To see the other types of publications on this topic, follow the link: Gamma-ray spectrometry.

Journal articles on the topic 'Gamma-ray spectrometry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Gamma-ray spectrometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Skinner, G. K. "Practical gamma-ray spectrometry." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 52, no. 3 (1996): 379. http://dx.doi.org/10.1016/s0584-8539(96)90113-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lépy, M. C., A. Pearce, and O. Sima. "Uncertainties in gamma-ray spectrometry." Metrologia 52, no. 3 (2015): S123—S145. http://dx.doi.org/10.1088/0026-1394/52/3/s123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ARAKI, Harumi, and Kuniro SUGIURA. "Airborne Gamma-Ray Spectrometry(II)." Journal of the Japan society of photogrammetry and remote sensing 32, no. 2 (1993): 25–37. http://dx.doi.org/10.4287/jsprs.32.2_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

ARAKI, Harumi, and Kuniro SUGIURA. "Airborne Gamma-Ray Spectrometry. (I)." Journal of the Japan society of photogrammetry and remote sensing 32, no. 1 (1993): 36–43. http://dx.doi.org/10.4287/jsprs.32.36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brodzinski, R. L. "Low-level gamma-ray spectrometry." Journal of Physics G: Nuclear and Particle Physics 17, S (1991): S403—S413. http://dx.doi.org/10.1088/0954-3899/17/s/041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jacob, P., K. Debertin, K. Miller, J. Roed, K. Saito, and D. Sanderson. "4. Airborne Gamma-Ray Spectrometry." Journal of the International Commission on Radiation Units and Measurements os27, no. 2 (1994): 28–40. http://dx.doi.org/10.1093/jicru/os27.2.28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jacob, P., K. Debertin, K. Miller, J. Roed, K. Saito, and D. Sanderson. "4. Airborne Gamma-Ray Spectrometry." Reports of the International Commission on Radiation Units and Measurements os-27, no. 2 (1994): 28–40. http://dx.doi.org/10.1093/jicru_os27.2.28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Glavič-Cindro, D., and M. Korun. "Traceability in gamma-ray spectrometry." Applied Radiation and Isotopes 68, no. 7-8 (2010): 1196–99. http://dx.doi.org/10.1016/j.apradiso.2009.11.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Szentmiklósi, L., T. Belgya, G. L. Molnár, and Zs Révay. "Time resolved gamma-ray spectrometry." Journal of Radioanalytical and Nuclear Chemistry 271, no. 2 (2007): 439–45. http://dx.doi.org/10.1007/s10967-007-0228-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Islam, M. N., and H. Akhter. "Study of FPGA Based Multi-Channel Analyzer for Gamma-Ray and X-Ray Spectrometry." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (2019): 61–65. http://dx.doi.org/10.31142/ijtsrd19113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Le, Vuong Quang, Nguyen Hoang Vo, Chuong Dinh Huynh, Phuc Minh Lau, Thanh Thien Tran, and Tao Van Chau. "Study of the minimum detectable activity in gamma-ray spectrometry with various shielding configurations." Science and Technology Development Journal - Natural Sciences 1, T4 (2017): 56–62. http://dx.doi.org/10.32508/stdjns.v1it4.496.

Full text
Abstract:
In the environmental radioactivity analyzing methods using gamma-ray spectrometry, the natural activities of radionuclides were required to be higher than the minimum detectable activity (MDA). To reduce MDA, one of the popular methods is to improve the ability of reducing the background radiation of the gamma-ray spectrometry. In this work, we designed the shielding configuration with 5 cm lead and 2 mm copper (thickness of walls and top). The MDAs of gamma-ray spectrometer were 2.6–4.24 times times for 40K (1460.8 keV), 232Th (208Tl- 2614.5 keV) and 238U (214Pb- 352 keV; 214Bi- 609.3 keV, 21
APA, Harvard, Vancouver, ISO, and other styles
12

Shives, Robert B. K., B. W. Charbonneau, and K. L. Ford. "The detection of potassic alteration by gamma‐ray spectrometry—Recognition of alteration related to mineralization." GEOPHYSICS 65, no. 6 (2000): 2001–11. http://dx.doi.org/10.1190/1.1444884.

Full text
Abstract:
Canadian case histories document the use of airborne and ground gamma‐ray spectrometry to detect and map potassium alteration associated with different styles of mineralization. These include: volcanic‐hosted massive sulfides (Cu‐Pb‐Zn), Pilley’s Island, Newfoundland; polymetallic, magmatic‐hydrothermal deposits (Au‐Co‐Cu‐Bi‐W‐As), Lou Lake, Northwest Territories; and porphyry Cu‐Au‐(Mo) deposits at Mt. Milligan, British Columbia and Casino, Yukon Territory. Mineralization in two of these areas was discovered using airborne gamma‐ray spectrometry. In each case history, alteration produces pota
APA, Harvard, Vancouver, ISO, and other styles
13

SHIGEMATSU, Tsunenobu, and Shiro GODA. "Neutron irradiation-prompt .GAMMA. ray spectrometry." RADIOISOTOPES 35, no. 4 (1986): 215–23. http://dx.doi.org/10.3769/radioisotopes.35.4_215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jacob, P., K. Debertin, K. Miller, J. Roed, K. Saito, and D. Sanderson. "3. Ground-Level Gamma-Ray Spectrometry." Journal of the International Commission on Radiation Units and Measurements os27, no. 2 (1994): 15–27. http://dx.doi.org/10.1093/jicru/os27.2.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jacob, P., K. Debertin, K. Miller, J. Roed, K. Saito, and D. Sanderson. "3. Ground-Level Gamma-Ray Spectrometry." Reports of the International Commission on Radiation Units and Measurements os-27, no. 2 (1994): 15–27. http://dx.doi.org/10.1093/jicru_os27.2.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gehrke, Robert J. "Gamma-ray spectrometry in the environment." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 372, no. 1-2 (1996): 333–34. http://dx.doi.org/10.1016/s0168-9002(96)90004-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Chugunov, I. N., V. G. Kiptily, A. E. Shevelev, and D. B. Gin. "Gamma-Ray Spectrometry of Hot Plasmas." Fusion Science and Technology 59, no. 1T (2011): 176–79. http://dx.doi.org/10.13182/fst11-a11601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Podgorsak, Reviewed by Matthew B. "Gamma-Ray Spectrometry in the Environment." Medical Physics 23, no. 2 (1996): 281. http://dx.doi.org/10.1118/1.597795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Aarnio, P. A., J. J. Ala-Heikkilä, A. Isolankila, et al. "Linssi: Database for gamma-ray spectrometry." Journal of Radioanalytical and Nuclear Chemistry 276, no. 3 (2008): 631–37. http://dx.doi.org/10.1007/s10967-008-0610-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Konki, J., P. T. Greenlees, U. Jakobsson, et al. "Comparison of gamma-ray coincidence and low-background gamma-ray singles spectrometry." Applied Radiation and Isotopes 70, no. 2 (2012): 392–96. http://dx.doi.org/10.1016/j.apradiso.2011.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Skupio, Rafal. "Portable XRF spectrometer with helium flow as a tool for lithological interpretation." Geology, Geophysics and Environment 46, no. 4 (2021): 315–20. http://dx.doi.org/10.7494/geol.2020.46.4.315.

Full text
Abstract:
Portable EDXRF (Energy Dispersive X-Ray Fluorescence) spectrometer with the ability to perform rock tests in a helium atmosphere was applied to prepare unique calibration coefficients and mineralogical models. These data could be used for the chemical profiling, chemostratigraphy, gamma-ray, TOC and lithological interpretation of borehole geological profile. The measurements were conducted on 19 samples of sandstones and compared to the XRF data without helium flow. The acquired dataset was calibrated to the chemical laboratory tests (ICP-MS), gamma-ray spectrometry measurements (RT-50) and co
APA, Harvard, Vancouver, ISO, and other styles
22

Xi, Yongzai, Junjie Liu, Shan Wu, et al. "The Application of Airborne Gamma-Ray Spectrometric Multi-Element Composite Parameters in the Prediction of Uranium Prospecting Areas in Qinling Region, China." Minerals 15, no. 5 (2025): 492. https://doi.org/10.3390/min15050492.

Full text
Abstract:
Progress in the exploration of uranium deposits in the Qinling region is impacted by a number of factors, including extensive forest distribution, large-scale terrain segmentation, and hidden ore bodies. Airborne gamma-ray spectrometry measurement is a direct method for uranium exploration, with data containing rich uranium mineralization information. In addition to surface mineralization information, such measurements also contain some information on deep uranium mineralization. Based on the geological characteristics of a specific area in the Qinling region, conventional data processing meth
APA, Harvard, Vancouver, ISO, and other styles
23

Materna, T., A. Letourneau, Ch Amouroux, et al. "Fission studies by prompt gamma-ray spectrometry." EPJ Web of Conferences 93 (2015): 02020. http://dx.doi.org/10.1051/epjconf/20159302020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Minty, Brian. "Accurate Noise Reduction for Gamma-Ray Spectrometry." ASEG Extended Abstracts 2003, no. 2 (2003): 1. http://dx.doi.org/10.1071/aseg2003ab110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Shebell, P., S. Faller, M. Monetti, et al. "AN IN SITU GAMMA-RAY SPECTROMETRY INTERCOMPARISON." Health Physics 85, no. 6 (2003): 662–77. http://dx.doi.org/10.1097/00004032-200312000-00012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Jacob, P., K. Debertin, K. Miller, J. Roed, K. Saito, and D. Sanderson. "2. Basic Principles of Gamma-Ray Spectrometry." Journal of the International Commission on Radiation Units and Measurements os27, no. 2 (1994): 4–14. http://dx.doi.org/10.1093/jicru/os27.2.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Jacob, P., K. Debertin, K. Miller, J. Roed, K. Saito, and D. Sanderson. "2. Basic Principles of Gamma-Ray Spectrometry." Reports of the International Commission on Radiation Units and Measurements os-27, no. 2 (1994): 4–14. http://dx.doi.org/10.1093/jicru_os27.2.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Plastino, Wolfango, Pierino De Felice, and Francesco de Notaristefani. "Radon gamma-ray spectrometry with YAP:Ce scintillator." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 486, no. 1-2 (2002): 146–49. http://dx.doi.org/10.1016/s0168-9002(02)00692-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ehmann, William D. "Books: A Manual on Gamma-Ray Spectrometry." Analytical Chemistry 68, no. 1 (1996): 42A—43A. http://dx.doi.org/10.1021/ac9618076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Glavič-Cindro, D., B. Vodenik, M. Korun, and R. Martinčič. "Quality control of gamma-ray spectrometry measurements." Applied Radiation and Isotopes 52, no. 3 (2000): 765–70. http://dx.doi.org/10.1016/s0969-8043(99)00242-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Raghuwanshi, S. S. "Airborne gamma-ray spectrometry in uranium exploration." Advances in Space Research 12, no. 7 (1992): 77–86. http://dx.doi.org/10.1016/0273-1177(92)90200-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Minty, Brian R. S., Phil McFadden, and Brian L. N. Kennett. "Multichannel processing for airborne gamma‐ray spectrometry." GEOPHYSICS 63, no. 6 (1998): 1971–85. http://dx.doi.org/10.1190/1.1444491.

Full text
Abstract:
The conventional approach to the processing of airborne gamma‐ray spectrometric data is to first sum the observed spectra over three relatively broad energy windows. These three window count rates are then processed to obtain estimates of the potassium (K), uranium (U), and thorium (Th) elemental abundances. However, multichannel spectra contain additional information on the concentrations of K, U, and Th in the source, on the distance between the source and the detector, and on the relative contribution of atmospheric radon to the observed spectrum. This information can be extracted using mul
APA, Harvard, Vancouver, ISO, and other styles
33

Aage, H. K., U. Korsbech, K. Bargholz, and J. Hovgaard. "Carborne gamma-ray spectrometry. Calibration and applications." Applied Radiation and Isotopes 64, no. 8 (2006): 948–56. http://dx.doi.org/10.1016/j.apradiso.2006.03.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Espinosa, G. "Instrumentation for X- and gamma-ray spectrometry." Journal of Radioanalytical and Nuclear Chemistry 264, no. 1 (2005): 107–11. http://dx.doi.org/10.1007/s10967-005-0682-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Berlizov, A. N., and V. V. Tryshyn. "Software for X- and gamma-ray spectrometry." Journal of Radioanalytical and Nuclear Chemistry 264, no. 1 (2005): 169–74. http://dx.doi.org/10.1007/s10967-005-0690-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Krnác, Š., P. Povinec, and P. Ragan. "Response operator in semiconductor gamma-ray spectrometry." Journal of Radioanalytical and Nuclear Chemistry Articles 209, no. 2 (1996): 367–71. http://dx.doi.org/10.1007/bf02040473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lutter, G., M. Hult, G. Marissens, H. Stroh, and F. Tzika. "A gamma-ray spectrometry analysis software environment." Applied Radiation and Isotopes 134 (April 2018): 200–204. http://dx.doi.org/10.1016/j.apradiso.2017.06.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Korun, M. "Self-attenuation factors in gamma-ray spectrometry." Czechoslovak Journal of Physics 49, S1 (1999): 429–34. http://dx.doi.org/10.1007/s10582-999-0057-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Englert, Peter A. J. "Planetary gamma ray spectrometry: remote sensing of elemental abundances." Proceedings in Radiochemistry 1, no. 1 (2011): 349–55. http://dx.doi.org/10.1524/rcpr.2011.0062.

Full text
Abstract:
Abstract Planetary gamma ray spectrometry is a form of nuclear spectroscopy applied remotely to provide geochemical maps of planetary bodies. From early developments it has by now become a standard modality of planetary exploration. Basic and applied nuclear science has made significant contributions to the advancement of planetary gamma ray spectrometry, as outlined in this methodological and historical assessment.
APA, Harvard, Vancouver, ISO, and other styles
40

Gu, Yi, Wenzhao Lin, Liangquan Ge, Shengqing Xiong, Rukuan Xie, and Hao Wang. "Electron-positron annihilation ray deduction for airborne gamma-ray spectrometry." Radiation Physics and Chemistry 173 (August 2020): 108916. http://dx.doi.org/10.1016/j.radphyschem.2020.108916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Altfelder, Sven, Benedikt Preugschat, Milan Matos, et al. "Upscaling ground-based backpack gamma-ray spectrometry to spatial resolution of UAV-based gamma-ray spectrometry for system validation." Journal of Environmental Radioactivity 273 (March 2024): 107382. http://dx.doi.org/10.1016/j.jenvrad.2024.107382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ebibuloami, Biere, Ogunremi Ayorinde, Aina Oluwagbenga, Emumejaye Kugbere, Olaoye Adeola, and Mustapha Olalekan. "Detection Efficiency of a NaI (Tl) Gamma Spectrometry System for Measurement of Low Level Radioactivity." Physics Access 01, no. 01 (2021): 61–65. http://dx.doi.org/10.47514/phyaccess.2021.1.1.010.

Full text
Abstract:
Qualitative analysis of radionuclides requires the use of reliable gamma-ray detection system. The NaI(Tl) detector has been widely used and still one of the most used detectors today. It is therefore imperative to validate the reliability of the 5x5 cm2 NaI(Tl) gamma spectrometry system used in carrying out gamma-ray analysis of soil samples in the Radiation and Health Laboratory, Federal University of Agriculture Abeokuta, Nigeria. The gamma ray spectrometer is housed in a 5 cm thick cylindrical lead shield. Calibration was executed using standard materials produced under the auspices of the
APA, Harvard, Vancouver, ISO, and other styles
43

Biere, P. E., J. O. Aina, M. O. Olaoye, and A. O. Mustapha. "Calibration of a 5x5 NaI(Tl) for Prompt In-Situ Gamma-ray Spectrometry System." Materials and Geoenvironment 68, no. 1 (2021): 1–5. http://dx.doi.org/10.2478/rmzmag-2021-0001.

Full text
Abstract:
Abstract in English It is important to determine the presence of different radionuclides in the environment at all times in order to control and assess the risk level they pose to the environment. Laboratory and in-situ gamma-ray spectrometry can be used for detecting, monitoring, and assessing levels of radioactivity and radiation dose rates in the environment due to both natural and artificial sources. In this study, the greatest challenge in the calibration of detectors for in-situ gamma spectrometry has been solved. Calibration factors that can be used to convert the net count rates of col
APA, Harvard, Vancouver, ISO, and other styles
44

Olasehinde, A., R. P. Tabale, J. Barka, et al. "Assessing mineral potential of the Riruwai Complex, Nigeria, using gamma-ray spectrometry: Implications for mineral exploration and development." Dutse Journal of Pure and Applied Sciences 10, no. 4a (2025): 96–108. https://doi.org/10.4314/dujopas.v10i4a.10.

Full text
Abstract:
Nigeria's aspiration to develop a competitive mineral sector that generates wealth and enhances social and human security can be realized through the effective discovery of more mineral resources. This study assesses the mineral potential of the Riruwai Complex using gamma-ray spectrometry data. The findings illustrate the effectiveness of gamma-ray spectrometric signatures in identifying changes linked to hydrothermal Nb-Ta-Sn mineralization, uncovering distinct spectral patterns of radioelement zoning that align with mineralogical variations within the granitic pluton. Reductions in K/Th and
APA, Harvard, Vancouver, ISO, and other styles
45

Testov, D., J. J. Valiente-Dobon, D. Mengoni, et al. "High resolution gamma-ray spectrometry using GALILEO array." Eurasian Journal of Physics and Functional Materials 3, no. 1 (2019): 84–90. http://dx.doi.org/10.29317/ejpfm.2019030111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Druker, Eugene. "Processing of Airborne Gamma-Ray Spectrometry using Inversions." ASEG Extended Abstracts 2016, no. 1 (2016): 1–8. http://dx.doi.org/10.1071/aseg2016ab147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Minty, Brian. "Accurate noise reduction for airborne gamma-ray spectrometry." Exploration Geophysics 34, no. 3 (2003): 207–15. http://dx.doi.org/10.1071/eg03207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hult, Mikael. "Low-level gamma-ray spectrometry using Ge-detectors." Metrologia 44, no. 4 (2007): S87—S94. http://dx.doi.org/10.1088/0026-1394/44/4/s12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hult, M. "Low-level gamma-ray spectrometry using Ge-detectors." Metrologia 44, no. 5 (2007): 425. http://dx.doi.org/10.1088/0026-1394/44/5/c01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Venkataraman, Ramkumar, and Stephen Croft. "Determination of plutonium mass using gamma-ray spectrometry." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 505, no. 1-2 (2003): 527–30. http://dx.doi.org/10.1016/s0168-9002(03)01138-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!