To see the other types of publications on this topic, follow the link: GaAs(110).

Journal articles on the topic 'GaAs(110)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'GaAs(110).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Liu, Jian Qing, Yong Hai Chen, Bo Xu, and Zhan Guo Wang. "Smooth GaAs (110) Surface Fabrication Using the Ga-Assisted Deoxidation Method." Advanced Materials Research 341-342 (September 2011): 138–41. http://dx.doi.org/10.4028/www.scientific.net/amr.341-342.138.

Full text
Abstract:
We have practiced the Ga-assisted deoxidation method on GaAs(110) surface. When the deposit amount of Ga is suitable, flat GaAs(110) surface without any thermal deoxidation induced pits and excrescent GaAs islands obtained with the Ga-assisted deoxidation method. The obtained results suggested that, 9ML Ga was optimized dose for GaAs(110) surface, which is a little more than GaAs(001) surface indicating a thicker oxide layer of GaAs(110) surface.
APA, Harvard, Vancouver, ISO, and other styles
2

Poirier, D. M., and J. H. Weaver. "GaAs(110) by XPS." Surface Science Spectra 2, no. 3 (July 1993): 201–8. http://dx.doi.org/10.1116/1.1247700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pao, Y. C., W. Ou, and J. S. Harris. "(110)-oriented GaAs MESFETs." IEEE Electron Device Letters 9, no. 3 (March 1988): 119–21. http://dx.doi.org/10.1109/55.2061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kiely, C. J., and D. Cherns. "Microstructure of MBE Grown Al/Gaas [100] schottky contacts." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 42–43. http://dx.doi.org/10.1017/s0424820100125245.

Full text
Abstract:
The Aℓ/GaAs contact system is used in microwave field effect transistors, but to date, little systematic TEM characterization of the contact microstructure has been performed. There are three possible epitaxial configurations of Aℓ on GaAs [100].[100]Aℓ; Aℓ [100] ||GaAs[100], Aℓ [010] ||GaAs[011] [110]Aℓ; Aℓ [110] ||GaAs[100], Aℓ [110]||GaAs[011] [110]R Aℓ; Aℓ[110] ||GaAs[100], Aℓ [001] ||GaAs [011]The interfacial atomic structure of Aℓ[100] ||GaAs[100] has been investigated previously using a CBED technique on plan view specimens. this paper we study the distribution of the various Aℓ orientations as a function of initial GaAs surface reconstruction and film thickness. The misfit dislocation structure of [100] Aℓ/[100] GaAs has been characterized by weak beam microscopy. Also, lattice images from cross-sectional samples are presented. The samples studied were MBE grown and subsequent electrical characterization showed them all to have Schottky barrier heights (SBH) of 0.77eV and excellent rectifying properties over a large temperature range.
APA, Harvard, Vancouver, ISO, and other styles
5

Muermann, Björn, Florian Nitsch, Matthias Sperl, Alexander Spitzer, and Günther Bayreuther. "Magnetic anisotropy of Fe0.34Co0.66(110) on GaAs(110)." Journal of Applied Physics 103, no. 7 (April 2008): 07B528. http://dx.doi.org/10.1063/1.2838775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

List, R. S., P. H. Mahowald, J. Woicik, and W. E. Spicer. "The Si/GaAs(110) heterojunction." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 4, no. 3 (May 1986): 1391–95. http://dx.doi.org/10.1116/1.573577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tserng, H. Q., and B. Kim. "110 GHz GaAs FET oscillator." Electronics Letters 21, no. 5 (1985): 178. http://dx.doi.org/10.1049/el:19850125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pletschen, W., N. Esser, H. Münder, D. Zahn, J. Geurts, and W. Richter. "Sb overlayers on GaAs(110)." Surface Science Letters 178, no. 1-3 (December 1986): A641. http://dx.doi.org/10.1016/0167-2584(86)90137-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, S. B., and MarvinL Cohen. "Surface states on GaAs(110)." Surface Science Letters 172, no. 3 (July 1986): A355. http://dx.doi.org/10.1016/0167-2584(86)90411-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pletschen, W., N. Esser, H. Münder, D. Zahn, J. Geurts, and W. Richter. "Sb overlayers on GaAs(110)." Surface Science 178, no. 1-3 (December 1986): 140–48. http://dx.doi.org/10.1016/0039-6028(86)90289-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, S. B., and Marvin L. Cohen. "Surface states on GaAs(110)." Surface Science 172, no. 3 (July 1986): 754–62. http://dx.doi.org/10.1016/0039-6028(86)90510-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Doak, R. B., and D. B. Nguyen. "Surface phonons in GaAs(110)." Journal of Electron Spectroscopy and Related Phenomena 44, no. 1 (January 1987): 205–14. http://dx.doi.org/10.1016/0368-2048(87)87021-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hey, R., A. Trampert, and P. Santos. "(In,Ga)As/GaAs quantum wells on GaAs(110)." physica status solidi (c) 3, no. 3 (March 2006): 651–54. http://dx.doi.org/10.1002/pssc.200564140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Prietsch, M., C. Laubschat, M. Domke, and G. Kaindl. "Photoemission study of reactive rare-earth/semiconductor interfaces: Tm/GaAs(110) and Yb/GaAs(110)." Physical Review B 38, no. 15 (November 15, 1988): 10655–68. http://dx.doi.org/10.1103/physrevb.38.10655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Faul, Jürgen, Georg Neuhold, Lothar Ley, Jordi Fraxedas, Stefan Zollner, John D. Riley, and Robert C. G. Leckey. "Determination of conduction-band states in GaAs(110), InP(110), and InAs(110)." Physical Review B 47, no. 19 (May 15, 1993): 12625–35. http://dx.doi.org/10.1103/physrevb.47.12625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gayone, J. E., E. A. Sánchez, O. Grizzi, M. C. G. Passeggi, R. A. Vidal, and J. Ferrón. "Adsorption of potassium on GaAs(110)." Surface Science 454-456 (May 2000): 137–40. http://dx.doi.org/10.1016/s0039-6028(00)00280-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lengel, G., M. Weimer, J. Gryko, and R. E. Allen. "Interchain vacancy migration on GaAs(110)." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 12, no. 4 (July 1994): 1855–57. http://dx.doi.org/10.1116/1.579017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schäffler, F., R. Ludeke, A. Taleb-Ibrahimi, G. Hughes, and D. Rieger. "Sb/GaAs(110) interface: A reevaluation." Physical Review B 36, no. 2 (July 15, 1987): 1328–31. http://dx.doi.org/10.1103/physrevb.36.1328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gao, Shiwu, and Dingsheng Wang. "Nonmetallic behavior of Cs/GaAs(110)." Physical Review B 44, no. 16 (October 15, 1991): 8812–17. http://dx.doi.org/10.1103/physrevb.44.8812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Deng, Z. W., R. W. M. Kwok, W. M. Lau, and L. L. Cao. "GaAs (110) by Time-resolved XPS." Surface Science Spectra 7, no. 4 (October 2000): 348–61. http://dx.doi.org/10.1116/1.1379511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Schmidt, W. G., B. Wenzien, and F. Bechstedt. "Chemisorption of antimony on GaAs(110)." Physical Review B 49, no. 7 (February 15, 1994): 4731–44. http://dx.doi.org/10.1103/physrevb.49.4731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Heinemann, Martina, and Matthias Scheffler. "Thick sodium overlayers on GaAs(110)." Physical Review B 49, no. 8 (February 15, 1994): 5516–21. http://dx.doi.org/10.1103/physrevb.49.5516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Schmidt, W. G., and G. P. Srivastava. "Chemisorption of aluminium on GaAs(110)." Journal of Physics: Condensed Matter 5, no. 49 (December 6, 1993): 9025–36. http://dx.doi.org/10.1088/0953-8984/5/49/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Schmidt, Wolf Gero, and Friedhelm Bechstedt. "Se/GaAs(110): energetics and structure." Surface Science 331-333 (July 1995): 557–63. http://dx.doi.org/10.1016/0039-6028(95)00317-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Berkovits, V. L., I. V. Makarenko, T. A. Minashvili, and V. I. Safarov. "Optical transitions on GaAs [110] surface." Solid State Communications 56, no. 5 (November 1985): 449–50. http://dx.doi.org/10.1016/0038-1098(85)90030-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Cho, M. W., K. W. Koh, D. M. Bagnall, Z. Zhu, and T. Yao. "ZnSe heteroepitaxy on GaAs (110) substrate." Journal of Electronic Materials 27, no. 2 (February 1998): 85–88. http://dx.doi.org/10.1007/s11664-998-0194-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Puga, M. W., G. Xu, and S. Y. Tong. "The surface geometry of GaAs(110)." Surface Science 164, no. 1 (December 1985): L789—L796. http://dx.doi.org/10.1016/0039-6028(85)90694-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Troost, D., H. U. Baier, A. Berger, and W. Mönch. "Nitride layers on GaAs(110) surfaces." Surface Science Letters 242, no. 1-3 (February 1991): A49. http://dx.doi.org/10.1016/0167-2584(91)90468-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tsai, M. H., William E. Packard, John D. Dow, and R. V. Kasowski. "Oxidation of the GaAs(110) surface." Physica B: Condensed Matter 192, no. 4 (December 1993): 365–70. http://dx.doi.org/10.1016/0921-4526(93)90012-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Puga, M. W., G. Xu, and S. Y. Tong. "The surface geometry of GaAs(110)." Surface Science Letters 164, no. 1 (December 1985): L789—L796. http://dx.doi.org/10.1016/0167-2584(85)90561-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Remmers, G., M. Prietsch, C. Laubschat, M. Domke, T. Mandel, J. E. Ortega, and G. Kaindl. "Oxidation of alkali/GaAs(110) interfaces." Journal of Electron Spectroscopy and Related Phenomena 52 (January 1990): 79–89. http://dx.doi.org/10.1016/0368-2048(90)85006-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Troost, D., H. U. Baier, A. Berger, and W. Mönch. "Nitride layers on GaAs(110) surfaces." Surface Science 242, no. 1-3 (February 1991): 324–30. http://dx.doi.org/10.1016/0039-6028(91)90287-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Weaver, J. H., M. Grioni, J. J. Joyce, and M. del Giudice. "Reactions at a rare-earth–GaAs interface: Ce/GaAs(110)." Physical Review B 31, no. 8 (April 15, 1985): 5290–96. http://dx.doi.org/10.1103/physrevb.31.5290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Dowdy, Ryan, Donald A. Walko, Seth A. Fortuna, and Xiuling Li. "Realization of Unidirectional Planar GaAs Nanowires on GaAs (110) Substrates." IEEE Electron Device Letters 33, no. 4 (April 2012): 522–24. http://dx.doi.org/10.1109/led.2012.2186115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sato, Masamichi, Kenzo Maehashi, Hajime Asahi, Shigehiko Hasegawa, and Hisao Nakashima. "MBE growth of AlGaAs/GaAs superlattices on GaAs (110) substrates." Superlattices and Microstructures 7, no. 4 (January 1990): 279–82. http://dx.doi.org/10.1016/0749-6036(90)90209-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Галиев, Г. Б., Е. А. Климов, С. С. Пушкарев, А. А. Зайцев, and А. Р. Клочков. "Si-легированные эпитаксиальые пленки на подложках GaAs(110): морфология поверхности, электрофизические характеристики, спектры фотолюминесценции." Физика и техника полупроводников 54, no. 11 (2020): 1203. http://dx.doi.org/10.21883/ftp.2020.11.50087.9479.

Full text
Abstract:
Представлены результаты исследований морфологии поверхности, электрофизических характеристик и фотолюминесцентных свойств эпитаксиальных плeнок GaAs, выращенных методом молекулярно-лучевой эпитаксии на подложках GaAs (110) и легированных кремнием. Серия исследуемых образцов была выращена при температуре 580oС при отношении парциальных давлений мышьяка и галлия в диапазоне от 14 до 80. С помощью анализа спектров фотолюминесценции выращенных образцов интерпретировано поведение атомов кремния в GaAs с учeтом занятия ими узлов Ga или As (т. е. возникновение точечных дефектов SiGa и SiAs), а также образования вакансий мышьяка и галлия VAs и VGa. При анализе спектры фотолюминесценции образцов на (110)-ориентированных подложках сравнивались со спектрами фотолюминесценции аналогичных образцов на (100)- и (111)A-ориентированных подложках. Ключевые слова: cпектроскопия фотолюминесценции, молекулярно-лучевая эпитаксия, GaAs, ориентация подложки (110), ориентация подложки (111)А, атомно-силовая микроскопия.
APA, Harvard, Vancouver, ISO, and other styles
37

Inoue, T., Y. Kikuchi, T. Sasaki, T. Eshita, and M. Yoshida. "Replica observation by transmission electron microscopy of GaAs surface grown on vicinal Si (001)." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 2 (August 1992): 1378–79. http://dx.doi.org/10.1017/s0424820100131528.

Full text
Abstract:
Over the past several years, heteroepitaxy of GaAs on Si substrates has received strong interest because of its potential for monolithic integration of GaAs optical devices with Si integrated circuit technology. For heteroepitaxy of GaAs on Si substrate, Si(001) substrates oriented toward [110] by a few degrees (1) are used, therefore the GaAs epitaxial layer is expected to have a stepped surface. In this study, we characterized the GaAs surface, grown on vicinal Si(001 ) substrates, by replica observation using transmission electron microscopy (TEM).The Si substrates were oriented 2 degrees off towards [110] and their surface was expected to have a regular array of [110] steps, 8 nm apart. A two-step growth process (1) was employed to grow GaAs on Si(001) by metalorganic chemical vapor deposition (MOCVD). The Ga source was trimetyl gallium (TMG) and As source was AsH3. Following 10 minutes of 1000°C heat treatment in a H2, gas flow to remove the native oxide, 20 nm GaAs buffer layers were grown at 450°C. They were then heated to a growth temperature of 650°C to grow the GaAs epitaxial layers an additional 3 μm.
APA, Harvard, Vancouver, ISO, and other styles
38

Haugstad, G., A. Raisanen, X. Yu, L. Vanzetti, and A. Franciosi. "Photoemission study of adsorbed Xe on GaAs(110), HgTe(110), andHg1−xCdxTe(110) surfaces." Physical Review B 46, no. 7 (August 15, 1992): 4102–9. http://dx.doi.org/10.1103/physrevb.46.4102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Rasulov, A. M., and A. A. Dzhurakhalov. "Low-energy P+ ion channeling and implantation into Si(110), SiC(110), GaP(110) and GaAs(110)." Computational Materials Science 33, no. 1-3 (April 2005): 148–52. http://dx.doi.org/10.1016/j.commatsci.2004.12.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kim, T. W., and Y. S. Yoon. "Microstructural and atomic arrangement studies in Fe (110)/GaAs (110) heterostructures." Journal of Physics and Chemistry of Solids 61, no. 6 (June 2000): 847–51. http://dx.doi.org/10.1016/s0022-3697(99)00398-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fritsch, J., A. Eckert, P. Pavone, and U. Schroder. "Structure and dynamics of hydrogenated GaAs(110) and InP(110) surfaces." Journal of Physics: Condensed Matter 7, no. 40 (October 2, 1995): 7717–28. http://dx.doi.org/10.1088/0953-8984/7/40/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Teodorescu, C. M., J. Chrost, H. Ascolani, J. Avila, F. Soria, and M. C. Asensio. "Growth of Epitaxial Co Layers on Sb-Passivated GaAs(110) Substrates." Surface Review and Letters 05, no. 01 (February 1998): 279–83. http://dx.doi.org/10.1142/s0218625x98000517.

Full text
Abstract:
The role of Sb in the formation of the Co/GaAs(110) interfaces has been investigated by angular photoelectron diffraction (PD), synchrotron-radiation (SR) core-level photoemission and low-energy electron diffraction. We find that Co forms a metastable bcc phase on GaAs(110), with its principal crystallographic axes parallel to the substrate. From polar-angle-scanned PD, we determine an outward expansion of up to 14% of the lattice constant perpendicular to the surface, for epitaxial Co films grown on nontreated substrates. By Sb passivation of the GaAs(110) surface prior to the Co deposition, the epitaxial quality of the metallic overlayer is improved. The resulting Co phase is found to grow in a perfect bcc (110) orientation with a minor disruption of the substrate underneath and a reduced intralayer spacing outward expansion of less than 1%.
APA, Harvard, Vancouver, ISO, and other styles
43

Середин, П. В., А. С. Леньшин, А. В. Федюкин, И. Н. Арсентьев, А. В. Жаботинский, Д. Н. Николаев, Harald Leiste, and Monika Rinke. "Влияние разориентации подложки на состав, структурные и фотолюминесцентные свойства эпитаксиальных слоев, выращенных на GaAs(100)." Физика и техника полупроводников 52, no. 1 (2018): 118. http://dx.doi.org/10.21883/ftp.2018.01.45329.8565.

Full text
Abstract:
AbstractThe influence of the degree of misorientation and treatment of a GaAs substrate on the structural and optical characteristics of homoepitaxial GaAs/GaAs(100) structures grown by metal–organic chemicalvapor deposition is studied. From the data obtained by a series of structural and spectroscopic techniques, it is shown that the degree of deviation of the substrate from the exact orientation towards the [110] direction by an angle of up to 4° brings about stepwise growth of the GaAs film in the initial stage and a further increase in the degree of misorienration towards the [110] direction to 10° results in an increase in the number of structural defects in the epitaxial film. At the same time, the samples of homoepitaxial structures grown by metal–organic chemical-vapor deposition on GaAs(100) substrates misoriented by 4° towards the [110] direction possess the highest photoluminescence efficiency; it is ~15% higher than the corresponding quantity for structures grown on precisely oriented GaAs(100) substrates. Preliminary polishing of the GaAs substrate (removal of an oxide layer) also yields the intensification of photoluminescence emission compared to emission in the case of an unpolished substrate of the same type. For samples grown on substrates misoriented by 4°, such an increase in the photoluminescence efficiency is ~30%.
APA, Harvard, Vancouver, ISO, and other styles
44

Zheleva, Ts, K. Jagannadham, V. Iamakov, and J. Narayan. "Structural analysis of TiN/Si and TiN/GaAs epitaxial systems by TEM and multi-slice simulation." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 858–59. http://dx.doi.org/10.1017/s0424820100172024.

Full text
Abstract:
Low resistivity and diffusivity of epitaxial films of TiN (a=4.24Å) on Si (a=5.43Å) and GaAs (a=5.65Å) make these films excellent choice as barrier layers in VLSI metalization. Epitaxial structural relationships at the interface in large mismatch systems, such as TiN/Si and TiN/GaAs were investigated by transmission electron microscopy, and multi-slice simulation technique. Studies wereperformed on TOPCON 002B high resolution microscope operated at 200 kV, with resolution limit at 1.8Å. Computer simulations with image processing was carried out on IBM/PC-AT computer incombination with IBAS/IPS image processing system of KONTRON electronic group. Epitaxial (100)TiN films on Si(100) and (110)TiN films on GaAs(100) have been deposited by laser physical vapor deposition.From the SAED patterns the orientation relationships have been found to be cube-on-cube for the TiN/Si interface i.e. <100>TiN//>100>Si (Fig.l); and [001]TiN//[110]GaAs and [10]TiN//[10]GaAs (Fig.2a,b). The analysis of the diffraction data for the TiN/GaAs interface reveals that TiN unit cell is rotated twice by 45° - with respect to [001] GaAs and with respect [110] GaAs (Fig.3). Thus the coordinates of the TiN unit cell axes a', b', and c' are expressed in the bases of GaAs axes a,b,c as: a'= -0.375a + 0.375b + 0.531c; b'= 0.375a - 0.375b + 0.531c; and c'= 0.531a + 0.531b.
APA, Harvard, Vancouver, ISO, and other styles
45

Junming, Zhou, Huang Yi, Li Yongkang, and Jia Wei Yi. "Growth and properties of AlGaAs/GaAs heterostructures on GaAs (110) surface." Journal of Crystal Growth 81, no. 1-4 (February 1987): 221–23. http://dx.doi.org/10.1016/0022-0248(87)90394-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Eberl, K., G. Krotz, T. Wolf, F. Schaffler, and G. Abstreiter. "Pseudomorphic growth of SixGe1-xon GaAs(110)." Semiconductor Science and Technology 2, no. 9 (September 1, 1987): 561–67. http://dx.doi.org/10.1088/0268-1242/2/9/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kroll, G. H., T. R. Ohno, and J. H. Weaver. "Nondisruptive oxide overlayer growth on GaAs(110)." Applied Physics Letters 58, no. 20 (May 20, 1991): 2249–51. http://dx.doi.org/10.1063/1.104941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

vom Felde, A., K. Kern, G. S. Higashi, Y. J. Chabal, S. B. Christman, C. C. Bahr, and M. J. Cardillo. "Oxidation of GaAs(110) withNO2: Infrared spectroscopy." Physical Review B 42, no. 8 (September 15, 1990): 5240–48. http://dx.doi.org/10.1103/physrevb.42.5240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yi, Jae-Yel, and J. Bernholc. "Atomic structure of Al-GaAs(110) interfaces." Physical Review Letters 69, no. 3 (July 20, 1992): 486–89. http://dx.doi.org/10.1103/physrevlett.69.486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Miwa, S., L. H. Kuo, K. Kimura, A. Ohtake, T. Yasuda, C. G. Jin, and T. Yao. "ZnSe epitaxy on a GaAs(110) surface." Applied Physics Letters 71, no. 9 (September 1997): 1192–94. http://dx.doi.org/10.1063/1.119622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography