Academic literature on the topic 'Gait analysi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gait analysi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gait analysi"
Rafferty, D., and F. Bell. "Gait analysi — a semiautomated approach." Gait & Posture 3, no. 3 (September 1995): 184. http://dx.doi.org/10.1016/0966-6362(95)90016-0.
Full textKim, Youngho, and Jinbok Yi. "Gait Analysis in Normal and Hemiplegic Patients Using Accelerometers(Gait & Motion Analysis)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 113–14. http://dx.doi.org/10.1299/jsmeapbio.2004.1.113.
Full textLaw, YC, AFT Mak, WN Wong, and M. Zhang. "THE VARIATION OF DYNAMIC FOOT PRESSURE WITH GAIT PARAMETER.(Gait & Motion Analysis)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 115–16. http://dx.doi.org/10.1299/jsmeapbio.2004.1.115.
Full textUmair Bin Altaf, M., Taras Butko, and Biing-Hwang Juang. "Acoustic Gaits: Gait Analysis With Footstep Sounds." IEEE Transactions on Biomedical Engineering 62, no. 8 (August 2015): 2001–11. http://dx.doi.org/10.1109/tbme.2015.2410142.
Full textKITADA, Tatuo, Koji ITO, Yasuro KUROSE, and Yoshimasa UMENO. "A KNOWLEDGE-BASED GAIT ANALYSIS SUPPORTING SYSTEM (GAITS)." Biomechanisms 9 (1988): 207–16. http://dx.doi.org/10.3951/biomechanisms.9.207.
Full textFangzhe Chen, Fangzhe Chen, Xuwei Fan Fangzhe Chen, Jianpeng Li Xuwei Fan, Min Zou Jianpeng Li, and Lianfen Huang Min Zou. "Gait Analysis Based Parkinson’s Disease Auxiliary Diagnosis System." 網際網路技術學刊 22, no. 5 (September 2021): 989–97. http://dx.doi.org/10.53106/160792642021092205005.
Full textRana, Priyanka, Shabnam Joshi, and Monika Bodwal. "QUANTITATIVE GAIT ANALYSIS IN PATIENTS WITH KNEE OSTEOARTHRITIS." International Journal of Physiotherapy and Research 4, no. 5 (October 11, 2016): 1684–88. http://dx.doi.org/10.16965/ijpr.2016.164.
Full textLee, S. C., S. K. Hong, K. Y. Lee, H. Y. Lee, and J. C. Ryu. "Development of Walking Pattern Analysis System (WPAS) using Inertial Sensors(Gait & Motion Analysis)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 111–12. http://dx.doi.org/10.1299/jsmeapbio.2004.1.111.
Full textBruderer-Hofstetter, M., F. Rast, C. Bauer, E. Graf, and A. Meichtry. "Pattern recognition methods in clinical gait analysis – What do we gain?" Gait & Posture 42 (December 2015): S59. http://dx.doi.org/10.1016/j.gaitpost.2015.03.104.
Full textGonzalez-Islas, Juan-Carlos, Omar-Arturo Dominguez-Ramirez, Omar Lopez-Ortega, Jonatan Peña-Ramirez, Jesus-Patricio Ordaz-Oliver, and Francisco Marroquin-Gutierrez. "Crouch Gait Analysis and Visualization Based on Gait Forward and Inverse Kinematics." Applied Sciences 12, no. 20 (October 11, 2022): 10197. http://dx.doi.org/10.3390/app122010197.
Full textDissertations / Theses on the topic "Gait analysi"
Guiotto, Annamaria. "Development of a gait analysis driven finite element model of the diabetic foot." Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3423117.
Full textIl diabete mellito è una malattia cronica sempre più frequente. Fra le complicanze ad esso associate vi è il cosiddetto “piede diabetico”. L’incidenza del diabete a livello mondiale è destinata a raddoppiare entro il 2030 passando dal 2.8% al 4.4% della popolazione ed il numero di pazienti affetti da diabete mellito che sviluppano ulcera podalica oscilla tra l’1.3% ed il 4.8%. Numerosi studi hanno evidenziato come i fattori biomeccanici giochino un ruolo fondamentale nell’eziologia, nel trattamento e nella prevenzione delle ulcere del piede diabetico. La letteratura recente sul piede diabetico indica che le sollecitazioni meccaniche, ossia le elevate pressioni plantari e/o gli elevati sforzi tangenziali, che agiscono all’interno dei tessuti molli del piede possono contribuire alla formazione di ulcere. È quindi importante studiare le interazioni piede-suolo durante il cammino nei pazienti diabetici, ma si rendono anche necessari dei modelli per la simulazione di sollecitazioni e deformazioni nel tessuto plantare del piede diabetico che permettano di predire le aree ad alto rischio di ulcerazione o di valutare l’efficacia di ortesi plantari nel ridistribuire in modo ottimale le pressioni plantari. I modelli agli elementi finiti consentono di tenere conto degli aspetti critici del piede diabetico, vale a dire il movimento, la morfologia, le proprietà dei tessuti e le sollecitazioni meccaniche. Di recente sono stati sviluppati diversi modelli bidimensionali (2D) e tridimensionali (3D) del piede con lo scopo di studiare il comportamento biomeccanico di piede e caviglia. Tuttavia, per quanto appurato dall’autore, in letteratura non è stato riportato un modello 3D agli elementi finiti del piede diabetico neuropatico con geometria dettagliata e specifica di un soggetto. Inoltre, i modelli 2D e 3D agli elementi finiti del piede presenti in letteratura sono stati raramente combinati con i dati del cammino specifici dei soggetti, sia in termini di forze di reazione al suolo e cinematica (come parametri di input) che in termini di pressioni plantari per la validazione. L’obiettivo dello studio qui presentato è stato quello di simulare il comportamento biomeccanico sia del piede di un soggetto sano che del piede di un soggetto diabetico neuropatico per prevedere l'area della superficie plantare caratterizzata da eccessive sollecitazioni. A tal scopo, sono stati sviluppati due modelli agli elementi finiti di piede e caviglia, utilizzando le geometrie specifiche dei piedi dei due soggetti (uno sano ed uno diabetico neuropatico) ottenute attraverso immagini di risonanza magnetica (MRI). Quindi sono state effettuate delle simulazioni mediante l'applicazione di carichi e di condizioni al contorno, ottenuti da dati di cinematica e cinetica, integrati e sincronizzati, acquisiti durante il cammino, specifici dei due soggetti sui rispettivi modelli agli elementi finiti. Pertanto in questa tesi sono stati descritti un protocollo integrato di cinematica-cinetica per l'analisi del cammino che permette di valutare la cinematica e la cinetica 3D dei sottosegmenti del piede e due modelli completi agli elementi finiti di un piede sano e di un piede diabetico neuropatico. Per stabilire la fattibilità di tale approccio, sono stati inizialmente sviluppati due modelli 2D agli elementi finiti del retropiede di un soggetto sano e di un soggetto diabetico neuropatico, tenendo conto della geometria ossea e del cuscinetto plantare, delle proprietà dei materiali dei tessuti molli, della cinematica e della cinetica. Questi ultimi sono stati acquisiti durante tre istanti della fase di appoggio del ciclo del passo. Una volta dimostrato il vantaggio di un simile approccio nello sviluppo di modelli 2D agli elementi finiti del piede, sono stati sviluppati i modelli 3D agli elementi finiti del piede intero degli stessi soggetti e sono state eseguite le simulazioni in vari istanti della fase di appoggio. La validazione delle simulazioni è stata effettuata attraverso il confronto tra le pressioni plantari simulate e quelle acquisite sperimentalmente durante il cammino degli stessi soggetti, nei corrispondenti istanti della fase di appoggio. Un secondo scopo dello studio qui presentato è stato quello di effettuare simulazioni del modello del piede del soggetto sano e di quello del soggetto neuropatico con dati di analisi del cammino rispettivamente di 10 soggetti sani e 10 diabetici neuropatici, al fine di verificare la possibilità di estendere i risultati dei modelli specifici dei due soggetti ad una popolazione più ampia. La validità di questo approccio è stata valutata tramite il confronto tra le pressioni plantari simulate e quelle sperimentali specifiche di ogni soggetto, acquisite durante il cammino. Inoltre gli errori delle simulazioni eseguite con i dati dei 20 soggetti sono stati confrontati con gli errori effettuati quando le simulazioni dei modelli avevano previsto l’utilizzo di dati di cammino specifici dei due soggetti la cui geometria podalica era stata ottenuta da MRI
STRAZZA, ANNACHIARA. "Advanced Techniques for EMG-based Assessment of Muscular Co-Contraction During Walking." Doctoral thesis, Università Politecnica delle Marche, 2019. http://hdl.handle.net/11566/263516.
Full textGait analysis is the systematic study of human locomotion. A central part of gait analysis is represented by surface electromyography (sEMG). The walking control is played by lower limb muscles, and in particular by lower limb muscular co-contraction. Muscular co-contraction is the concomitant recruitment of antagonist muscles crossing a joint. In healthy subjects, co-contraction occurs to achieve a homogeneous pressure on joint surface, preserving articular stability. In pathological individuals, the assessment of co-contraction appeared to have a key role for discriminating dysfunction conditions of the central nervous system. Different methodologies for muscular co-contraction assessment were developed. A co-contraction index (CI) based on the area computation under the curve of rectified EMG signal from antagonist muscles was developed. It provides an overall numerical index that could not be suitable to characterize dynamic task. To overcome this limitation, muscular co-contraction was assessed by overlapping linear envelopes or temporal interval where muscles superimposed. Thus, a gold standard for identifying muscle co-contraction is not available yet. The aim of the study is to perform an EMG-based analysis of muscular co-contraction by proposing a new and reliable techniques for leg-muscle co-contraction assessment in time-frequency domain and by providing normative co-contraction data during heathy adult and child walking. The proposed method, based on Wavelet transform (WT), is named CO-contraction DEtection algorithm (CODE). A further application of WT analysis is the extraction and assessment of fetal heart sounds, from fetal phonocardiography signal. In the present study, also a reference data on lower-limb-muscle co contraction was provided by means of Statistical Gait Analysis, a technique able to provide a statistical characterization of gait, by averaging spatial-temporal and sEMG-based parameters over hundreds of strides during walking.
Zago, M. "RESEARCH METHODS IN SPORTS AND CLINICAL BIOMECHANICS." Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/352554.
Full textCorr, Sandra A. "Avian gait analysis." Thesis, University of Glasgow, 1999. http://theses.gla.ac.uk/6629/.
Full textMa, Weizen. "Instrumentation of Gait Analysis." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-28759.
Full textLee, Lily 1971. "Gait analysis for classification." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8116.
Full textIncludes bibliographical references (p. 121-124).
This thesis describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple localized image features such as moments extracted from orthogonal view video silhouettes of human walking motion. A suite of time-integration methods, spanning a range of coarseness of time aggregation and modeling of feature distributions, are applied to these image features to create a suite of gait sequence representations. Despite their simplicity, the resulting feature vectors contain enough information to perform well on human identification and gender classification tasks. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times, and under varying lighting environments. Each of the integration methods are investigated for their advantages and disadvantages. An improved gait representation is built based on our experiences with the initial set of gait representations. In addition, we show gender classification results using our gait appearance features, the effect of our heuristic feature selection method, and the significance of individual features.
by Lily Lee.
Ph.D.
Hong, Jie. "Human gait identification and analysis." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/7115.
Full textCATINO, LUIGI. "COMBINED STUDY OF SEGMENTAL MOTIONS AND THE MOTION OF THE BODY CENTER OF MASS DURING WALKING: NORMATIVE DATA AND APPLICATIONS TO FUNCTIONAL DIAGNOSIS AND TREATMENT IN REHABILITATION MEDICINE." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/820051.
Full textKepenekci, Burcu. "Human Activity Recognition By Gait Analysis." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613089/index.pdf.
Full textDeluzio, Kevin John. "Modelling and analysis of gait waveforms." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq22455.pdf.
Full textBooks on the topic "Gait analysi"
Rancho Los Amigos Medical Center. Pathokinesiology Service. and Rancho Los Amigos Medical Center. Physical Therapy Dept., eds. Observational gait analysis. Downey, CA: Los Amigos Research and Education Institute, Rancho Los Amigos Medical Center, 1993.
Find full textVaughan, C. L. Gait analysis laboratory. Champaign, IL: Human Kinetics Publishers, 1992.
Find full textM, Burnfield Judith, ed. Gait analysis: Normal and pathological function. 2nd ed. Thorofare, NJ: SLACK, 2010.
Find full textBruckner, Jan. Gait workbook: A practical guide to clinical gait analysis. Thorofare, NJ: SLACK, Inc., 1998.
Find full textBook chapters on the topic "Gait analysi"
Theologis, Tim N. "Gait Analysis." In Children's Neuromuscular Disorders, 1–8. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-552-1_1.
Full textDwyer, Maureen K. "Gait Analysis." In Hip Joint Restoration, 115–22. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-0694-5_10.
Full textTheologis, Tim N. "Gait Analysis." In Children's Orthopaedics and Fractures, 67–74. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-611-3_6.
Full textMedved, Vladimir, Rodolfo Vastola, Daniele Albano, and Marko Pećina. "Gait Analysis." In Series in Biomedical Engineering, 219–55. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79685-3_10.
Full textWagner, Jakub, Paweł Mazurek, and Roman Z. Morawski. "Gait Analysis." In Health Information Science, 225–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96009-4_8.
Full textSuryadevara, Nagender. "Gait Analysis." In Beginning Machine Learning in the Browser, 135–62. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6843-8_5.
Full text"Front Matter." In Gait Analysis, iii. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-7506-0045-3.50001-x.
Full text"Copyright." In Gait Analysis, iv. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-7506-0045-3.50002-1.
Full text"Acknowledgements." In Gait Analysis, vii. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-7506-0045-3.50003-3.
Full text"Dedication." In Gait Analysis, viii. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-7506-0045-3.50004-5.
Full textConference papers on the topic "Gait analysi"
"Pediatric Gait: A New Millennium in Clinical Care and Motion Analysis Technology [front matter]." In Pediatric Gait: A New Millennium in Clinical Care and Motion Analysis Technology. IEEE, 2000. http://dx.doi.org/10.1109/pg.2000.858866.
Full textUrban, M., J. Olson, J. Vega, and G. Harris. "Juvenile rheumatoid arthritis: clinical aspects and new rehabilitation treatment options." In Pediatric Gait: A New Millennium in Clinical Care and Motion Analysis Technology. IEEE, 2000. http://dx.doi.org/10.1109/pg.2000.858874.
Full text"Author index." In Pediatric Gait: A New Millennium in Clinical Care and Motion Analysis Technology. IEEE, 2000. http://dx.doi.org/10.1109/pg.2000.858902.
Full textIzadi, M., M. J. Mahjoob, and M. Soheilypour. "Walking Gait of a Single-Tetrahedral Robot: Design, Modeling and Implementation." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24434.
Full textHopkins, James K., and Satyandra K. Gupta. "Analysis of a Low Effort Rectilinear Gait for a Snake-Inspired Robot." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-13294.
Full textChitta, Sachin, Frederik W. Heger, and Vijay Kumar. "Design, Analysis, Simulation and Experimental Results for a Rollerblading Robot." In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57113.
Full textWang, Ya, Ping Ren, and Dennis Hong. "Gait and Gait Transition for a Robot With Two Actuated Spoke Wheels." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86923.
Full textNixon, M. S. "Automatic gait recognition." In IEE Colloquium on Motion Analysis and Tracking. IEE, 1999. http://dx.doi.org/10.1049/ic:19990573.
Full textHopkins, James K., and Satyandra K. Gupta. "Dynamics-Based Model for a New Class of a Rectilinear-Gait for a Snake-Inspired Robot." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71256.
Full textRahim, Suhana Abdul, Hamzah Sakeran, Ahmad Faizal Salleh, Mohammad Shahril Salim, Wan Zuki Azman Wan Muhamad, and Mohamad Azlan Mohamed Shapie. "Statistical analysis in clinical gait analysis using Kinovea between normal and simulated abnormal gaits." In INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (ICoBE 2021). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0114628.
Full textReports on the topic "Gait analysi"
Vaughan, Phillip, Golnar Nabizadeh, Laura Findlay, Heather Doran, Niamh Nic Daeid, and Mark Brown. Understanding Forensic Gait Analysis #1. Edited by Chris Murray. University of Dundee, February 2020. http://dx.doi.org/10.20933/100001152.
Full textQian, Guoping, Xiaoye Cai, Kai Xu, Hao Tian, Qiao Meng, Zbigniew Ossowski, and Jinghong Liang. Which Gait Training Intervention Can Most Effectively Improve Gait Ability in Patients with Cerebral Palsy? A Systematic Review and Network Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, October 2022. http://dx.doi.org/10.37766/inplasy2022.10.0108.
Full textIyer, Ananth V., Steven R. Dunlop, Olga Senicheva, Dutt J. Thakkar, Ruier Yan, Karthikeyan Subramanian, Suraj Vasu, Gokul Siddharthan, Juily Vasandani, and Srijan Saurabh. Improve and Gain Efficiency in Winter Operations. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317312.
Full textEvans, III, Farquhar Boyd M., Nycz Ethan, Ericson Andrzej, Pusch Nance, Wilken Martin, and Jason. Mobile Gait Analysis System for Lower Limb Amputee High-Level Activity Rehabilitation. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada599527.
Full textMohling, Caroline M., Anna K. Johnson, Kenneth J. Stalder, Caitlyn Abell, Locke A. Karriker, Johann F. Coetzee, and Suzanne T. Millman. Gait Analysis as an Objective Tool to Measure Hoof Lameness Phases in Multiparous Sows. Ames (Iowa): Iowa State University, January 2014. http://dx.doi.org/10.31274/ans_air-180814-1194.
Full textHotz, V. Joseph, Guido Imbens, and Jacob Klerman. The Long-Term Gains from GAIN: A Re-Analysis of the Impacts of the California GAIN Program. Cambridge, MA: National Bureau of Economic Research, November 2000. http://dx.doi.org/10.3386/w8007.
Full textLi, Jia-Qi, PWH Kwong, YW Sun, WS So, and A. Sidarta. A comprehensive appraisal of meta-analyses in exercise-based stroke rehabilitation with trial sequential analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2022. http://dx.doi.org/10.37766/inplasy2022.8.0006.
Full textSchafermeyer, Erich. An IR and RF Based System for Functional Gait Analysis in a Multi-Resident Smart-Home. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5386.
Full textGluckstern, R. L., Hiromi Okamoto, and S. Krinsky. An analysis of the saturation of a high gain FEL. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/6713378.
Full textGluckstern, R. L., Hiromi Okamoto, and S. Krinsky. An analysis of the saturation of a high gain FEL. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10123410.
Full text