaxationsphänomene im elektrischen Transport von Cu(In, Ga)Se2." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=958349983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schlenker, Thomas [Verfasser]. "Growth of Cu(In,Ga)Se2 thin films / Thomas Schlenker." Aachen : Shaker, 2005. http://d-nb.info/1186577509/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Rongzhen. "Exploring the Electronic and Optical Properties of Cu(In,Ga) Se2." Licentiate thesis, KTH, Materialvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Ga)Se2"

1

Rezavidi, Arya. Fabrication and characterisation of Cu(In,Ga)Se2 single crystals and photovoltaic devices. Salford: University of Salford, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ahmed, Ejaz. Growth and characterisation of Cu(In,Ga)Se2 thin films for solar cell applications. Salford: University of Salford, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wennerberg, Johan. Design and Stability of Cu(In,Ga)Se2-Based Solar Cell Modules. Uppsala Universitet, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Song, Jiyon. Development, characterization, and modeling of CuGaSe2/Cu(In,Ga)Se2 thin-film tandem solar cells. 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ga)Se2"

1

Fujiwara, Hiroyuki. "Optical Properties of Cu(In,Ga)Se2." In Spectroscopic Ellipsometry for Photovoltaics, 253–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75377-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Margulis, L., G. Hodes, D. Cahen, and A. Jakubowicz. "Aggregate Structure and Adhesion Problems in CuIn(Ga)Se2 Films." In Springer Proceedings in Physics, 451–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76385-4_65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Menner, R., T. Walter, H. W. Schock, and W. H. Bloss. "Photocurrent Transport in Heterojunctions with Graded Cu(In, Ga)Se2 Absorbers." In Tenth E.C. Photovoltaic Solar Energy Conference, 787–90. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kniese, R., G. Voorwinden, R. Menner, U. Stein, M. Powalla, and Uwe Rau. "Bandgap Variations for Large Area Cu(In,Ga)Se2 Module Production." In Wide-Gap Chalcopyrites, 236–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-31293-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schock, H. W., B. Dimmler, H. Dittrich, J. Kimmerle, and R. Menner. "Heterojunction Solar Cells Based on Cu(Ga, In) Se2 Chalcopyrite Thin Films." In Seventh E.C. Photovoltaic Solar Energy Conference, 465–69. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rau, Uwe. "Electronic Properties of Cu(In,Ga)Se2 Thin-Film Solar Cells -- An Update." In Advances in Solid State Physics 44, 27–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39970-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gordillo, G. "Fabrication and Theoretical Simulation of Cu(In, Ga)Se2/(ZnCd)S Thin Film Solar Cells." In Springer Proceedings in Physics, 353–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76376-2_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shin, Dong Hyeop, Seung Tae Kim, Luidmila Larina, Kyung Hoon Yoon, and Byung Tae Ahn. "Development of High-Efficiency Cd-Free Cu(In,Ga)Se2 Solar Cells Using Chemically Deposited ZnS Film." In Materials Challenges and Testing for Manufacturing, Mobility, Biomedical Applications and Climate, 211–19. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11340-1_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Akyol, Sengul, Utku Canci Matur, Nilgun Baydogan, and Huseyin Cimenoglu. "Effects of Production Parameters on Characteristic Properties of Cu(In,Ga)Se2 Thin Film Derived by Solgel Process." In Energy Systems and Management, 199–207. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16024-5_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chiang, Fu-Kuo, Yuren Wen, Bin-bin Song, Tao Yu, Bo Feng, Linge Ma, and Yonglong Li. "Influence of Structural Coherency and Interfacial Defects on the Cu(In,Ga)Se2 Thin Film: Toward a High-Efficiency Solar Cell." In ACS Symposium Series, 169–87. Washington, DC: American Chemical Society, 2020. http://dx.doi.org/10.1021/bk-2020-1364.ch006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ga)Se2"

1

Naghavi, Negar, Zacharie Jehl, Felix Erfurth, Jean-Francois Guillemoles, Frederique Donsanti, Isabelle Gerard, Pierre Tran-Van, et al. "Ultrathin Cu(In, Ga)Se2 solar cells." In 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6185938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Toki, Soma, Takahito Nishimura, Hiroki Sugiura, Kazuyoshi Nakada, and Akira Yamada. "Improvement of Cu(In, Ga)Se2 photovoltaic performance by adding Cu-poor compounds Cu(In, Ga)3Se5 at Cu(In, Ga)Se2/CdS interface." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7749647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tong, Ho Ming, Sina Soltanmohammad, William N. Shafarman, and Timothy J. Anderson. "Formation of Ag(Ga, In)Se2 During Selenization of Ag-Ga/In Precursor." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eylers, Katharina, Franziska Ringleb, Berit Heidmann, Sergiu Levcenco, Thomas Unold, Hagen W. Klemm, Gina Peschel, et al. "In-Ga precursor islands for Cu(In, Ga)Se2 micro-concentrator solar cells." In 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC). IEEE, 2017. http://dx.doi.org/10.1109/pvsc.2017.8366526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Paul, P. K., K. Aryal, S. Marsillac, S. A. Ringel, and A. R. Arehart. "Impact of the Ga/In ratio on defects in Cu(In, Ga)Se2." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7750035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mansfield, Lorelle M., Darius Kuciauskas, Patricia Dippo, Jian V. Li, Karen Bowers, Bobby To, Clay DeHart, and Kannan Ramanathan. "Optoelectronic investigation of Sb-doped Cu(In,Ga)Se2." In 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7356156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schmid, M., G. Yin, M. Song, S. Duan, B. Heidmann, D. Sancho-Martinez, S. Kämmer, T. Köhler, P. Manley, and M. Ch Lux-Steiner. "Concentrating light in Cu(In,Ga)Se2 solar cells." In SPIE Optics + Photonics for Sustainable Energy, edited by Oleg V. Sulima and Gavin Conibeer. SPIE, 2016. http://dx.doi.org/10.1117/12.2238056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Witte, Wolfram, Robert Kniese, Axel Eicke, and Michael Powalla. "Influence of the GA Content on the Mo/Cu(In,Ga)Se2 Interface Formation." In Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion. IEEE, 2006. http://dx.doi.org/10.1109/wcpec.2006.279515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nunney, Tim S., Outi Mustonen, Paul Mack, John Wolstenholme, and Brian R. Strohmeier. "Compositional XPS analysis of Cu(In, Ga)Se2 solar cells." In 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6186204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Troni, F., F. Dodi, G. Sozzi, and R. Menozzi. "Modeling of thin-film Cu(In,Ga)Se2 solar cells." In 2010 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2010). IEEE, 2010. http://dx.doi.org/10.1109/sispad.2010.5604580.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ga)Se2"

1

Eisgruber, I. L. In-Situ Sensors for Process Control of CuIn(Ga)Se2 Module Deposition: Final Report, August 15, 2001. Office of Scientific and Technical Information (OSTI), August 2001. http://dx.doi.org/10.2172/786373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhat, P. K., B. Carpenter, I. L. Eisgruber, R. Hollingsworth, C. Marshall, J. Ogard, G. Patel, R. Treece, and T. L. Wangensteen. In-Situ Sensors for Process Control of CuIn(Ga)Se2 Module Deposition; Annual Technical Report, 15 February 1998-15 February 1999. Office of Scientific and Technical Information (OSTI), September 1999. http://dx.doi.org/10.2172/14424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography