Academic literature on the topic 'Galactic Outflow'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Galactic Outflow.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Galactic Outflow"

1

Tanner, Ryan, and Kimberly A. Weaver. "Simulations of AGN-driven Galactic Outflow Morphology and Content." Astronomical Journal 163, no. 3 (2022): 134. http://dx.doi.org/10.3847/1538-3881/ac4d23.

Full text
Abstract:
Abstract Using a series of 3D relativistic hydrodynamical simulations of active galactic nuclei (AGN) we investigate how AGN power, a clumpy interstellar medium (ISM) structure, and AGN jet angle with respect to the galactic disk affect the morphology and content of the resulting galactic outflow. For low-power AGN across three orders of magnitude of AGN luminosities (1041–1043 erg s−1) our simulations did not show significant changes to either the morphology or total mass of the outflow. Changing the angle of the AGN jet with respect to the galaxy did show small changes in the total outflow m
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Kinwah, Kaye Jiale Li, Ellis R. Owen, Li Ji, Shuinai Zhang, and Graziella Branduardi-Raymont. "Charge-exchange emission and cold clumps in multiphase galactic outflows." Monthly Notices of the Royal Astronomical Society 491, no. 4 (2019): 5621–35. http://dx.doi.org/10.1093/mnras/stz3301.

Full text
Abstract:
ABSTRACT Large-scale outflows from starburst galaxies are multiphase, multicomponent fluids. Charge-exchange lines that originate from the interfacing surface between the neutral and ionized components are a useful diagnostic of the cold dense structures in the galactic outflow. From the charge-exchange lines observed in the nearby starburst galaxy M82, we conduct surface-to-volume analyses and deduce that the cold dense clumps in its galactic outflow have flattened shapes, resembling a hamburger or a pancake morphology rather than elongated shapes. The observed filamentary H α features are th
APA, Harvard, Vancouver, ISO, and other styles
3

Fluetsch, A., R. Maiolino, S. Carniani, et al. "Properties of the multiphase outflows in local (ultra)luminous infrared galaxies." Monthly Notices of the Royal Astronomical Society 505, no. 4 (2021): 5753–83. http://dx.doi.org/10.1093/mnras/stab1666.

Full text
Abstract:
ABSTRACT Galactic outflows are known to consist of several gas phases; however, the connection between these phases has been investigated little and only in a few objects. In this paper, we analyse Multi Unit Spectroscopic Explorer (MUSE)/Very Large Telescope (VLT) data of 26 local (U)LIRGs and study their ionized and neutral atomic phases. We also include objects from the literature to obtain a sample of 31 galaxies with spatially resolved multiphase outflow information. We find that the ionized phase of the outflows has on average an electron density three times higher than the disc (ne,disc
APA, Harvard, Vancouver, ISO, and other styles
4

Mao, Junjie. "Density diagnostics of photoionized outflows in active galactic nuclei." Proceedings of the International Astronomical Union 15, S350 (2019): 274–77. http://dx.doi.org/10.1017/s1743921319007750.

Full text
Abstract:
AbstractPhotoionized outflows in active galactic nuclei (AGNs) are thought to influence their circumnuclear and host galactic environment. However, the distance of the outflow with respect to the black hole is poorly constrained, which limits our understanding of the kinetic power by the outflow. Therefore, the impact of AGN outflows on their host galaxies is uncertain. If the density of the outflow is known, its distance can be derived. Density measurement via variability studies and density sensitive lines have been used, albeit not very effective in the X-ray band. Good measurements are rat
APA, Harvard, Vancouver, ISO, and other styles
5

Ishibashi, W., A. C. Fabian, and N. Arakawa. "AGN-driven galactic outflows: comparing models to observations." Monthly Notices of the Royal Astronomical Society 502, no. 3 (2021): 3638–45. http://dx.doi.org/10.1093/mnras/stab266.

Full text
Abstract:
ABSTRACT The actual mechanism(s) powering galactic outflows in active galactic nuclei (AGNs) is still a matter of debate. At least two physical models have been considered in the literature: wind shocks and radiation pressure on dust. Here, we provide a first quantitative comparison of the AGN radiative feedback scenario with observations of galactic outflows. We directly compare our radiation pressure-driven shell models with the observational data from the most recent compilation of molecular outflows on galactic scales. We show that the observed dynamics and energetics of galactic outflows
APA, Harvard, Vancouver, ISO, and other styles
6

Tokuda, Kazuki, Sarolta Zahorecz, Yuri Kunitoshi, et al. "The First Detection of a Protostellar CO Outflow in the Small Magellanic Cloud with ALMA." Astrophysical Journal Letters 936, no. 1 (2022): L6. http://dx.doi.org/10.3847/2041-8213/ac81c1.

Full text
Abstract:
Abstract Protostellar outflows are one of the most outstanding features of star formation. Observational studies over the last several decades have successfully demonstrated that outflows are ubiquitously associated with low- and high-mass protostars in solar-metallicity Galactic conditions. However, the environmental dependence of protostellar outflow properties is still poorly understood, particularly in the low-metallicity regime. Here we report the first detection of a molecular outflow in the Small Magellanic Cloud with 0.2 Z ⊙, using Atacama Large Millimeter/submillimeter Array observati
APA, Harvard, Vancouver, ISO, and other styles
7

Mitchell, Peter D., Joop Schaye, Richard G. Bower, and Robert A. Crain. "Galactic outflow rates in the EAGLE simulations." Monthly Notices of the Royal Astronomical Society 494, no. 3 (2020): 3971–97. http://dx.doi.org/10.1093/mnras/staa938.

Full text
Abstract:
ABSTRACT We present measurements of galactic outflow rates from the eagle suite of cosmological simulations. We find that gas is removed from the interstellar medium (ISM) of central galaxies with a dimensionless mass loading factor that scales approximately with circular velocity as $V_{\mathrm{c}}^{-3/2}$ in the low-mass regime where stellar feedback dominates. Feedback from active galactic nuclei causes an upturn in the mass loading for halo masses ${\gt}10^{12} \, \mathrm{M_\odot }$. We find that more gas outflows through the halo virial radius than is removed from the ISM of galaxies, par
APA, Harvard, Vancouver, ISO, and other styles
8

Takasao, Shinsuke, Yuri Shuto, and Keiichi Wada. "Spontaneous Formation of Outflows Powered by Rotating Magnetized Accretion Flows in a Galactic Center." Astrophysical Journal 926, no. 1 (2022): 50. http://dx.doi.org/10.3847/1538-4357/ac38a8.

Full text
Abstract:
Abstract We investigate how magnetically driven outflows are powered by a rotating, weakly magnetized accretion flow onto a supermassive black hole using axisymmetric magnetohydrodynamic simulations. Our proposed model focuses on the accretion dynamics on an intermediate scale between the Schwarzschild radius and the galactic scale, which is ∼1–100 pc. We demonstrate that a rotating disk formed on a parsec-scale acquires poloidal magnetic fields via accretion, and this produces an asymmetric bipolar outflow at some point. The formation of the outflow was found to follow the growth of strongly
APA, Harvard, Vancouver, ISO, and other styles
9

Barai, Paramita. "How to Simulate Galactic Outflows?" Proceedings of the International Astronomical Union 10, S309 (2014): 300–301. http://dx.doi.org/10.1017/s1743921314009971.

Full text
Abstract:
AbstractA challenge in cosmological simulations is to formulate a physical model of star-formation (SF) and supernovae (SN) feedback which produces galactic outflows like that widely observed. In several models an outflow velocity (vout) and mass loading factor (η) are input to the sub-resolution recipe. We present results from our MUPPI model, which uses local properties of gas, and is able to develop galactic outflows whose properties correlate with global galaxy properties, consistent with observations; demonstrating a significant improvement in such work.
APA, Harvard, Vancouver, ISO, and other styles
10

Avery, Charlotte R., Stijn Wuyts, Natascha M. Förster Schreiber, et al. "Incidence, scaling relations and physical conditions of ionized gas outflows in MaNGA." Monthly Notices of the Royal Astronomical Society 503, no. 4 (2021): 5134–60. http://dx.doi.org/10.1093/mnras/stab780.

Full text
Abstract:
ABSTRACT In this work, we investigate the strength and impact of ionized gas outflows within z ∼ 0.04 MaNGA galaxies. We find evidence for outflows in 322 galaxies ($12{{\ \rm per\ cent}}$ of the analysed line-emitting sample), 185 of which show evidence for hosting an active galactic nucleus (AGN). Most outflows are centrally concentrated with a spatial extent that scales sublinearly with Re. The incidence of outflows is enhanced at higher masses, central surface densities, and deeper gravitational potentials, as well as at higher star formation rate (SFR) and AGN luminosity. We quantify stro
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!