Academic literature on the topic 'Gallium selenides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gallium selenides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gallium selenides"
Katerynchuk, V. M. "Excitonic photoconductivity of heterostructures based on gallium and indium selenides." Functional materials 24, no. 2 (June 22, 2017): 005–205. http://dx.doi.org/10.15407/fm24.02.203.
Full textLukyanyuk, V. K., and Z. D. Kovalyuk. "Sodium Intercalation into Indium and Gallium Selenides." Physica Status Solidi (a) 102, no. 1 (July 16, 1987): K1—K5. http://dx.doi.org/10.1002/pssa.2211020148.
Full textEwing, Sarah J., and Paz Vaqueiro. "Synthesis and Characterization of Inorganic–Organic Hybrid Gallium Selenides." Inorganic Chemistry 53, no. 17 (August 12, 2014): 8845–47. http://dx.doi.org/10.1021/ic5011314.
Full textBalitskii, О. A., and N. M. Polishchuk. "Electrochemical Investigation of Hydrogen Influence on GaSe–PbSe System." Фізика і хімія твердого тіла 17, no. 4 (December 15, 2016): 527–32. http://dx.doi.org/10.15330/pcss.17.4.527-532.
Full textBalyts'kyi, O. O. "Degradation and Fracture of Crystals of Gallium and Indium Selenides." Materials Science 39, no. 4 (July 2003): 561–65. http://dx.doi.org/10.1023/b:masc.0000010935.25675.e8.
Full textLukyanyuk, V. K., S. P. Voronyuk, and Z. D. Kovalyuk. "Alkali-Metal-Intercalated Indium and Gallium Selenides Non-Monotonous Shift of Exciton Lines." physica status solidi (b) 155, no. 2 (October 1, 1989): 717–22. http://dx.doi.org/10.1002/pssb.2221550243.
Full textAmiraslanov, Imamaddin R., Kamala K. Azizova, Zakir A. Jahangirli, Sajara A. Nabieva, Faik M. Mammadov, Yegana R. Aliyeva, Mahire Kh Aliyeva, and Ziya S. Aliev. "Synthesis and characterization of new indium gallium selenides of the InSe-GaSe system." Journal of Solid State Chemistry 304 (December 2021): 122569. http://dx.doi.org/10.1016/j.jssc.2021.122569.
Full textWu, Tao, Xianhui Bu, Xiang Zhao, Ripsime Khazhakyan, and Pingyun Feng. "Phase Selection and Site-Selective Distribution by Tin and Sulfur in Supertetrahedral Zinc Gallium Selenides." Journal of the American Chemical Society 133, no. 24 (June 22, 2011): 9616–25. http://dx.doi.org/10.1021/ja203143q.
Full textSeeburrun, N., I. A. Alswaidan, H. K. Fun, E. F. Archibong, and P. Ramasami. "A comparative ab initio study to investigate the rich structural variety and electronic properties of GamTen (m = 1, 2 and n = 1–4) with analogous oxides, sulfides and selenides." RSC Advances 5, no. 83 (2015): 68076–84. http://dx.doi.org/10.1039/c5ra07594g.
Full textFerrer, Ch, A. Segura, M. V. Andrés, V. Muñoz, and J. Pellicer. "The application of the photoacoustic transmittance oscillations for determining elastic constants in gallium and indium selenides." Journal of Applied Physics 79, no. 6 (March 15, 1996): 3200–3204. http://dx.doi.org/10.1063/1.361219.
Full textDissertations / Theses on the topic "Gallium selenides"
Kamada, Rui. "Copper(indium,gallium)selenide film formation from selenization of mixed metal/metal-selenide precursors." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 226 p, 2009. http://proquest.umi.com/pqdweb?did=1654501631&sid=4&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textOhta, Taisuke. "Heteroepitaxy of gallium-selenide on Si(100) and (111) : new silicon-compatible semiconductor thin films for nano structure formation /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/10592.
Full textTelfer, Samantha Anne. "Fundamental study of growth of (Zn,Cd)Se on GaAs (211)B from hetero-interface to nanostructures." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/515.
Full textMohammed, Abdullahi. "Optical and structural characterisation of low dimensional structures using electron beam excitation systems." Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367049.
Full textO'Donnell, Cormac Brendan. "MBE growth and characterisation of ZnSe-based II-VI semiconductors." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/524.
Full textFindlay, Peter Charles. "Free electron laser spectroscopy of narrow gap semiconductors." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/528.
Full textPiccioli, Norbert. "Constantes optiques du seleniure de gallium : variation avec la temperature et bistabilite optique induite par effet thermique." Paris 6, 1987. http://www.theses.fr/1987PA066196.
Full textHeath, Jennifer Theresa. "Electronic transitions in the bandgap of copper indium gallium diselenide polycrystalline thin films /." view abstract or download file of text, 2002. http://wwwlib.umi.com/cr/uoregon/fullcit?p3072587.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 143-148). Also available for download via the World Wide Web; free to University of Oregon users.
Jehl, Zacharie. "Realization of ultrathin Copper Indium Gallium Di-selenide (CIGSe) solar cells." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112058/document.
Full textIn this thesis, we investigate on the possibility to realize ultrathin absorber Copper Indium Gallium Di-Selenide (CIGSe) solar cells, by reducing the CIGSe thickness from 2500 nm down to 100 nm, while conserving a high conversion efficiency.Using numerical modeling, we first study the evolution of the photovoltaic parameters when reducing the absorber thickness. A strong decrease of the efficiency of the solar cell is observed, mainly related to a reduced light absorption and carrier collection for thin and ultrathin CIGSe solar cells. Solutions to overcome these problems are proposed and the potential improvements are modeled; we show that front side (buffer layer, antireflection coating) and back side (reflective back contact, light scattering) engineering of an ultrathin device can potentially increase the conversion efficiency up to the level of a standard thick CIGSe solar cell.By using chemical bromine etching on a standard thick CIGSe layer, we realize solar cells with different absorber thicknesses and experimentally study the influence of the absorber thickness on the photovoltaic parameters of the devices. Experiments show a similar trends to that observed in numerical modeling.Front contact engineering on thin CIGSe solar cell is realized to increase the specific absorption in CIGSe, including alternative ZnS buffer, front ZnO:Al window texturation and anti-reflection coating. Substantial improvements are observed whatever the CIGSe thickness, with efficiencies higher that the default configuration.A back contact engineering at low temperature is realized by using an innovative approach combining chemical etching of the CIGSe and mechanical lift-off of the CIGSe from the original Molybdenum (Mo) substrate. New highly reflective materials previously incompatible with the standard solar cell process are used as back contact for thin and ultrathin CIGSe solar cells, and a comparative study between standard Mo back contact and alternative reflective Au back contact solar cells is performed. The Au back reflector significantly enhance the efficiency of solar cell with sub-micrometer absorbers compared to the standard Mo back reflector; an efficiency higher than 10 % on a 400 nm CIGSe is obtained with Au back contact (7.9% with standard Mo back contact). For further reduction of the absorber thickness down to 100-200 nm, numerical modeling show that a lambertian back reflector is needed to fully absorb the incident light in the CIGSe. An experimental proof of concept device with a CIGSe thickness of 200 nm and a lambertian back reflector is realized and characterized by reflection/transmission spectroscopy, and the experimental spectral response is determined by combining simulation and experimentally measured absorption. A short circuit current of 26 mA.cm-2 is determined with the lambertian back reflector, which is much higher than what is obtained for the same device with no reflector (15 mA.cm-2), and comparable to the short circuit current measured on a reference 2500 nm thick CIGSe solar cell (28 mA.cm-2). Lambertian back reflectors are therefore found to be the most effective way to enhance the efficiency of an ultrathin CIGSe solar cell up to the level of a reference thick CIGSe solar cell
Berretil, Slimane. "Proprietes electroniques des semi-conducteurs magnetiques gamo : :(4)s::(8), gamo::(4)se::(8), gamo::(4)se::(4)te::(4) et ganb::(4)s::(8)." Paris 6, 1987. http://www.theses.fr/1987PA066262.
Full textBooks on the topic "Gallium selenides"
Huber, Daniel Anthony. The investigation of ZnSe buffer layers for reduction of defects in heteroepitaxial growth of GaAs on silicon. 1992.
Find full textBook chapters on the topic "Gallium selenides"
Jie, Wenjing, and Jianhua Hao. "Two-Dimensional Layered Gallium Selenide: Preparation, Properties, and Applications." In Advanced 2D Materials, 1–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119242635.ch1.
Full textChoi, Yong Gyu. "EXAFS Analyses on Local Structure of Gallium in Amorphous Selenide Optical Materials Doped with Rare Earths." In Solid State Phenomena, 1665–68. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.1665.
Full textEdwards, David F. "Gallium Selenide (GaSe)." In Handbook of Optical Constants of Solids, 473–87. Elsevier, 1997. http://dx.doi.org/10.1016/b978-012544415-6.50113-8.
Full textArtús, Luis. "Silver Gallium Selenide (AgGaSe2) Silver Gallium Sulfide (AgGaS2)." In Handbook of Optical Constants of Solids, 573–93. Elsevier, 1997. http://dx.doi.org/10.1016/b978-012544415-6.50120-5.
Full textARTUS, L. "Silver Gallium Selenide (AgGaSe2) Silver Gallium Sulfide (AgGaS2)." In Handbook of Optical Constants of Solids, 573–93. Elsevier, 1997. http://dx.doi.org/10.1016/b978-012544415-6/50120-5.
Full textTang, Yang. "Copper Indium Gallium Selenide Thin Film Solar Cells." In Nanostructured Solar Cells. InTech, 2017. http://dx.doi.org/10.5772/65291.
Full textEldada, Louay. "Nanostructured Copper Indium Gallium Selenide for Thin-Film Photovoltaics." In VLSI Micro- and Nanophotonics, 18‚Äì1–18‚Äì16. CRC Press, 2010. http://dx.doi.org/10.1201/b10371-29.
Full textZIMIN, S. P., D. A. MOKROV, E. S. GORLACHEV, I. I. AMIROV, V. V. NAUMOV, V. F. GREMENOK, and S. A. BASHKIROV. "A NEW APPROACH TO NANOSTRUCTURING OF COPPER INDIUM GALLIUM SELENIDE FILMS USING ARGON PLASMA SPUTTERING." In Physics, Chemistry and Applications of Nanostructures, 388–90. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814696524_0095.
Full textConference papers on the topic "Gallium selenides"
Eckardt, R. C., Y. X. Fan, Robert L, M. E. Storm, Charles L. Marquardt, and Leon Esterowitz. "Tunable infrared optical parametric oscillator using silver gallium selenide." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1986. http://dx.doi.org/10.1364/cleo.1986.mh2.
Full textVittoe, Robert L., Tung Ho, Sudhir Shrestha, Mangilal Agarwal, and Kody Varahramyan. "All Solution-Based Fabrication of CIGS Solar Cell." In ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1239.
Full textHibberd, C. J., M. Ganchev, M. Kaelin, K. Ernits, and A. N. Tiwari. "Incorporation of copper into indium gallium selenide layers from solution." In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922885.
Full textLu, Dingyuan, Baosheng Sang, Yuepeng Deng, Billy J. Stanbery, and Louay Eldada. "Copper Indium Gallium Selenide photovoltaic modules manufactured by reactive transfer." In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5615983.
Full textRashid Ullah, Muhammad, Aimal Daud Khan, and Javed Iqbal. "Optimization of Efficient Copper-Indium-Gallium Di-Selenide Solar Cell." In 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). IEEE, 2019. http://dx.doi.org/10.1109/icecce47252.2019.8940744.
Full textAlhasson, Bader, Yashar Hajiyev, and Mohammad Matin. "Temperature and field effects on reflectivity of gallium selenide surface." In Optical Engineering + Applications, edited by Abdul A. S. Awwal, Khan M. Iftekharuddin, and Bahram Javidi. SPIE, 2008. http://dx.doi.org/10.1117/12.796681.
Full textSang, B., F. Adurodija, M. Taylor, A. Lim, J. Taylor, Y. Chang, S. McWilliams, et al. "Low cost copper indium gallium selenide by the FASST® process." In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922495.
Full textIslam, Arnob, Jaesung Lee, and Philip X. L. Feng. "Gallium selenide (GaSe)-molybdenum disulfide (MOS2) van der Waals heterojunction diodes." In 2017 75th Device Research Conference (DRC). IEEE, 2017. http://dx.doi.org/10.1109/drc.2017.7999419.
Full textBiswas, Rabindra, Suman Chatterjee, Jayanta Deka, M. Advaitha, Kausik Majumdar, and Varun Raghunathan. "Enhanced Second Harmonic Generation from a Dielectric Encapsulated Multilayer Gallium Selenide." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_at.2021.jw1a.126.
Full textKadam, Ankur A., and Neelkanth G. Dhere. "Structural Comparison of CIGSS Thin Film Absorber Layer Fabricated on SS and Ti Substrates." In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76178.
Full textReports on the topic "Gallium selenides"
Katzman, Daniel B. Design and Optimization of Copper Indium Gallium Selenide Thin Film Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ad1009063.
Full text