Academic literature on the topic 'GaAs(110)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GaAs(110).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "GaAs(110)"

1

Liu, Jian Qing, Yong Hai Chen, Bo Xu, and Zhan Guo Wang. "Smooth GaAs (110) Surface Fabrication Using the Ga-Assisted Deoxidation Method." Advanced Materials Research 341-342 (September 2011): 138–41. http://dx.doi.org/10.4028/www.scientific.net/amr.341-342.138.

Full text
Abstract:
We have practiced the Ga-assisted deoxidation method on GaAs(110) surface. When the deposit amount of Ga is suitable, flat GaAs(110) surface without any thermal deoxidation induced pits and excrescent GaAs islands obtained with the Ga-assisted deoxidation method. The obtained results suggested that, 9ML Ga was optimized dose for GaAs(110) surface, which is a little more than GaAs(001) surface indicating a thicker oxide layer of GaAs(110) surface.
APA, Harvard, Vancouver, ISO, and other styles
2

Poirier, D. M., and J. H. Weaver. "GaAs(110) by XPS." Surface Science Spectra 2, no. 3 (July 1993): 201–8. http://dx.doi.org/10.1116/1.1247700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pao, Y. C., W. Ou, and J. S. Harris. "(110)-oriented GaAs MESFETs." IEEE Electron Device Letters 9, no. 3 (March 1988): 119–21. http://dx.doi.org/10.1109/55.2061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kiely, C. J., and D. Cherns. "Microstructure of MBE Grown Al/Gaas [100] schottky contacts." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 42–43. http://dx.doi.org/10.1017/s0424820100125245.

Full text
Abstract:
The Aℓ/GaAs contact system is used in microwave field effect transistors, but to date, little systematic TEM characterization of the contact microstructure has been performed. There are three possible epitaxial configurations of Aℓ on GaAs [100].[100]Aℓ; Aℓ [100] ||GaAs[100], Aℓ [010] ||GaAs[011] [110]Aℓ; Aℓ [110] ||GaAs[100], Aℓ [110]||GaAs[011] [110]R Aℓ; Aℓ[110] ||GaAs[100], Aℓ [001] ||GaAs [011]The interfacial atomic structure of Aℓ[100] ||GaAs[100] has been investigated previously using a CBED technique on plan view specimens. this paper we study the distribution of the various Aℓ orientations as a function of initial GaAs surface reconstruction and film thickness. The misfit dislocation structure of [100] Aℓ/[100] GaAs has been characterized by weak beam microscopy. Also, lattice images from cross-sectional samples are presented. The samples studied were MBE grown and subsequent electrical characterization showed them all to have Schottky barrier heights (SBH) of 0.77eV and excellent rectifying properties over a large temperature range.
APA, Harvard, Vancouver, ISO, and other styles
5

Muermann, Björn, Florian Nitsch, Matthias Sperl, Alexander Spitzer, and Günther Bayreuther. "Magnetic anisotropy of Fe0.34Co0.66(110) on GaAs(110)." Journal of Applied Physics 103, no. 7 (April 2008): 07B528. http://dx.doi.org/10.1063/1.2838775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

List, R. S., P. H. Mahowald, J. Woicik, and W. E. Spicer. "The Si/GaAs(110) heterojunction." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 4, no. 3 (May 1986): 1391–95. http://dx.doi.org/10.1116/1.573577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tserng, H. Q., and B. Kim. "110 GHz GaAs FET oscillator." Electronics Letters 21, no. 5 (1985): 178. http://dx.doi.org/10.1049/el:19850125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pletschen, W., N. Esser, H. Münder, D. Zahn, J. Geurts, and W. Richter. "Sb overlayers on GaAs(110)." Surface Science Letters 178, no. 1-3 (December 1986): A641. http://dx.doi.org/10.1016/0167-2584(86)90137-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, S. B., and MarvinL Cohen. "Surface states on GaAs(110)." Surface Science Letters 172, no. 3 (July 1986): A355. http://dx.doi.org/10.1016/0167-2584(86)90411-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pletschen, W., N. Esser, H. Münder, D. Zahn, J. Geurts, and W. Richter. "Sb overlayers on GaAs(110)." Surface Science 178, no. 1-3 (December 1986): 140–48. http://dx.doi.org/10.1016/0039-6028(86)90289-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "GaAs(110)"

1

Oertel, Stefan [Verfasser]. "Spindynamik in GaAs und (110)-GaAs-Heterostrukturen / Stefan Oertel." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012. http://d-nb.info/1023627876/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tilley, Frederick Joseph. "Theory of isolated dopants in GaAs (110) surfaces." Thesis, University of Leicester, 2016. http://hdl.handle.net/2381/37763.

Full text
Abstract:
In this thesis we perform a range of highly accurate density functional theory (DFT) calculations for a GaAs (110) slab containing almost all of the near-surface single atomic dopants from groups III, IV and V of the periodic table. We look in detail at the relaxed geometry and local density of states of the doped surface, and using the theory of Tersoff and Hamann we generate STM images of the different dopant systems. Where possible we compare to experimental results obtaining excellent qualitative and quantitative agreement, with bond lengths and shifts in STM contrast agreeing to within 0.03 Å and 0.09 Å respectively. We are able to show very clear trends in both the relaxed positions and STM image contrasts for the range of dopants. These trends are determined by the covalent radius of the dopants. Dopants with larger radii relax out of the surface and ones with smaller radii relax into the surface, and these relaxations cause the different contrasts in the STM images. These trends fit very well with existing results for nitrogen and silicon doped systems, and also allow us to fill in the gaps for those systems that have not been as thoroughly investigated. Our analysis applies equally across the three groups of dopants from the periodic table covering isovalent, donor and acceptor cases. By developing a geometrical model based on the covalent radii of the dopants and host atoms, we show how the covalent radius determines the geometry of the surface, which in turn determines the contrast seen in the STM images. Using this model we are able to explain and predict the relaxation and STM images for all the dopants in this work to a high degree of accuracy without relying on DFT simulations.
APA, Harvard, Vancouver, ISO, and other styles
3

凌志聰 and Chi-chung Francis Ling. "Positron beam studies of the metal-GaAs (110) interface." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31211689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ling, Chi-chung Francis. "Positron beam studies of the metal-GaAs (110) interface /." [Hong Kong : University of Hong Kong], 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13781443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Junior, Odilon Divino Damasceno Couto. "Acoustically induced spin transport in (110) GaAs quantum wells." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15852.

Full text
Abstract:
Im Mittelpunkt dieser Arbeit stehen der Transport und die Manipulation optisch angeregter Elektronen-Spins in (110) Quantenfilmen (quantum wells, QWs) mittels akustischer Oberflächenwellen (surface acoustic waves, SAWs). Der starke räumliche Einschluss der Ladungsträger im akustisch erzeugten Potenzial erlaubt spinerhaltenden Ladungsträgertransport mit der akustischen Geschwindigkeit. Auf diese Weise wird langreichweitiger Spintransport über Distanzen > 60 microns demonstriert, welche Spinlebenszeiten von mehr als 20 ns entsprechen. Erreicht werden diese extrem langen Spinlebenszeiten durch drei Effekte: (i) Der D''yakonov-Perel''-Mechanismus ist für Spins in Wachstumsrichtung von (110)-QWs in III-V-Halbleitern unterdrückt. (ii) Aufgrund des Typ-II piezoelektrischen Potenzials der akustischen Oberflächenwelle ist der Bir-Aronov-Pikus Spinrelaxations-Mechanismus sehr schwach. (iii) Der starke Einschluss der Ladungsträger in mesoskopische Bereiche stabilisiert den Spin zusätzlich. In der vorliegenden Arbeit wird erstmals eine Anisotropie des Spintransports in einem externen Magnetfeld (Bext) nachgewiesen. Hierzu wurde die elektronische Spindynamik während des akustischen Transports entlang der [001]- bzw. [1-10]-Richtung untersucht. Während des Transports entlang der [001]-Richtung führt die Präzession der Elektronenspins um das fluktuierende interne Magnetfeld (Bint), das vom Fehlen eines Inversionszentrums im GaAs-Kristallgitter herrührt, zu Spinkohärenzzeiten von etwa 2 ns. Im Gegensatz hierzu ist beim Transport entlang der [1-10]-Richtung die Spinrelaxation für Spins in Wachstumsrichtung um eine Größenordnung langsamer. Grund hierfür ist die endliche mittlere Größe des internen effektiven Magnetfeldes Bint für Transport entlang dieser Richtung. Die beobachtete Anisotropie in der Spindynamik für die beiden Transportrichtungen wird vollständig im Rahmen der Spin-Bahn-Kopplung und des D''yakonov-Perel''-Mechanismus beschrieben und quantitativ erklärt.
In this work, we employ surface acoustic waves (SAWs) to transport and manipulate optically generated spin ensembles in (110) GaAs quantum wells (QWs). The strong carrier confinement into the SAW piezoelectric potential allows for the transport of spin-polarized carrier packets along well-defined channels with the propagation velocity of the acoustic wave. In this way, spin transport over distances exceeding 60 microns is achieved, corresponding to spin lifetimes longer than 20 ns. The demonstration of such extremely long spin lifetimes is enabled by three main factors: (i) Suppression of the D''yakonov-Perel'' spin relaxation mechanism for z-oriented spins in (110) III-V QWs; (ii) Suppression of the Bir-Aronov-Pikus spin relaxation mechanism caused by the type-II SAW piezoelectric potential; (iii) Suppression of spin relaxation induced by the mesoscopic carrier confinement into narrow stripes along the SAW wave front direction. A spin transport anisotropy under external magnetic fields (Bext) is demonstrated for the first time. Employing the well-defined average carrier momentum impinged by the SAW, we analyze the spin dephasing dynamics during transport along the [001] and [1-10] in-plane directions. For transport along [001], fluctuations of the internal magnetic field (Bint), which arises from the spin-orbit interaction associated with the bulk inversion asymmetry of the crystal, lead to decoherence within 2 ns as the spins precess around Bext. In contrast, for transport along the [1-10] direction, the z-component of the spin polarization is maintained for times one order of magnitude longer due to the non-zero average value of Bint. The dephasing anisotropy between the two directions is fully understood in terms of the dependence of the spin-orbit coupling on carrier momentum direction, as predicted by the D''yakonov-Perel'' mechanism for the (110) system.
APA, Harvard, Vancouver, ISO, and other styles
6

Wan, Qian. "Transmission electron microscopy study of heterostructures grown on GaAs (110)." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16949.

Full text
Abstract:
In der Arbeit werden die mikrostrukturellen Eigenschaften von an (110)-Flächen orientierten Heterostrukturen auf GaAs-Substraten mittels verschiedener Techniken der Transmissionselektronenmikroskopie untersucht. Kubisch flächenzentrierte (Al,Ga)As/AlAs/GaAs Mehrschichtstrukturen auf GaAs(110) weisen in orthogonalen Richtungen parallel zur Substratoberfläche verschiedene Mechanismen zur Aufnahme der Verspannungen aufgrund von Fehlanpassungen auf. Defektfreie Strukturen sind durch eine geeignete, kurz periodische AlAs/GaAs-Überstruktur erfolgreich realisiert worden. Abschließend sind künstliche Defekte per Nanoindentation in den defektfreien Proben erzeugt worden, um die Auswirkung kurzperiodischer Übergitter zu prüfen. Das System aus hexagonal dicht gepacktem MnAs auf GaAs(110) zeichnet sich durch anisotrope Gitterfehlanpassung von -7.5% und 0.7% entsprechend der [11-20] und der [0001] Richtungen aus. Eine Benetzungsschicht, die der Entstehung von Inseln vorausgeht, wird beobachtet, was das Stranski-Krastanov-Wachstum von MnAs belegt. Die Dehnung durch die Gitterfehlpassung von 0.7% wird elastisch eingebaut, während die Spannung durch die Gitterfehlanpassung in der senkrechten [11-20] Richtung durch die Entstehung einer periodischen Anordnung, vollständiger Gitterfehlanpassungsversetzungen abgebaut wird, die sich von der Grenzfläche entfernt im MnAs-Gitter befinden. Das aus der Versetzungsanordnung resultierende Dehnungsfeld ist auf eine Dicke von 3.4 nm um die Grenzfläche beschränkt. Eine atomare Struktur der Grenzfläche wird basierend auf dem Vergleich von HRTEM-Aufnahmen und Simulationen vorgeschlagen. CoAl-Legierungen in der B2-Phase sind zum Vergleich auf (001) und auf (110) orientierten GaAs-Substraten hergestellt worden. Beide Fälle weisen die Koexistenz der B2-Phase und der ungeordneten, kubisch raumzentrierten Variante auf. Die Unordnung wird teilweise durch die epitaktische Dehnung und teilweise durch Diffusion von Punktdefekten hervorgerufen.
In the work, we systematically investigate the microstructural properties of (110) oriented heterostructures on GaAs substrates by means of different transmission electron microscopy techniques. Fcc-type (Al,Ga)As/AlAs/GaAs multilayer structure on GaAs (110) presents different mismatch strain accommodation mechanisms along the perpendicular in-plane directions. Defect-free structures are successfully acquired by an appropriate type of AlAs/GaAs short period superlattice. Finally, artificial defects are intentionally produced by nano-indentation to the defect-free sample to verify the effect of short period superlattices. Hcp-type MnAs on GaAs (110) system is characterized by anisotropic lattice mismatches of -7.5% and 0.7% along the [11-20] and [0001] direction, respectively. A wetting layer is observed prior to the formation of islands, indicating a Stranski-Krastanov growth mode of MnAs. The strain corresponding to the 0.7% lattice misfit is accommodated elastically, whereas the mismatch stress along perpendicular [11-20] direction is relived by the formation of a periodic array of perfect misfit dislocations with a stand-off position in MnAs lattice. The long range strain field associated with the dislocation array is constrained at the interface within a thickness of about 3.4 nm. An interfacial atomic configuration is also proposed based on the comparison between HRTEM image and the simulations. B2-type CoAl alloys are realized on (001) and (110) oriented GaAs substrates for comparison. They are both characterized by a coexistence of B2 phase and its disordered version bcc phase. The disordering is induced partially by the epitaxial strain and partially by the diffusion of point defects.
APA, Harvard, Vancouver, ISO, and other styles
7

HASNAOUI, MOULAY LAHEEN. "Etude par exafs de surface de l'interface si/gaas(110) au seuil k de silicium." Paris 11, 1994. http://www.theses.fr/1994PA112435.

Full text
Abstract:
Ce travail, motive initialement par les problemes lies a la fabrication d'heterojonctions si-gaas, a eu pour but une definition precise du site d'adsorption du silicium sur la face (110) d'un substrat d'arseniure de gallium, puis une caracterisation du mode de croissance. Les experiences d'exafs au seuil k du silicium ont ete effectuees sur la ligne focalisee sa32, en utilisant la polarisation du rayonnement synchroton. Des epaisseurs croissantes ont ete deposees, a partir d'une demi-monocouche, et les resultats principaux sont les suivants. Le site d'adsorption initial est situe entre deux atomes de gallium le long de l'axe 001 et a egale distance des trois atomes du substrat les plus proches. Les atomes de silicium sont a environ 1 a au-dessus de la surface de gaas. L'augmentation du depot (vers 0. 8 mc) va entrainer un deplacement du si vers le centre des intervalles entre deux atomes du substrat, on obtient alors une structure en zig-zag ou seules sont visibles les liaisons adsorbat-substrat, ce dernier imposant donc sa structure. Au-dela de une monocouche l'interaction entre atomes de silicium est suffisamment forte pour faire apparaitre des liaisons entre ces atomes et donc des distances si-si a 2. 35 a carac teristiques du silicium pur. Une monocouche est complete et les atomes supplementaires forment avec ceux du premier plan, pour des epaisseurs de l'ordre de 1. 5 mc, des petits agregats d'environ six atomes qui coexistent avec des chaines courtes en zig-zag. Lorsqu'on augmente le depot, la croissance ne s'effectue pas couche par couche mais plutot selon le mode stranski-krastanov avec formation d'ilots tridimensionnels au-dessus de la premiere couche. Finalement, a partir de trois a quatre monocouches, on obtient du silicium amorphe dont le degre de cristallinite va dependre de la temperature de depot
APA, Harvard, Vancouver, ISO, and other styles
8

Schwarz, Günther. "Untersuchungen zu Defekten auf und nahe der (110)-Oberfläche von GaAs und weiteren III-V-Halbleitern." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965686906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mühlenberend, Svenja [Verfasser]. "Metals and organic adsorbates on GaAs(110) : a scanning tunneling microscopy, spectroscopy and luminescence study / Svenja Mühlenberend." Kiel : Universitätsbibliothek Kiel, 2016. http://d-nb.info/1096220903/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

M'Hamedi, Omar. "Contribution à l'étude de l'interaction de l'hydrogène atomique avec les faces (110) et (100) de GaAS et InP." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376079921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "GaAs(110)"

1

Kim, Danny. Dry passivation studies of GaAs(110) surfaces by gallium oxide thin films deposited by electron cyclotron resonance plasma reactive molecular beam epitaxy for optoelectronic device applications. Ottawa: National Library of Canada, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

D, Hunt W., and United States. National Aeronautics and Space Administration., eds. On spurious bulk wave excitation in SAW grating reflectors on GaAs(001)(110). [Washington, DC: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "GaAs(110)"

1

Chiaradia, P. "8.2.2.2.2 GaAs(110)." In Physics of Solid Surfaces, 489. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bauer, R. S., and J. C. McMenamin. "Ge—GaAs(110) interface formation." In Electronic Structure of Semiconductor Heterojunctions, 157–62. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3073-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ciccacci, F., S. Selci, G. Chiarotti, P. Chiaradia, A. C. Felici, and C. Goletti. "Surface Reflectivity of GaAs(110)." In Springer Series on Wave Phenomena, 182. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82715-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nakashima, H. "Quantum Wires on Vicinal GaAs (110) Surfaces." In Mesoscopic Physics and Electronics, 247–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71976-9_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schäffler, F., H. Brugger, and G. Abstreiter. "Surface Barrier Formation on (110) GaAs Studied with Raman Spectroscopy." In Proceedings of the 17th International Conference on the Physics of Semiconductors, 205–8. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Proix, F., O. M’hamedi, and C. A. Sébenne. "H-Induced Reconstruction at the (110) Faces of GaAs and InP." In Springer Series in Surface Sciences, 393–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73343-7_65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fong, C. Y., L. H. Yang, and Inder P. Batra. "A Theoretical Study of Na Overlayers on the GaAs (110) Surface." In NATO ASI Series, 449–63. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0795-2_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Plans, I., A. Carpio, L. L. Bonilla, and R. E. Caflisch. "Critical Thickness for Misfit Dislocation Formation in InAs/GaAs(110) Heteroepitaxy." In Progress in Industrial Mathematics at ECMI 2006, 381–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71992-2_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Perraud, S., C. David, and Z. Z. Wang. "Nanomeasure of Esaki Negative Resistance on p-Type GaAs(110) Surfaces." In Solid State Phenomena, 835–38. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-30-2.835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gerling, Maria, Søren Jeppesen, Anders Gustafsson, and Lars Samuelson. "Growth of InAs quantum dots on {110}-oriented cleaved GaAs surfaces." In Springer Proceedings in Physics, 383–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_177.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "GaAs(110)"

1

Rudolph, Jörg, Stefanie Döhrmann, Daniel Hägele, Michael Oestreich, Max Bichler, and Dieter Schuh. "Anomalous spin dephasing in (110) GaAs quantum wells." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ifa2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sedgwick, Forrest, Shanna Crankshaw, Michael Moewe, Connie J. Chang-Hasnain, Hailin Wang, and Shun-Lien Chuang. "Electron spin coherence in (110) GaAs quantum well waveguides." In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4628934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Couto, O. D. D., F. Iikawa, J. Rudolph, R. Hey, P. V. Santos, and K. H. Ploog. "Long-range spin transport in (110) GaAs quantum wells." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Weissflog, Maximilian A., Marcus Cai, Matthew Parry, Mohsen Rahmani, Lei Xu, Anna N. Fedotova, Giuseppe Marino, et al. "Non-Degenerate Nonlinear Frequency Mixing in (110)-Grown GaAs Nanoresonators." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_qels.2020.fm2d.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lu, Zhou, Wang Yunhua, Jia Baoshan, Bai Duanyuan, Xu Jing, Gao Xin, and Bo Baoxue. "Novel passivation process for GaAs(110) surface with sulf-solutions." In 2011 Academic International Symposium on Optoelectronics and Microelectronics Technology (AISOMT). IEEE, 2011. http://dx.doi.org/10.1109/aismot.2011.6159309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Weissflog, Maximilian A., Marcus Cai, Matthew Parry, Mohsen Rahmani, Lei Xu, Anna N. Fedotova, Giuseppe Marino, et al. "Non-Degenerate Sum-Frequency Generation in (110)-Grown GaAs Nanoresonators." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleopr.2020.c4g_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

OHNO, Hirotaka, Makoto MOTOMATSU, Wataru MIZUTANI, and Hiroshi TOKUMOTO. "AFM Observation of Self-Assembled Monolayer Films on GaAs(110)." In 1994 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1994. http://dx.doi.org/10.7567/ssdm.1994.s-i-4-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yamada, T. "Photoemission and STM, STS study of Cs/p-GaAs(110)." In The fourteenth international spin physics symposium, SPIN2000. AIP, 2001. http://dx.doi.org/10.1063/1.1384223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eckert, Dorothee Sophie, Christian Bruckmann, Sam Baraz, and Holger Eisele. "Adsorbtion of Oxygen and Hydrogen Atoms on the GaAs(110) Surface." In 2019 Compound Semiconductor Week (CSW). IEEE, 2019. http://dx.doi.org/10.1109/iciprm.2019.8819247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gerstner, V., W. Pfeiffer, A. Thon, and G. Gerber. "Scanning Tunneling Spectroscopy of GaAs [110] Surfaces Under Femtosecond Laser Illumination." In EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography