Contents
Academic literature on the topic 'GAMYB transcription factor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GAMYB transcription factor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "GAMYB transcription factor"
Ko, Swee-Suak, Min-Jeng Li, Yi-Cheng Ho, Chun-Ping Yu, Ting-Ting Yang, Yi-Jyun Lin, Hung-Chien Hsing, et al. "Rice transcription factor GAMYB modulates bHLH142 and is homeostatically regulated by TDR during anther tapetal and pollen development." Journal of Experimental Botany 72, no. 13 (May 3, 2021): 4888–903. http://dx.doi.org/10.1093/jxb/erab190.
Full textHarris, Lauren J., Sarah A. Martinez, Benjamin R. Keyser, William E. Dyer, and Russell R. Johnson. "Functional analysis of TaABF1 during abscisic acid and gibberellin signalling in aleurone cells of cereal grains." Seed Science Research 23, no. 2 (April 8, 2013): 89–98. http://dx.doi.org/10.1017/s0960258513000081.
Full textHou, Hualan, Changwei Zhang, and Xilin Hou. "Cloning and Functional Analysis of BcMYB101 Gene Involved in Leaf Development in Pak Choi (Brassica rapa ssp. Chinensis)." International Journal of Molecular Sciences 21, no. 8 (April 15, 2020): 2750. http://dx.doi.org/10.3390/ijms21082750.
Full textGubler, F., R. J. Watts, R. Kalla, P. Matthews, M. Keys, and J. V. Jacobsen. "Cloning of a Rice cDNA Encoding a Transcription Factor Homologous to Barley GAMyb." Plant and Cell Physiology 38, no. 3 (January 1, 1997): 362–65. http://dx.doi.org/10.1093/oxfordjournals.pcp.a029175.
Full textAkkaya, Mahinur S., Gulay Gok Dagdas, and Yasin F. Dagdas. "In planta determination of GaMyb transcription factor as a target of pathogen induced microRNA, mir159." Current Opinion in Biotechnology 22 (September 2011): S47. http://dx.doi.org/10.1016/j.copbio.2011.05.121.
Full textOh, Sung‐Aeong, Thuong Nguyen Thi Hoai, Hyo‐Jin Park, Mingmin Zhao, David Twell, David Honys, and Soon‐Ki Park. "MYB81, a microspore‐specific GAMYB transcription factor, promotes pollen mitosis I and cell lineage formation in Arabidopsis." Plant Journal 101, no. 3 (November 18, 2019): 590–603. http://dx.doi.org/10.1111/tpj.14564.
Full textDiaz, Isabel, Jesus Vicente-Carbajosa, Zamira Abraham, Manuel Martinez, Ines Isabel-La Moneda, and Pilar Carbonero. "The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development." Plant Journal 29, no. 4 (February 2002): 453–64. http://dx.doi.org/10.1046/j.0960-7412.2001.01230.x.
Full textHaseneyer, Grit, Catherine Ravel, Mireille Dardevet, François Balfourier, Pierre Sourdille, Gilles Charmet, Dominique Brunel, et al. "High level of conservation between genes coding for the GAMYB transcription factor in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) collections." Theoretical and Applied Genetics 117, no. 3 (May 17, 2008): 321–31. http://dx.doi.org/10.1007/s00122-008-0777-4.
Full textMillar, Anthony A., Allan Lohe, and Gigi Wong. "Biology and Function of miR159 in Plants." Plants 8, no. 8 (July 30, 2019): 255. http://dx.doi.org/10.3390/plants8080255.
Full textWoodger, Fiona J., Anthony Millar, Fiona Murray, John V. Jacobsen, and Frank Gubler. "The Role of GAMYB Transcription Factors in GA-Regulated Gene Expression." Journal of Plant Growth Regulation 22, no. 2 (June 1, 2003): 176–84. http://dx.doi.org/10.1007/s00344-003-0025-8.
Full textDissertations / Theses on the topic "GAMYB transcription factor"
Silva, Filho Antônio Manoel da. "Potencialização da germinação e crescimento inicial de arroz vermelho inoculado com Gluconacetobacter diazotrophicus." Universidade Estadual da Paraíba, 2016. http://tede.bc.uepb.edu.br/tede/jspui/handle/tede/2406.
Full textApproved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-25T19:29:57Z (GMT) No. of bitstreams: 1 PDF - Antônio Manoel da Silva Filho.pdf: 1626282 bytes, checksum: 35f4f3bebdefb1abb1e520955b76a0e8 (MD5)
Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-25T19:32:57Z (GMT) No. of bitstreams: 1 PDF - Antônio Manoel da Silva Filho.pdf: 1626282 bytes, checksum: 35f4f3bebdefb1abb1e520955b76a0e8 (MD5)
Made available in DSpace on 2016-07-25T19:32:58Z (GMT). No. of bitstreams: 1 PDF - Antônio Manoel da Silva Filho.pdf: 1626282 bytes, checksum: 35f4f3bebdefb1abb1e520955b76a0e8 (MD5) Previous issue date: 2016-02-18
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The utilization of Gluconacetobacter diazotrophicus in agriculture has shown promise in optimization morphophysiological aspects, biochemical and yield of plants. The culture of red rice (Oryza sativa L.) presents great socioeconomic and environmental importance in the semi- arid northeast. The production of this culture still suffers by the not full use of appropriate technologies, due to scarcity of studies and development of technologies. Given the above, the objective of this study was to evaluate the potential effect of G. diazotrophicus on germination and initial growth of red rice.The experiment was conducted in a completely randomized design, with six treatments (SNE-seeds not soaked in water, SE H2O-seeds soaked in water for 24 hours, SE H2O + GA3 seed soaked in gibberellic acid solution for 24 hours, SE H2O + GD-seeds soaked in water for 24 + G. diazotrophicus, SE H2O + GA3 + GD-seeds soaked in gibberellic acid solution for 24 hours + G. diazotrophicus and SNE + GD-seeds not soaked in water + G. diazotrophicus) with six replicates.The concentration of gibberellic acid (GA3) used was 50 mg -1 L . Evaluated were the aspects physiological, biochemical, molecular and initial growth of red rice seedlings. Data were submitted to analysis of variance, mean test and Pearson correlation. Treatments significant effect on the growth variables, physiological, biochemical and molecular.It was verified that treatment with non-imbibed seeds inoculated with G. diazotrophicus promote increase of 28.7; 41.7; 28.7; 49.5; 69.6; 48.5; 61.5; 38.5; 46; 97; 86 and 89% for the variables: germination, germination speed index, first count, root length, shoot length, total fresh mass, total dry mass of α-amylase activity, activ acid phosphatase, expression GAMYB transcription factor, α-amylase and S-adenosyl-L-methionine (SAM) synthase, respectively, in relation to the treatment of seeds not soaked in water and not inoculated.It was concluded that the inoculation with G. diazotrophicus red rice seeds enhances the speed of germination and seedling germination, root length, shoot length, and acid phosphatase activities of α-amylase, total fresh mass, total dry mass, GAMYB expression of the transcription factor, α- amylase expression and SAM. Therefore presents great potential agronomic and biotechnology for use as growth promoter in the red rice crop, increasing the germination and early growth independently of seed imbibition.
A utilização de Gluconacetobacter diazotrophicus na agricultura tem-se mostrado promissora na otimização de aspectos morfofisiológicos, bioquímicos e rendimento das plantas. Acultura do arroz vermelho(Oryza sativa L.) apresenta grande importância socioeconômica e ambiental no semiárido nordestino. Aprodução dessa cultura ainda padece pela não utilização plena de tecnologias apropriadas, devido a escassez de estudos e desenvolvimento de tecnologias. Diante do exposto, objetivou-se com este trabalho avaliar o efeito potencial da G. diazotrophicussobre a germinação e crescimento inicialde arroz vermelho. O experimento foi realizado emdelineamento inteiramente casualisado, constando de seis tratamentos (SNE-sementes não embebidas em água, SE H2O-sementes embebidas em água por 24h, SE H2O + GA3-sementes embebidas em solução de ácido giberélicopor 24h, SE H2O + GD-sementes embebidas em água por 24h + G. diazotrophicus, SE H2O + GA3 +GD-sementes embebidas em solução de ácido giberélicopor 24h + G. diazotrophicuse SNE + GD-sementes não embebidas em água + G. diazotrophicus), com seis repetições. A concentração da solução de ácido giberélico (GA3) usada -1 foi de 50 mg L . Avaliaram-se os aspectos fisiológicos, bioquímicos, moleculares e de crescimento inicial das plântulas de arroz vermelho. Os dados foram submetidos à análise de variância, teste de médias e correlação de Pearson. Os tratamentos exerceram efeito significativo sobre as variáveis de crescimento, fisiológicas,bioquímicas e moleculares. Registrou-se que o tratamento com sementes não embebidas e inoculadas com G. diazotrophicuspromoveram incrementos de 28,7; 41,7; 28,7; 49,5; 69,6; 48,5; 61,5; 38,5; 46; 97; 86 e 89% para as variáveis: germinação, índice de velocidade de germinação, primeira contagem de germinação, comprimento radicular, comprimento da parte aérea, massa fresca total, massa seca total, atividade da α-amilase, ativida da fosfatase ácida, expressão do fator de transcrição GAMYB, α- amilase e S-adenosil-L-metionina (SAM) sintetase, respectivamente, em relação ao tratamento das sementes não embebidas em água e não inoculadas. Concluiu-se que a inoculação de G. diazotrophicus em sementes de arroz vermelho aumenta a velocidade de germinação e germinação das plântulas, comprimento radicular, comprimento da parte aérea, atividade s da fosfatase ácida e α-amilase, massa fresca total, massa seca total, a expressão do fator de transcrição GAMYB, expressão de α-amilase e SAM.Portanto apresenta grande potencial agronômico e biotecnológico para aplicação como promotora de crescimento na cultura do arroz vermelho, incrementando a germinação e crescimento inicial de modo independente de embebição das sementes.