Academic literature on the topic 'Gagliardo-Nirenberg inequality'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gagliardo-Nirenberg inequality.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gagliardo-Nirenberg inequality"

1

Huang, Qingzhong, and Ai-Jun Li. "The L Gagliardo-Nirenberg-Zhang inequality." Advances in Applied Mathematics 113 (February 2020): 101971. http://dx.doi.org/10.1016/j.aam.2019.101971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ceccon, Jurandir, and Marcos Montenegro. "General optimal euclidean Sobolev and Gagliardo-Nirenberg inequalities." Anais da Academia Brasileira de Ciências 77, no. 4 (2005): 581–87. http://dx.doi.org/10.1590/s0001-37652005000400001.

Full text
Abstract:
We prove general optimal euclidean Sobolev and Gagliardo-Nirenberg inequalities by using mass transportation and convex analysis results. Explicit extremals and the computation of some optimal constants are also provided. In particular we extend the optimal Gagliardo-Nirenberg inequality proved by Del Pino and Dolbeault 2003 and the optimal inequalities proved by Cordero-Erausquin et al. 2004.
APA, Harvard, Vancouver, ISO, and other styles
3

Esfahani, Amin. "Anisotropic Gagliardo–Nirenberg inequality with fractional derivatives." Zeitschrift für angewandte Mathematik und Physik 66, no. 6 (2015): 3345–56. http://dx.doi.org/10.1007/s00033-015-0586-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lokharu, E. "Gagliardo–Nirenberg inequality for maximal functions measuring smoothness." Journal of Mathematical Sciences 182, no. 5 (2012): 663–73. http://dx.doi.org/10.1007/s10958-012-0771-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dolbeault, Jean, and Maria J. Esteban. "Extremal functions for Caffarelli—Kohn—Nirenberg and logarithmic Hardy inequalities." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 142, no. 4 (2012): 745–67. http://dx.doi.org/10.1017/s0308210510001101.

Full text
Abstract:
We consider a family of Caffarelli–Kohn–Nirenberg interpolation inequalities and weighted logarithmic Hardy inequalities that were obtained recently as a limit case of the Caffarelli–Kohn–Nirenberg inequalities. We discuss the ranges of the parameters for which the optimal constants are achieved by extremal functions. The comparison of these optimal constants with the optimal constants of Gagliardo–Nirenberg interpolation inequalities and Gross's logarithmic Sobolev inequality, both without weights, gives a general criterion for such an existence result in some particular cases.
APA, Harvard, Vancouver, ISO, and other styles
6

Kögler, Kevin, and Phan Thành Nam. "The Lieb–Thirring Inequality for Interacting Systems in Strong-Coupling Limit." Archive for Rational Mechanics and Analysis 240, no. 3 (2021): 1169–202. http://dx.doi.org/10.1007/s00205-021-01633-8.

Full text
Abstract:
AbstractWe consider an analogue of the Lieb–Thirring inequality for quantum systems with homogeneous repulsive interaction potentials, but without the antisymmetry assumption on the wave functions. We show that in the strong-coupling limit, the Lieb–Thirring constant converges to the optimal constant of the one-body Gagliardo–Nirenberg interpolation inequality without interaction.
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Xiulan, and Jun Fu. "Extinction and Decay Estimates of Solutions for thep-Laplacian Equations with Nonlinear Absorptions and Nonlocal Sources." Abstract and Applied Analysis 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/928080.

Full text
Abstract:
We investigate the extinction and decay estimates of thep-Laplacian equations with nonlinear absorptions and nonlocal sources. By Gagliardo-Nirenberg inequality, we obtain the sufficient conditions of extinction solutions, and we also give the precise decay estimates of the extinction solutions.
APA, Harvard, Vancouver, ISO, and other styles
8

Kovalevsky, Alexander, and Francesco Nicolosi. "A weighted interpolation inequality of the Nirenberg–Gagliardo kind." Nonlinear Analysis: Theory, Methods & Applications 36, no. 3 (1999): 269–73. http://dx.doi.org/10.1016/s0362-546x(97)00625-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fiorenza, Alberto, Maria Rosaria Formica, Tomáš Roskovec, and Filip Soudský. "Gagliardo–Nirenberg Inequality for rearrangement-invariant Banach function spaces." Rendiconti Lincei - Matematica e Applicazioni 30, no. 4 (2019): 847–64. http://dx.doi.org/10.4171/rlm/872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nguyen, Van Hoang. "The sharp Gagliardo–Nirenberg–Sobolev inequality in quantitative form." Journal of Functional Analysis 277, no. 7 (2019): 2179–208. http://dx.doi.org/10.1016/j.jfa.2019.02.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Gagliardo-Nirenberg inequality"

1

Laurent, Clément. "Grandes déviations pour les temps locaux d'auto-intersections de marches aléatoires." Phd thesis, Université de Provence - Aix-Marseille I, 2011. http://tel.archives-ouvertes.fr/tel-00645783.

Full text
Abstract:
Dans cette thèse on s'intéresse au temps local d'auto-intersections de marches aléatoires. Cette quantité est définie comme la norme-$p$ à la puissance $p$ du temps local de la marche. Elle regarde dans quelle mesure la trajectoire de la marche aléatoire s'intersecte. Le temps local d'auto-intersections est lié à différents modèles physiques comme les modèles de polymères ou les problèmes d'écoulements de flux en milieux stratifiés mais aussi au modèle mathématiques des marches aléatoires en paysages aléatoires. Nous nous sommes pour notre part intéressés en particulier aux grandes déviations du temps local d'auto-intersections, c'est à dire que nous regardons la probabilité que la quantité d'intersections de la marche aléatoire soit plus grande que sa moyenne. Cette question qui a été très étudiée au cours des années 2000 fait apparaitre trois cas distincts, le cas sous-critique, le cas critique et le cas sur-critique. Nous améliorons la connaissance sur cette question au travers de deux résultats complets et d'un résultat partiel. D'abord nous prouvons un principe de grandes déviations dans les cas critique et sur-critique des marches $\alpha$-stables, puis nous améliorons les échelles de déviations au cas sous-critique tout entier de la marche simple, enfin nous sommes en train d'étendre ce dernier résultat aux marches $\alpha$-stables. Par ailleurs les trois preuves sont basées sur l'utilisation d'une version due à Eisenbaum d'un théorème d'isomorphisme de Dynkin. Cette méthode d'abord introduite par Castell dans le cas critique est donc ici étendue aux autres cas. Nous avons donc réussi à unifier les différentes méthodes de preuves au travers ce théorème d'isomorphisme.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Gagliardo-Nirenberg inequality"

1

Marcus, Moshe. "An estimate related to the Gagliardo-Nirenberg inequality." In General Inequalities 7. Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8942-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lanzani, Loredana, and Andrew S. Raich. "On Div-Curl for Higher Order." In Advances in Analysis, edited by Charles Fefferman, Alexandru D. Ionescu, D. H. Phong, and Stephen Wainger. Princeton University Press, 2014. http://dx.doi.org/10.23943/princeton/9780691159416.003.0011.

Full text
Abstract:
This chapter produces a new class of differential operators of order k (where k is any given positive integer) that satisfy an appropriate analogue of a Gagliardo–Nirenberg inequality for functions and contain the operators introduced in the works of Bourgain and Brezis and Van Schaftingen. The research in this chapter is furthermore based on div/curl-type phenomena studied by both Stein as well as one of the authors of this chapter. Thus, the chapter first introduces the notion of admissible degree increment, and describes the necessary operators and theorems. Proofs are then discussed later on in the chapter, before it concludes with further remarks on some of the problems and theorems advanced earlier on.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Gagliardo-Nirenberg inequality"

1

Tarulli, Mirko, and George Venkov. "A functional inequality associated to a Gagliardo-Nirenberg type quotient." In PROCEEDINGS OF THE 43RD INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS: (AMEE’17). Author(s), 2017. http://dx.doi.org/10.1063/1.5013981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

NICOLOSI, FRANCESCO, and PAOLO CIANCI. "SOME REMARKS ON NIRENBERG-GAGLIARDO INTERPOLATION INEQUALITY IN ANISOTROPIC CASE." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography