Academic literature on the topic 'Ganglion spiral'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ganglion spiral.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ganglion spiral"
Cho, Chang Hyun. "Survival of Spiral Ganglion." Korean Journal of Otorhinolaryngology-Head and Neck Surgery 52, no. 11 (2009): 869. http://dx.doi.org/10.3342/kjorl-hns.2009.52.11.869.
Full textAnniko, M., W. Arnold, T. Stigbrand, and A. Ström. "The Human Spiral Ganglion." ORL 57, no. 2 (1995): 68–77. http://dx.doi.org/10.1159/000276714.
Full textWhitlon, Donna S. "Introduction: Spiral ganglion neurons." Hearing Research 278, no. 1-2 (August 2011): 1. http://dx.doi.org/10.1016/j.heares.2011.06.005.
Full textXu, Helen, Natasha Pollak, Sebahattin Cureoglu, and Michael M. Paparella. "S240 – Human Cochlear Implant Histopathology." Otolaryngology–Head and Neck Surgery 139, no. 2_suppl (August 2008): P155. http://dx.doi.org/10.1016/j.otohns.2008.05.415.
Full textAriyasu, Laurence, Frank R. Galey, Raymond Hilsinger, and Frederick M. Byl. "Computer-Generated Three-Dimensional Reconstruction of the Cochlea." Otolaryngology–Head and Neck Surgery 100, no. 2 (February 1989): 87–91. http://dx.doi.org/10.1177/019459988910000201.
Full textKhan, Aayesha M., Ophir Handzel, Donald K. Eddington, Doris Damian, and Joseph B. Nadol. "Effect of Cochlear Implantation on Residual Spiral Ganglion Cell Count as Determined by Comparison with the Contralateral Nonimplanted Inner Ear in Humans." Annals of Otology, Rhinology & Laryngology 114, no. 5 (May 2005): 381–85. http://dx.doi.org/10.1177/000348940511400508.
Full textChiong, Charlotte M., Robert J. Glynn, Wen-Zhuang Xu, and Joseph B. Nadol. "Survival of Scarpa's Ganglion in the Profoundly Deaf Human." Annals of Otology, Rhinology & Laryngology 102, no. 6 (June 1993): 425–28. http://dx.doi.org/10.1177/000348949310200603.
Full textRamku, Emina, Refik Ramku, Dugagjin Spanca, and Valbona Zhjeqi. "Functional Pattern of Increasing Concentrations of Brain-Derived Neurotrophic Factor in Spiral Ganglion: Implications for Research on Cochlear Implants." Open Access Macedonian Journal of Medical Sciences 5, no. 2 (February 27, 2017): 121–25. http://dx.doi.org/10.3889/oamjms.2017.017.
Full textYilmaz-Bayraktar, Suheda, Jana Schwieger, Verena Scheper, Thomas Lenarz, Ulrike Böer, Michaela Kreienmeyer, Mariela Torrente, and Theodor Doll. "Decellularized equine carotid artery layers as matrix for regenerated neurites of spiral ganglion neurons." International Journal of Artificial Organs 43, no. 5 (August 22, 2019): 332–42. http://dx.doi.org/10.1177/0391398819868481.
Full textNadol, Joseph B., Yi-Shyang Young, and Robert J. Glynn. "Survival of Spiral Ganglion Cells in Profound Sensorineural Hearing Loss: Implications for Cochlear Implantation." Annals of Otology, Rhinology & Laryngology 98, no. 6 (June 1989): 411–16. http://dx.doi.org/10.1177/000348948909800602.
Full textDissertations / Theses on the topic "Ganglion spiral"
Tylstedt, Sven. "The Human Spiral Ganglion." Doctoral thesis, Umeå University, Clinical Sciences, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-77.
Full textOur knowledge of the fine structure of the Human Spiral Ganglion (HSG) is still inadequate and new treatment techniques for deafness using electric stimulation, call for further information and studies on the neuronal elements of the human cochlea. This thesis presents results of analyses of human cochlear tissue and specimens obtained during neurosurgical transpetrosal removal of life-threatening meningeomas. The use of surgical biopsies produced a well-preserved material suitable for ultrastructural and immunohistochemical studies on the human inner ear. The SG was studied with respect to fine structure, using TEM technique and the immunostaining pattern of synaptophysin, which is an integral membrane protein of neuronal synaptic vesicles. The immunostaining patterns of the tight junctional protein ZO-1 and the gap junctional proteins Cx26 and Cx43 in the human cochlea were also studied. The ultrastructural morphology revealed an absence of myelination pattern in the HSG, thus differing from that in other species. Furthermore, formation of structural units as well as signs of neural interaction between the type 1 neurons could be observed. Type 1 cells were tightly packed in clusters, sharing the ensheathment of Schwann cells. The cells frequently made direct physical contact in Schwann cell gaps in which membrane specializations appeared. These specializations consisted of symmetrically or asymmetrically distributed filamentous densities along the apposed cell membranes. The same structures were also present between individual unmyelinated nerve fibres and the type 1 cells. Synapses were observed on the type 2 neurons, with nerve fibres originating from the intraganglionic spiral bundle. Such synapses, though rare, were also observed on the type 1 cells. The ultrastructural findings were confirmed by the synaptophysin study. A 3-D model of a Schwann cell gap between two type 1 cells was constructed, describing the distribution pattern of membrane specializations. In the immunohistochemical studies on the human cochlea, ZO-1 was expressed in tissues lining scala media, thus contributing to the formation of a closed compartment system, important for the maintenance of the specific ionic composition of the endolymph. Protein Cx26 could be identified in non-sensory epithelial cells of the organ of Corti, in connective tissue cells of the spiral ligament and spiral limbus, as well as in the basal and intermediate cell layers of stria vascularis. Cx26 in this region may be involved in the recycling of potassium. Protein Cx43 stained weakly in the spiral ligament, but intense staining in the SG may indicate that gap junctions exist between these neurons. A different functional role for the HSG can be assumed from the morphological characteristics and the signs of a neural interaction between the SG cells. This might be relevant for neural processing mechanisms in speech coding and could have implications for cochlear implant techniques.
Bailey, Erin M. "Why do spiral ganglion neurons die after deafening?" Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/4568.
Full textHuang, Jie. "Depolarization-dependent pro-survival signaling in spiral ganglion neurons." Diss., University of Iowa, 2007. https://ir.uiowa.edu/etd/214.
Full textGalindo, Ramon Gustavo. "The effect of neurotrophic factors on spiral ganglion neurons." Thesis, University of Iowa, 2012. https://ir.uiowa.edu/etd/3456.
Full textZabalawi, Hassan A. "Spiral ganglion neurite outgrowth and pathfinding on electrospun microfibrous piezoelectric nanocomposite polymer scaffolds." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10061643/.
Full textBrowne, L. P. "An investigation of lipid modulation of low voltage activated currents in spiral ganglion neurons." Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1477267/.
Full textFryatt, Alistair Gordon. "Investigating voltage-gated sodium channel expression in rat spiral ganglion neurons following noise induced hearing loss." Thesis, University of Leicester, 2010. http://hdl.handle.net/2381/10207.
Full textBertram, Sebastian Johannes [Verfasser], Stefan [Gutachter] Dazert, and Dominik [Gutachter] Brors. "Einfluss von Pleiotrophin auf das Wachstumsverhalten von Spiral Ganglion Neuronen / Sebastian Johannes Bertram ; Gutachter: Stefan Dazert, Dominik Brors ; Medizinische Fakultät." Bochum : Ruhr-Universität Bochum, 2020. http://d-nb.info/1216332975/34.
Full textIshikawa, Masaaki. "Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225472.
Full textSouchal, Marion. "Surdités cachées ; atteinte des cellules sensorielles cochléaires ou du nerf auditif ?" Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAS003/document.
Full textSensorineural hearing loss are classically described by auditory thresholds elevation usually correlated with outer hair cells (OHC) degeneration. However, recent work on animal models has shown that normal audiogram can be associated with peripheral hearing impairments. This thesis contributed to better characterize, in mouse models, these hidden supraliminal deficiencies related on the one hand, with OHC alterations and on the other, to auditory nerve fibers degeneration. In the first part of this thesis, the auditory profiles evolution of mice exhibiting an OHC accelerated degeneration, the CD1-RjOrl: SWISS strain mice, was characterized. In this longitudinal study, conducted in the first postnatal month, a progressivity of the hearing impairment has been observed. However, a surprising discrepancy was found between high frequency hearing thresholds close to normal values associated with missing distortion product otoacoustic emission (DPOAE). The masking tuning curves dips are shifted toward low frequencies. Those data indicate that basal OHC are no longer functional and the perception of high frequencies is disrupted. Observations in scanning electron microscopy revealed an abnormal conformation of the OHC stereocilia bundles at the cochlea base. These results represent an evidence of a disorganized cochlear tonotopy. In the second part of this thesis, the effect of oxaliplatin on the auditory function and on the cochlear morphology was described in adult CBA/J strain mice. Oxaliplatin, a platinum salt used in chemotherapy, has many side effects including development of peripheral neuropathy. Following one treatment with this drug, mice did not present any hearing threshold elevation or OHC function impairment. However, the histological study reveals a surprising degeneration of the spiral ganglion cells. With additional electrophysiological tests, a decrease in the compound action potential amplitude has been demonstrated. The median olivocochlear efferent system reflex, evaluated by a contralateral suppression test, also seems to be diminished by the treatment. The mice treated with oxaliplatin, therefore constitute a precious animal model of hidden deafness, which needs to be better characterized. The results of these studies confirm the audiogram insufficiency to detect subtle cochlea alterations and reveal the need to improve supraliminal deficiencies diagnosis. Thus, hidden OHC impairments can be detected by the absence of DPOAE associated with normal auditory evoked potentials and neuropathies by the presence of DPOAE associated with abnormal auditory evoked potentials. The combination of these functional and electrophysiological tests would allow better management of patients and an improvement in their quality of life.Keywords: hidden hearing loss, CD1 mice, outer hair cells, masking tuning curves, tonotopy, oxaliplatine, spiral
Books on the topic "Ganglion spiral"
Parker, Philip M., and James N. Parker. Ganglions: A medical dictionary, bibliography, and annotated research guide to Internet references. San Diego, CA: ICON Health Publications, 2004.
Find full textQuinn, Sean David Philip. Enhanced neuronal regeneration, by retinoic acid, of murine dorsal root ganglia and of fetal murine and human spinal cord, in vitro. Ottawa: National Library of Canada, 1990.
Find full textKleef, Maarten van. Radiofrequency Lesions of the Dorsal Root Ganglion in the Treatment of Spinal Pain. Universitaire Pers Maasstricht, 1996.
Find full textWong, Stacy N., and Line G. Jacques. Neuropathic Groin Pain. Edited by Meghan E. Lark, Nasa Fujihara, and Kevin C. Chung. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190617127.003.0017.
Full textDiMuro, John M., and Mehul J. Desai. Sympathetic Blockade of the Spine. Edited by Mehul J. Desai. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199350940.003.0030.
Full textMcClenahan, Maureen F., and William Beckman. Pain Management Techniques. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190217518.003.0011.
Full textFiller, Aaron G. Piriformis Syndrome and Other Nerve Entrapments of the Posterior Pelvis. Edited by Meghan E. Lark, Nasa Fujihara, and Kevin C. Chung. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190617127.003.0011.
Full text1925-, Zenker W., and Neuhuber Winfried L, eds. The Primary afferent neuron: A survey of recent morpho-functional aspects. New York: Plenum Press, 1990.
Find full text(Editor), Wolfgang Zenker, and Winfried L. Neuhuber (Editor), eds. The Primary Afferent Neuron: A Survey of Recent Morpho-Functional Aspects. Springer, 1990.
Find full textShah, Chirag D., and Maunak V. Rana. Advances in Dorsal Column Stimulation. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190626761.003.0017.
Full textBook chapters on the topic "Ganglion spiral"
Kangelaris, Gerald T., and Lawrence R. Lustig. "Spiral Ganglion." In Encyclopedia of Otolaryngology, Head and Neck Surgery, 2540. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-23499-6_200090.
Full textWoodson, Erika. "Spiral Ganglion Neuron." In Encyclopedia of Otolaryngology, Head and Neck Surgery, 2540. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-23499-6_200176.
Full textGoodrich, Lisa V. "Early Development of the Spiral Ganglion." In The Primary Auditory Neurons of the Mammalian Cochlea, 11–48. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3031-9_2.
Full textMuniak, Michael A., Catherine J. Connelly, Kirupa Suthakar, Giedre Milinkeviciute, Femi E. Ayeni, and David K. Ryugo. "Central Projections of Spiral Ganglion Neurons." In The Primary Auditory Neurons of the Mammalian Cochlea, 157–90. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3031-9_6.
Full textSekiya, Tetsuji, and Harukazu Hiraumi. "Spiral Ganglion Cell and Auditory Neuron." In Regenerative Medicine for the Inner Ear, 53–59. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54862-1_6.
Full textDavis, Robin L., and Robert A. Crozier. "The Electrophysiological Signature of Spiral Ganglion Neurons." In The Primary Auditory Neurons of the Mammalian Cochlea, 85–116. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3031-9_4.
Full textGreen, Steven H., Erin M. Bailey, Jonathan C. Kopelovich, and Marlan R. Hansen. "The Spiral Ganglion in an Out-of-Body Experience: A Brief History of in Vitro Studies of the Spiral Ganglion." In The Primary Auditory Neurons of the Mammalian Cochlea, 191–227. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3031-9_7.
Full textLee, Jeong Han, Choongryoul Sihn, Wanging Wang, Cristina Maria Perez Flores, and Ebenezer N. Yamoah. "In Vitro Functional Assessment of Adult Spiral Ganglion Neurons (SGNs)." In Methods in Molecular Biology, 513–23. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3615-1_29.
Full textGreen, Steven H. "Neurotrophic Signaling by Membrane Electrical Activity in Spiral Ganglion Neurons." In Cell and Molecular Biology of the Ear, 165–82. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4223-0_13.
Full textYamazaki, Hiroshi, and Takayuki Nakagawa. "Gene Therapy for Regeneration and Preservation of Spiral Ganglion Neurons." In Regenerative Medicine for the Inner Ear, 255–64. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54862-1_27.
Full textConference papers on the topic "Ganglion spiral"
Diensthuber, M., J. Gabrielpillai, T. Stöver, and C. Geissler. "Normelatonin is a neuroprotective factor for postnatal spiral ganglion cells." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641041.
Full textSchulze, J., L. Heinkele, M. Steffens, A. Warnecke, T. Lenarz, I. Just, and A. Rohrbeck. "Rho-GTPase and p38 mediated neuroprotection in spiral ganglion cells." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641057.
Full textVolkenstein, S., S. Bertram, L. Roll, J. Reinhard, A. Faissner, and S. Dazert. "Pleiotrophin modulates neurite outgrowth of spiral ganglion neurons in vitro." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1640663.
Full textYong, J., W. G. A. Brown, K. Needham, B. A. Nayagam, A. Yu, S. L. McArthur, and P. R. Stoddart. "Dark-field microspectroscopic analysis of gold nanorods in spiral Ganglion neurons." In SPIE Micro+Nano Materials, Devices, and Applications, edited by James Friend and H. Hoe Tan. SPIE, 2013. http://dx.doi.org/10.1117/12.2033767.
Full textGabrielpillai, J., C. Geissler, T. Stöver, and M. Diensthuber. "Amitriptyline increases survival rate and neurite outgrowth of spiral ganglion Neurons." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641047.
Full textIzawa, Masato, and Hiroyuki Torikai. "Nonlinear responses of an asynchronous cellular automaton model of spiral ganglion cell." In 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014. http://dx.doi.org/10.1109/ijcnn.2014.6889594.
Full textWrobel, C., and D. Beutner. "Minimally invasive transcochlear approach for future optogenetic manipulation of spiral ganglion neurons." In Abstract- und Posterband – 90. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Digitalisierung in der HNO-Heilkunde. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1686548.
Full textLumbreras, V., E. Bas, C. Gupta, and S. M. Rajguru. "Pulsed Infrared-evoked Intracellular Calcium Transients in Neonatal Vestibular and Spiral Ganglion Neurons." In 2013 29th Southern Biomedical Engineering Conference (SBEC 2013). IEEE, 2013. http://dx.doi.org/10.1109/sbec.2013.59.
Full textPeter, M., U. Reich, A. Warnecke, H. Olze, A. Szczepek, T. Lenarz, and G. Paasche. "Influence of electrical stimulation on survival and growth of spiral ganglion neurons in vitro." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641053.
Full textKempfle, J., C. Hamadani, N. Koen, C. McKenna, and D. Jung. "Development of a novel bisphosphonate-7,8-dihydroxyflavone (DHF) derivative for regeneration of spiral ganglion synapses." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1640413.
Full text