Academic literature on the topic 'Gallium selenides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gallium selenides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gallium selenides"

1

Katerynchuk, V. M. "Excitonic photoconductivity of heterostructures based on gallium and indium selenides." Functional materials 24, no. 2 (June 22, 2017): 005–205. http://dx.doi.org/10.15407/fm24.02.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lukyanyuk, V. K., and Z. D. Kovalyuk. "Sodium Intercalation into Indium and Gallium Selenides." Physica Status Solidi (a) 102, no. 1 (July 16, 1987): K1—K5. http://dx.doi.org/10.1002/pssa.2211020148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ewing, Sarah J., and Paz Vaqueiro. "Synthesis and Characterization of Inorganic–Organic Hybrid Gallium Selenides." Inorganic Chemistry 53, no. 17 (August 12, 2014): 8845–47. http://dx.doi.org/10.1021/ic5011314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Balitskii, О. A., and N. M. Polishchuk. "Electrochemical Investigation of Hydrogen Influence on GaSe–PbSe System." Фізика і хімія твердого тіла 17, no. 4 (December 15, 2016): 527–32. http://dx.doi.org/10.15330/pcss.17.4.527-532.

Full text
Abstract:
It has been investigated the electrochemical characteristics of gallium and lead selenides, depending on electrolyte type with and without the presence of solar irradiation. During the sunlight irradiation polarization takes place at the low values of current density and more positive value of potentials in comparison with the result obtained in darkness.
APA, Harvard, Vancouver, ISO, and other styles
5

Balyts'kyi, O. O. "Degradation and Fracture of Crystals of Gallium and Indium Selenides." Materials Science 39, no. 4 (July 2003): 561–65. http://dx.doi.org/10.1023/b:masc.0000010935.25675.e8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lukyanyuk, V. K., S. P. Voronyuk, and Z. D. Kovalyuk. "Alkali-Metal-Intercalated Indium and Gallium Selenides Non-Monotonous Shift of Exciton Lines." physica status solidi (b) 155, no. 2 (October 1, 1989): 717–22. http://dx.doi.org/10.1002/pssb.2221550243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Amiraslanov, Imamaddin R., Kamala K. Azizova, Zakir A. Jahangirli, Sajara A. Nabieva, Faik M. Mammadov, Yegana R. Aliyeva, Mahire Kh Aliyeva, and Ziya S. Aliev. "Synthesis and characterization of new indium gallium selenides of the InSe-GaSe system." Journal of Solid State Chemistry 304 (December 2021): 122569. http://dx.doi.org/10.1016/j.jssc.2021.122569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Tao, Xianhui Bu, Xiang Zhao, Ripsime Khazhakyan, and Pingyun Feng. "Phase Selection and Site-Selective Distribution by Tin and Sulfur in Supertetrahedral Zinc Gallium Selenides." Journal of the American Chemical Society 133, no. 24 (June 22, 2011): 9616–25. http://dx.doi.org/10.1021/ja203143q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seeburrun, N., I. A. Alswaidan, H. K. Fun, E. F. Archibong, and P. Ramasami. "A comparative ab initio study to investigate the rich structural variety and electronic properties of GamTen (m = 1, 2 and n = 1–4) with analogous oxides, sulfides and selenides." RSC Advances 5, no. 83 (2015): 68076–84. http://dx.doi.org/10.1039/c5ra07594g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ferrer, Ch, A. Segura, M. V. Andrés, V. Muñoz, and J. Pellicer. "The application of the photoacoustic transmittance oscillations for determining elastic constants in gallium and indium selenides." Journal of Applied Physics 79, no. 6 (March 15, 1996): 3200–3204. http://dx.doi.org/10.1063/1.361219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Gallium selenides"

1

Kamada, Rui. "Copper(indium,gallium)selenide film formation from selenization of mixed metal/metal-selenide precursors." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 226 p, 2009. http://proquest.umi.com/pqdweb?did=1654501631&sid=4&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ohta, Taisuke. "Heteroepitaxy of gallium-selenide on Si(100) and (111) : new silicon-compatible semiconductor thin films for nano structure formation /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/10592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Telfer, Samantha Anne. "Fundamental study of growth of (Zn,Cd)Se on GaAs (211)B from hetero-interface to nanostructures." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mohammed, Abdullahi. "Optical and structural characterisation of low dimensional structures using electron beam excitation systems." Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

O'Donnell, Cormac Brendan. "MBE growth and characterisation of ZnSe-based II-VI semiconductors." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Findlay, Peter Charles. "Free electron laser spectroscopy of narrow gap semiconductors." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Piccioli, Norbert. "Constantes optiques du seleniure de gallium : variation avec la temperature et bistabilite optique induite par effet thermique." Paris 6, 1987. http://www.theses.fr/1987PA066196.

Full text
Abstract:
Verification du modele d'elliot pour le cas d'une transition directe avec interaction electron-trou. Le modele a ete modifie pour tenir compte de l'anisotropie et de l'interaction avec les vibrations du reseau. L'analyse, effectuee entre 2 et 500 k, a permis de suivre l'evolution des parametres excitoniques et de la structure de bande avec la temperature. La forme des raies excitoniques avec lorentzienne asymetrique a ete predite. A partir de la, la nature de l'exciton direct et de l'interaction exciton-phonon ont pu etre deduites
APA, Harvard, Vancouver, ISO, and other styles
8

Heath, Jennifer Theresa. "Electronic transitions in the bandgap of copper indium gallium diselenide polycrystalline thin films /." view abstract or download file of text, 2002. http://wwwlib.umi.com/cr/uoregon/fullcit?p3072587.

Full text
Abstract:
Thesis (Ph. D.)--University of Oregon, 2002.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 143-148). Also available for download via the World Wide Web; free to University of Oregon users.
APA, Harvard, Vancouver, ISO, and other styles
9

Jehl, Zacharie. "Realization of ultrathin Copper Indium Gallium Di-selenide (CIGSe) solar cells." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112058/document.

Full text
Abstract:
Nous étudions la possibilité de réaliser des cellules à base de diséléniure de cuivre, indium et gallium (CIGSe) à absorbeur ultra-mince, en réduisant l’épaisseur de la couche de CIGSe de 2500 nm jusqu’à 100 nm, tout en conservant un haut rendement de conversion.Grâce à l’utilisation d’outils de simulation numérique, nous étudions l’influence de la réduction d’épaisseur de l’absorbeur sur les paramètres photovoltaïques de la cellule. Une importante dégradation du rendement est observée, principalement attribuée à une réduction de la fraction de lumière absorbée par le CIGSe ainsi qu’à une collecte des porteurs de charge réduite dans les dispositifs ultraminces. Des solutions permettant de surmonter ces problèmes sont proposées et leur influence potentielle est numériquement simulée ; nous démontrons qu’une ingénierie de face avant (couche tampon alternative, couche anti-réfléchissante…) et de face arrière (contact arrière réfléchissant, diffusion de la lumière) sur une cellule CIGSe à absorbeur ultramince permet de potentiellement améliorer le rendement de la cellule solaire au niveau de celui d’une cellule à absorbeur référence (2.5 μm).Grâce à l’utilisation de techniques de gravure chimique sur des échantillons standards de CIGSe épais, nous réalisons des cellules solaires avec différentes épaisseurs d’absorbeurs, et nous étudions l’influence de l’épaisseur du CIGSe sur les paramètres photovoltaïques des cellules. Le comportement similaire aux simulations numériques.Une ingénierie du contact avant sur des cellules CIGSe à différentes épaisseurs est réalisée pour spécifiquement améliorer l’absorption dans la couche de CIGSe. Nous étudions l’influence d’une couche tampon alternative de ZnS, de la texturation de la fenêtre avant de ZnO:Al, et d’une couche anti-reflet sur la cellule solaire. D’importantes améliorations sont observées quelque soit l’épaisseur de la couche de CIGSe, ce qui permet d’obtenir des rendements de conversions supérieurs à ceux obtenus dans la configuration standard des dispositifs.Une ingénierie du contact arrière à basse température est également réalisée avec l’utilisation d’un procédé novateur combinant la gravure chimique du CIGSe avec un « lift-off » mécanique de la couche de CIGSe afin de la séparer du substrat de Molybdène. De nouveaux matériaux fortement réflecteur de lumière et précédemment incompatible avec le procédé de croissance du CIGSe sont utilisés comme contact arrière pour des cellules CIGSe ultra-minces. Une étude comparative en fonction de l’épaisseur de CIGSe entre des cellules avec contact arrière réfléchissant en Or (Au) et cellules solaires avec contact arrière standard Mo est effectuée. Le contact Au permet d’augmenter significativement le rendement de conversion des cellules solaires à absorbeur sub-microniques comparé au contact standard Mo avec un rendement de conversion supérieur à 10% obtenu sur une cellule CIGSe de 400 nm (comparé à 7.9% avec Mo).Afin de réduire encore plus l’épaisseur de la couche de CIGSe, jusque 100-200 nm, les modèles numériques montrent qu’il est nécessaire d’utiliser un réflecteur lambertien sur la face arrière de la cellule afin de maximiser l’absorption de la lumière. Un dispositif preuve de concept expérimental est réalisé avec une épaisseur de CIGSe de 200 nm et un réflecteur arrière lambertien, et ce dispositif est caractérisé par spectroscopie de transmission/réflexion. La réponse spectrale est déterminée en combinant des valeurs issues de simulation numérique et la mesure expérimental de l’absorption du dispositif. Nous calculons un courant de court circuit de 26 mA.cm-2 pour ce dispositif avec réflecteur lambertien, bien supérieur à ce qui est calculé pour la même structure sans réflecteur (15 mA.cm-2), et comparable au courant mesuré sur une cellule de référence de 2500 nm (28 mA.cm-2). L’utilisation de réflecteur lambertien pour des cellules CIGSe ultraminces est donc particulièrement adaptée pour maintenir de hauts rendements
In this thesis, we investigate on the possibility to realize ultrathin absorber Copper Indium Gallium Di-Selenide (CIGSe) solar cells, by reducing the CIGSe thickness from 2500 nm down to 100 nm, while conserving a high conversion efficiency.Using numerical modeling, we first study the evolution of the photovoltaic parameters when reducing the absorber thickness. A strong decrease of the efficiency of the solar cell is observed, mainly related to a reduced light absorption and carrier collection for thin and ultrathin CIGSe solar cells. Solutions to overcome these problems are proposed and the potential improvements are modeled; we show that front side (buffer layer, antireflection coating) and back side (reflective back contact, light scattering) engineering of an ultrathin device can potentially increase the conversion efficiency up to the level of a standard thick CIGSe solar cell.By using chemical bromine etching on a standard thick CIGSe layer, we realize solar cells with different absorber thicknesses and experimentally study the influence of the absorber thickness on the photovoltaic parameters of the devices. Experiments show a similar trends to that observed in numerical modeling.Front contact engineering on thin CIGSe solar cell is realized to increase the specific absorption in CIGSe, including alternative ZnS buffer, front ZnO:Al window texturation and anti-reflection coating. Substantial improvements are observed whatever the CIGSe thickness, with efficiencies higher that the default configuration.A back contact engineering at low temperature is realized by using an innovative approach combining chemical etching of the CIGSe and mechanical lift-off of the CIGSe from the original Molybdenum (Mo) substrate. New highly reflective materials previously incompatible with the standard solar cell process are used as back contact for thin and ultrathin CIGSe solar cells, and a comparative study between standard Mo back contact and alternative reflective Au back contact solar cells is performed. The Au back reflector significantly enhance the efficiency of solar cell with sub-micrometer absorbers compared to the standard Mo back reflector; an efficiency higher than 10 % on a 400 nm CIGSe is obtained with Au back contact (7.9% with standard Mo back contact). For further reduction of the absorber thickness down to 100-200 nm, numerical modeling show that a lambertian back reflector is needed to fully absorb the incident light in the CIGSe. An experimental proof of concept device with a CIGSe thickness of 200 nm and a lambertian back reflector is realized and characterized by reflection/transmission spectroscopy, and the experimental spectral response is determined by combining simulation and experimentally measured absorption. A short circuit current of 26 mA.cm-2 is determined with the lambertian back reflector, which is much higher than what is obtained for the same device with no reflector (15 mA.cm-2), and comparable to the short circuit current measured on a reference 2500 nm thick CIGSe solar cell (28 mA.cm-2). Lambertian back reflectors are therefore found to be the most effective way to enhance the efficiency of an ultrathin CIGSe solar cell up to the level of a reference thick CIGSe solar cell
APA, Harvard, Vancouver, ISO, and other styles
10

Berretil, Slimane. "Proprietes electroniques des semi-conducteurs magnetiques gamo : :(4)s::(8), gamo::(4)se::(8), gamo::(4)se::(4)te::(4) et ganb::(4)s::(8)." Paris 6, 1987. http://www.theses.fr/1987PA066262.

Full text
Abstract:
Etudes effectuees en vue de preciser la nature des electrons qui participent ala conduction et au magnetisme de ces composes. Les composes, caracterises par la presence d'amas tetraedriques des ions metalliques mo et nb dans les bas etats d'oxydation, revelent des proprietes de magnetisme itinerant repondant au modele de stoner-wohlfarth avec les densites d'etats les plus elevees observees dans des composes intermetalliques 3d ou 4d. La rpe a confirme que les raies observees correspondant aux ions metalliques dans un etat s = 3/2 (ions mo**(3+) et nb**(3+)); leur elargissement est d'origine dipolaire retrecie par echange et les valeurs des integrales d'echange obtenues sont en bon accord avec celles obtenues a partir des temperatures de curie
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Gallium selenides"

1

Huber, Daniel Anthony. The investigation of ZnSe buffer layers for reduction of defects in heteroepitaxial growth of GaAs on silicon. 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Gallium selenides"

1

Jie, Wenjing, and Jianhua Hao. "Two-Dimensional Layered Gallium Selenide: Preparation, Properties, and Applications." In Advanced 2D Materials, 1–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119242635.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Choi, Yong Gyu. "EXAFS Analyses on Local Structure of Gallium in Amorphous Selenide Optical Materials Doped with Rare Earths." In Solid State Phenomena, 1665–68. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.1665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Edwards, David F. "Gallium Selenide (GaSe)." In Handbook of Optical Constants of Solids, 473–87. Elsevier, 1997. http://dx.doi.org/10.1016/b978-012544415-6.50113-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Artús, Luis. "Silver Gallium Selenide (AgGaSe2) Silver Gallium Sulfide (AgGaS2)." In Handbook of Optical Constants of Solids, 573–93. Elsevier, 1997. http://dx.doi.org/10.1016/b978-012544415-6.50120-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

ARTUS, L. "Silver Gallium Selenide (AgGaSe2) Silver Gallium Sulfide (AgGaS2)." In Handbook of Optical Constants of Solids, 573–93. Elsevier, 1997. http://dx.doi.org/10.1016/b978-012544415-6/50120-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Yang. "Copper Indium Gallium Selenide Thin Film Solar Cells." In Nanostructured Solar Cells. InTech, 2017. http://dx.doi.org/10.5772/65291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eldada, Louay. "Nanostructured Copper Indium Gallium Selenide for Thin-Film Photovoltaics." In VLSI Micro- and Nanophotonics, 18‚Äì1–18‚Äì16. CRC Press, 2010. http://dx.doi.org/10.1201/b10371-29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ZIMIN, S. P., D. A. MOKROV, E. S. GORLACHEV, I. I. AMIROV, V. V. NAUMOV, V. F. GREMENOK, and S. A. BASHKIROV. "A NEW APPROACH TO NANOSTRUCTURING OF COPPER INDIUM GALLIUM SELENIDE FILMS USING ARGON PLASMA SPUTTERING." In Physics, Chemistry and Applications of Nanostructures, 388–90. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814696524_0095.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Gallium selenides"

1

Eckardt, R. C., Y. X. Fan, Robert L, M. E. Storm, Charles L. Marquardt, and Leon Esterowitz. "Tunable infrared optical parametric oscillator using silver gallium selenide." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1986. http://dx.doi.org/10.1364/cleo.1986.mh2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vittoe, Robert L., Tung Ho, Sudhir Shrestha, Mangilal Agarwal, and Kody Varahramyan. "All Solution-Based Fabrication of CIGS Solar Cell." In ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1239.

Full text
Abstract:
This paper presents fabrication of copper indium gallium di-selenide (CIGS) solar cells using all solution-based deposition processes. CIGS nanoparticles were synthesized through multi-step chemical process using copper chloride, indium chloride, gallium chloride, and selenium in oleyamine. CIGS thin films were constructed through layer-by-layer (LbL) self-assembly and spray-coating techniques. Chemical-bath-deposition and spray-coating methods were used for cadmium sulfide and zinc oxide film depositions, respectively. Initial thin film solar cell devices exhibited promising 0.3 mA short circuit current and 200 mV open circuit voltage. The solar cells fabricated through the all solution-based processes are cost-effective, thus, have potentials of providing a viable, renewable and sustainable energy source. The proposed processes can further be realized on flexible substrates, which may broaden the applications range for the solar cells.
APA, Harvard, Vancouver, ISO, and other styles
3

Hibberd, C. J., M. Ganchev, M. Kaelin, K. Ernits, and A. N. Tiwari. "Incorporation of copper into indium gallium selenide layers from solution." In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lu, Dingyuan, Baosheng Sang, Yuepeng Deng, Billy J. Stanbery, and Louay Eldada. "Copper Indium Gallium Selenide photovoltaic modules manufactured by reactive transfer." In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5615983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rashid Ullah, Muhammad, Aimal Daud Khan, and Javed Iqbal. "Optimization of Efficient Copper-Indium-Gallium Di-Selenide Solar Cell." In 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). IEEE, 2019. http://dx.doi.org/10.1109/icecce47252.2019.8940744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alhasson, Bader, Yashar Hajiyev, and Mohammad Matin. "Temperature and field effects on reflectivity of gallium selenide surface." In Optical Engineering + Applications, edited by Abdul A. S. Awwal, Khan M. Iftekharuddin, and Bahram Javidi. SPIE, 2008. http://dx.doi.org/10.1117/12.796681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sang, B., F. Adurodija, M. Taylor, A. Lim, J. Taylor, Y. Chang, S. McWilliams, et al. "Low cost copper indium gallium selenide by the FASST® process." In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Islam, Arnob, Jaesung Lee, and Philip X. L. Feng. "Gallium selenide (GaSe)-molybdenum disulfide (MOS2) van der Waals heterojunction diodes." In 2017 75th Device Research Conference (DRC). IEEE, 2017. http://dx.doi.org/10.1109/drc.2017.7999419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Biswas, Rabindra, Suman Chatterjee, Jayanta Deka, M. Advaitha, Kausik Majumdar, and Varun Raghunathan. "Enhanced Second Harmonic Generation from a Dielectric Encapsulated Multilayer Gallium Selenide." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_at.2021.jw1a.126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kadam, Ankur A., and Neelkanth G. Dhere. "Structural Comparison of CIGSS Thin Film Absorber Layer Fabricated on SS and Ti Substrates." In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76178.

Full text
Abstract:
Copper indium gallium selenide sulfide, CuIn1−xGaxSe2−ySy (CIGSS) absorber layer was prepared on stainless steel (SS) and SiO2-coated titanium substrates. Comparative study was carried out to analyze the variation in the crystal quality depending on the substrate. Identical parameters were used for deposition and selenization/sulfurization of metallic precursors. This paper presents the observations made on the basis of surface morphology using scanning electron microscopy, crystal quality by x-ray diffraction and chemical composition and concentration-depth profiles by x-ray energy dispersive spectroscopy and Auger electron spectroscopy respectively. Film fabricated on both the substrate had chalcopyrite structure with variation of stoichiometry as well as morphology. Selenization/sulfurization cycle must be modified depending upon the substrate to obtain high quality CIGSS film.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Gallium selenides"

1

Katzman, Daniel B. Design and Optimization of Copper Indium Gallium Selenide Thin Film Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ad1009063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography