Academic literature on the topic 'Gallium antimoniure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gallium antimoniure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gallium antimoniure"
Drygaś, Mariusz, Piotr Jeleń, Mirosław M. Bućko, Zbigniew Olejniczak, and Jerzy F. Janik. "Ammonolytical conversion of microcrystalline gallium antimonide GaSb to nanocrystalline gallium nitride GaN: thermodynamics vs. topochemistry." RSC Advances 5, no. 100 (2015): 82576–86. http://dx.doi.org/10.1039/c5ra16868f.
Full textDemishev, S. V. "HOPPING TRANSPORT IN GALLIUM ANTIMONIDE." International Journal of Modern Physics B 08, no. 07 (March 30, 1994): 865–73. http://dx.doi.org/10.1142/s0217979294000403.
Full textConibeer, G. J., Arthur F. W. Willoughby, C. M. Hardingham, and V. K. M. Sharma. "Zinc Diffusion in Gallium Antimonide." Materials Science Forum 143-147 (October 1993): 1427–32. http://dx.doi.org/10.4028/www.scientific.net/msf.143-147.1427.
Full textHeller, M. W., and R. G. Hamerly. "Hole transport in gallium antimonide." Journal of Applied Physics 57, no. 10 (May 15, 1985): 4626–32. http://dx.doi.org/10.1063/1.335372.
Full textMilnes, A. G., and A. Y. Polyakov. "Gallium antimonide device related properties." Solid-State Electronics 36, no. 6 (June 1993): 803–18. http://dx.doi.org/10.1016/0038-1101(93)90002-8.
Full textGubanov, V. A., C. Y. Fong, and C. Boekema. "Magnetic Impurities in Gallium Antimonide." physica status solidi (b) 218, no. 2 (April 2000): 599–613. http://dx.doi.org/10.1002/1521-3951(200004)218:2<599::aid-pssb599>3.0.co;2-j.
Full textPlaza, J. L., P. Hidalgo, J. Piqueras, and E. Diéguez. "Estudio de la incorporación de iones de Er y Nd en galio antimonio crecido por el método Bridgman." Boletín de la Sociedad Española de Cerámica y Vidrio 39, no. 4 (August 30, 2000): 463–67. http://dx.doi.org/10.3989/cyv.2000.v39.i4.799.
Full textSchulz, Stephan, Leonardo Martinez, and Jean L. Ross. "Synthesis and characterisation of gallium antimonide nanoparticles: reaction between tris (trimethylsilyl)antimonide and gallium trichloride." Advanced Materials for Optics and Electronics 6, no. 4 (July 1996): 185–89. http://dx.doi.org/10.1002/(sici)1099-0712(199607)6:4<185::aid-amo237>3.0.co;2-8.
Full textUdayashankar, N. K., and H. L. Bhat. "Growth and characterization of indium antimonide and gallium antimonide crystals." Bulletin of Materials Science 24, no. 5 (October 2001): 445–53. http://dx.doi.org/10.1007/bf02706714.
Full textAkinlami, J. O. "Optical Propertis of Gallium Antimonide GaSb." Research Journal of Physics 8, no. 1 (January 1, 2014): 17–27. http://dx.doi.org/10.3923/rjp.2014.17.27.
Full textDissertations / Theses on the topic "Gallium antimoniure"
Roux, Sophie. "Conversion de fréquence vers les grandes longueurs d'onde dans des guides d'onde en semi-conducteurs à orientation périodique." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT296/document.
Full textThe development of compact and tunable mid-infrared laser sources in the atmospheric transmission windows presents a major interest for several security and defense applications. Quasi-phase-matched parametric sources in guided wave configuration are promising solutions to enhance compactness, because of the reduction in pump power requirements with respect to bulk devices.The first axis of this thesis consists in studying orientation-patterned gallium arsenide (OP-GaAs) waveguides, adapted to fiber laser pumping and to relatively high pump power. The second axis is devoted to the original idea of integrating an antimonide based laser diode with a gallium antimonide (GaSb) frequency converter in a monolithic component. The goal in both cases is to minimize propagation losses in those waveguides to exploit the whole potential of their non-linear properties.This work led to model ambitious low-loss waveguides structures, to develop the technological fabrication steps necessary for OP-semiconductor waveguides manufacturing, and to characterize these components in the mid-infrared. The first buried ridge GaAs waveguide structure has been compared to the ridge one, giving a reduction of a factor three in the propagation losses. Several generations of GaSb waveguides have come forward, with constant losses improvement and reach GaAs state-of-the-art performances. Lastly, multiple solutions have been explored in order to integrate an antimonide-based laser diode with the frequency converter waveguide
Galibert, Jean. "Transport quantique dans des semiconducteurs de type iii-v : effet shubnikov-de haas dans l'antimoniure de gallium, effet magnetophonon dans l'antimoniure d'indium." Toulouse 3, 1987. http://www.theses.fr/1987TOU30286.
Full textGarandet, Jean-Paul. "Etude des phénomènes de transport et des défauts cristallins dans des alliages Ga-Sb et Ga-In-Sb élaborés par la méthode Bridgman." Grenoble INPG, 1989. http://www.theses.fr/1989INPG0058.
Full textSanchez, Dorian. "Étude et conception d’un nouveau système de confinement pour le VCSEL GaSb émettant dans le moyen-infrarouge." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20204/document.
Full textThis thesis deals with study and conception of GaSb-based electrically pumped Vertical Cavity Surface Emitting Lasers (EP-VCSELs) emitting in the mid-infrared range above 2 µm. This VCSELs exhibits suitable characteristics for gas analysis like single-mode emission and a large current tunability without mode-hopping. The objective of this work was to develop such devices. The first part of this work is about properties of the epitaxial stack layers used to form the VCSEL structure. The second parts deal with characteristics and the confinement system to design a single mode cavity. The third part presents manufacturing process which has been set up, like Tunnel Junction (TJ) under-etching, which is an innovate approach on the GaSb system. It allows reducing TJ diameter down to 6 µm, which is a necessary point to demonstrate single-mode operation.The final part of this manuscript presents the characterisations purchased on the under-etched TJ monolithic-VCSELs. Selective under-etching of the TJ allowed the first demonstration of the first single-mode monolithic EP-VCSEL. This device emits around 2.3 µm in continuous regime above room temperature. This device exhibits threshold currents as low as 1.9 mA and operate up to 70°C. The development of bipolar cascaded VCSELs has also allowed increasing the optical power on large diameter multimode, with a maximum output power of 300 µW and 950 µW@20°C for the classic and the bipolar cascaded VCSEL respectively
Quélard, Didier. "Etude par deformation plastique et frottement interieur de la mobilite des dislocations dans gaas et insb non dopes." Toulouse, INSA, 1987. http://www.theses.fr/1987ISAT0003.
Full textMairiaux, Estelle. "Développement d’une nouvelle filière de transistors bipolaires à hétérojonction AlIn(As)Sb/GaInSb en vue applications térahertz." Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10096/document.
Full textThe so-called ABCS (antimonide-based compound semiconductor) materials have a great potential for low power, high speed electronics as they have high electron and hole mobilities and provide a unique opportunity for bandgap engineering. The ternary material GaInSb has specifically recently emerged as a good candidate for the base layer of high performance heterojunction bipolar transistors (HBT). The purpose of this work is to demonstrate the feasibility and potentialities of a new antimonide-based HBT structure using AlIn(As)Sb/GaInSb heterojunctions. The fabrication of devices in this material system represents a new technological approach as compared to the conventional InP/GaInAs or InP/GaAsSb HBTs and has necessitated the development of various processing steps. In this study, we have investigated new selective chemical solutions to expose the base and the subcollector surface, as well as for achieving device isolation. High quality and reliable ohmic contacts has also been explored by investigating the factors that influence the specific contact resistivity, thermal stability, and shallowness of the ohmic contacts to n- and p-GaInSb. The fabricated devices demonstrated good microwave behaviour with a current gain cutoff frequency fT of 52 GHz and a maximum oscillation frequency fMAX of 48 GHz. Electrical analysis based on dc and RF measurements and a small signal equivalent circuit model enabled the determination of the limiting factors that need to be addressed for further improvement
Ma, Shun-kit Martin. "The two gallium vacancy-related defects in undoped gallium antimonide." Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B31319658.
Full textMa, Shun-kit Martin, and 馬信傑. "The two gallium vacancy-related defects in undoped gallium antimonide." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31319658.
Full textSwaminathan, Krishna. "Room-temperature aluminum gallium arsenic antimonide/indium gallium arsenic antimonide heterojunction phototransistors for the 2 micron region." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 83 p, 2009. http://proquest.umi.com/pqdweb?did=1654487611&sid=7&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textConibeer, Gavin John. "Zinc diffusion in tellurium doped gallium antimonide." Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262103.
Full textBook chapters on the topic "Gallium antimoniure"
Adachi, Sadao. "Gallium Antimonide (GaSb)." In Optical Constants of Crystalline and Amorphous Semiconductors, 227–37. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5247-5_23.
Full textFeenstra, R. M., and S. W. Hla. "2.3.9 GaSb, Gallium Antimonide." In Physics of Solid Surfaces, 55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_26.
Full textAdachi, Sadao. "a-Gallium Antimonide (a-GaSb)." In Optical Constants of Crystalline and Amorphous Semiconductors, 698–702. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5247-5_68.
Full textMihalache, A. "Mössbauer Effect in 57Fe-Doped Gallium Antimonide." In IFMBE Proceedings, 47–51. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31866-6_10.
Full textMihalache, A. "Features of Radiative Recombination of Iron-Doped Gallium Antimonide." In IFMBE Proceedings, 29–32. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31866-6_6.
Full textEdwards, David F., and Richard H. White. "Gallium Antimonide (GaSb)." In Handbook of Optical Constants of Solids, 597–606. Elsevier, 1997. http://dx.doi.org/10.1016/b978-012544415-6.50069-8.
Full textEDWARDS, DAVID F., and RICHARD H. WHITE. "Gallium Antimonide (GaSb)." In Handbook of Optical Constants of Solids, 597–606. Elsevier, 1998. http://dx.doi.org/10.1016/b978-0-08-055630-7.50038-9.
Full textVul', A. Ya. "GALLIUM ANTIMONIDE (GaSb)." In Handbook Series on Semiconductor Parameters, 125–46. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789812832078_0006.
Full textVul', A. Ya. "GALLIUM ARSENIDE ANTIMONIDE (GaAs1−xSbx)." In Handbook Series on Semiconductor Parameters, 111–31. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789812832085_0005.
Full textMikhailova, Maya P. "GALLIUM INDIUM ARSENIDE ANTIMONIDE (GaxIn1−xASySb1−y)." In Handbook Series on Semiconductor Parameters, 180–205. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789812832085_0008.
Full textConference papers on the topic "Gallium antimoniure"
Ahmetoglu (Afrailov), Muhitdin, Igor A. Andreev, Ekaterina V. Kunitsyna, Maya P. Mikhailova, Yury P. Yakovlev, and Kadir Erturk. "Gallium Antimonide-Based Photodiodes and Thermophotovoltaic Devices." In SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733229.
Full textMartin, Diego, Alejandro Datas, Victoria Corregidor, and Carlos Algora. "Thermophotovoltaic Systems based on Gallium Antimonide Infrared Cells." In 2007 Spanish Conference on Electron Devices. IEEE, 2007. http://dx.doi.org/10.1109/sced.2007.384048.
Full textAn, Ning, Guojun Liu, Zhipeng Wei, Rui Deng, Xuan Fang, Xian Gao, Yonggang Zou, Mei Li, and Xiaohui Ma. "Study on neutral sulphur passivation of gallium antimonide surface." In 2012 International Conference on Optoelectronics and Microelectronics (ICOM). IEEE, 2012. http://dx.doi.org/10.1109/icoom.2012.6316207.
Full textFlint, James P., Gordon Dallas, and Annette Bollaert. "Production manufacturing of 5" diameter gallium antimonide substrates (Conference Presentation)." In Infrared Technology and Applications XLIII, edited by Gabor F. Fulop, Charles M. Hanson, Paul R. Norton, Bjørn F. Andresen, and John L. Miller. SPIE, 2017. http://dx.doi.org/10.1117/12.2266271.
Full textGruenbaum, P. E., M. S. Kuryla, and V. S. Sundaram. "Technical and economic issues for gallium antimonide based thermophotovoltaic systems." In The first NREL conference on thermophotovoltaic generation of electricity. AIP, 1995. http://dx.doi.org/10.1063/1.47045.
Full textBhattacharya, Indranil, and Simon Y. Foo. "Effects of Gallium-Phosphide and Indium-Gallium-Antimonide semiconductor materials on photon absorption of multijunction solar cells." In SOUTHEASTCON 2010. IEEE, 2010. http://dx.doi.org/10.1109/secon.2010.5453863.
Full textFraas, L., Huang Han Xiang, J. Samaras, R. Ballantyne, D. Williams, S. Hui, and L. Ferguson. "Hydrocarbon fired thermophotovoltaic generator prototypes using low bandgap gallium antimonide cells." In Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996. IEEE, 1996. http://dx.doi.org/10.1109/pvsc.1996.563963.
Full textFraas, Lewis, James Avery, Russ Ballantyne, Paul Custard, Luke Ferguson, Huang Han Xiang, Jason Keyes, Bill Mulligan, John Samaras, and Doug Williams. "2-Amp TPV cogenerator using forced-air cooled gallium antimonide cells." In THERMOPHOTOVOLTAIC GENERATION OF ELECTRICITY. ASCE, 1997. http://dx.doi.org/10.1063/1.53275.
Full textBhattacharya, Indranil, and Simon Y. Foo. "Indium phosphide, indium-gallium-arsenide and indium-gallium-antimonide based high efficiency multijunction photovoltaics for solar energy harvesting." In 2009 1st Asia Symposium on Quality Electronic Design (ASQED 2009). IEEE, 2009. http://dx.doi.org/10.1109/asqed.2009.5206262.
Full textSuliza, Wan Emlin, Wan Abd Rashid, Md Zaini Jamaludin, Nazaruddin Abdul Rahman, Mansur Mohammed Ali Gamel, Hui Jing Lee, and Pin Jern Ker. "Gallium Antimonide Thermophotovoltaic: Simulation and Electrical Characterization Under Different Spectral Filtration Wavelengths." In 2020 IEEE 8th International Conference on Photonics (ICP). IEEE, 2020. http://dx.doi.org/10.1109/icp46580.2020.9206487.
Full textReports on the topic "Gallium antimoniure"
Nicols, Samuel Piers. Self- and zinc diffusion in gallium antimonide. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/795370.
Full textTsaur, S. C. Czochralski growth of gallium indium antimonide alloy crystals. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/329561.
Full textG. Rajagopalan, N.S. Reddy, E. Ehsani, I.B. Bhat, P.S. Dutta, R.J. Gutmann, G. Nichols, G.W. Charache, and O. Sulima. A Simple Single Step diffusion and Emitter Etching Process for High Efficiency Gallium Antimonide Thermophotovoltaic Devices. Office of Scientific and Technical Information (OSTI), August 2003. http://dx.doi.org/10.2172/820719.
Full text