Academic literature on the topic 'Gas condensate reservoirs. Gas condensate reservoirs'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gas condensate reservoirs. Gas condensate reservoirs.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gas condensate reservoirs. Gas condensate reservoirs"

1

Chen, H. L., S. D. Wilson, and T. G. Monger-McClure. "Determination of Relative Permeability and Recovery for North Sea Gas-Condensate Reservoirs." SPE Reservoir Evaluation & Engineering 2, no. 04 (1999): 393–402. http://dx.doi.org/10.2118/57596-pa.

Full text
Abstract:
Summary Coreflood experiments on gas condensate flow behavior were conducted for two North Sea gas condensate reservoirs. The objectives were to investigate the effects of rock and fluid characteristics on critical condensate saturation (CCS), gas and condensate relative permeabilities, hydrocarbon recovery and trapping by water injection, and incremental recovery by subsequent blowdown. Both CCS and relative permeability were sensitive to flow rate and interfacial tension. The results on gas relative permeability rate sensitivity suggest that gas productivity curtailed by condensate dropout can be somewhat restored by increasing production rate. High interfacial tension ultimately caused condensate relative permeability to decrease with increasing condensate saturation. Condensate immobile under gas injection could be recovered by water injection, but more immediate and efficient condensate recovery was observed when the condensate saturation prior to water injection exceeded the CCS. Subsequent blowdown recovered additional gas, but incremental condensate recovery was insignificant. Introduction Reservoirs bearing gas condensates are becoming more commonplace as developments are encountering greater depths, higher pressures, and higher temperatures. In the North Sea, gas condensate reservoirs comprise a significant portion of the total hydrocarbon reserves. Accuracy in engineering computations for gas condensate systems (e.g., estimating reserves, sizing surface facilities, and predicting productivity trends) depends upon a basic understanding of phase and flow behavior interrelationships. For example, gas productivity may be curtailed as condensate accumulates by pressure depletion below the dew point pressure (Pd). Conceptual modeling on gas condensate systems suggests that relative permeability (kr) curves govern the magnitude of gas productivity loss.1,2 Unfortunately, available gas and condensate relative permeability (krg and krc) results for gas condensates are primarily limited to synthetic systems. Such results show that higher CCS and less krg reduction were observed for a conventional gas/oil system compared to a gas condensate system.3,4 If condensate accumulates as a continuous film due to low interfacial tension (IFT), then high IFT gas/oil and water/oil kr data may not be applicable to gas condensates.5 Water invasion of gas condensate reservoirs may enhance hydrocarbon recovery or trap potential reserves. Laboratory results suggest water invasion of low IFT gas condensates may not be represented using high IFT water/oil and water/gas displacements.6 Subsequent blowdown may remobilize hydrocarbons trapped by water invasion. The presence of condensate may hinder gas remobilization, thus conventional gas/water blowdown experiments may not be appropriate in evaluating the feasibility of depressurization for gas condensates.7,8 Other laboratory evaluations of gas condensate flow behavior indicate measured results depend upon experimental procedures, fluid properties, and rock properties.3,9–20 Factors to consider include the history of condensate formation (i.e., imbibition or drainage), how condensate was introduced (i.e., in-situ dropout versus external injection or inflowing gas), flow rate, differential pressure, system pressure, IFT, connate water saturation, core permeability, and core orientation. Experiments performed to evaluate the consequences of water invasion suggest optimum conditions depend upon IFT, initial gas saturation, and core permeability.7,21,22 Reported blowdown experiments imply gas recovery depends upon the degree of gas expansion.7,8 The kr results obtained in this study represent gas condensate flow between the far-field and the near-wellbore region. The results are useful input for numerical simulation, especially to test rate- or IFT-sensitive relative permeability functions. Results on hydrocarbon recovery and trapping from water injection and blowdown are beneficial in evaluating improved recovery options for gas condensates. Experimental Procedures Coreflooding experiments were performed under reservoir conditions using rock and fluid samples from two distinct North Sea gas condensate reservoirs. A detailed description of the experimental methods is provided in the Appendix. Briefly, the experiments were conducted in a horizontal coreflood apparatus equipped with in-line PVT and viscosity measuring devices. The entire system experienced in-situ condensate drop out by constant volume depletion (CVD) from above Pd to either the pressure corresponding to CCS, or to the pressure of maximum condensate saturation Scmax Steady-state krg was measured by injecting equilibrated gas (before CCS). Steady-state krg and krc were measured by injecting gas condensate repressurized to above Pd (after CCS). The gas/oil fractional flow rate was defined by the pressure level in the core which was controlled by the core outlet back-pressure regulator. During krg measurements, the injection rate was varied to access rate effects. After the krg or krg and krc measurements to Scmax were completed, water injection was performed to quantify hydrocarbon trapping and recovery. Blowdown followed to evaluate additional hydrocarbon recovery. Recombined Reservoir Fluid Properties. Two North Sea gas condensate reservoir fluids were recombined using separator oil and synthetic gas. Tables 1 and 2 list compositions and PVT properties for the reconstituted fluids. The Pd was 7,070 psig at 250°F for Reservoir A, and 6,074 psig at 259°F for Reservoir B (Table 2). The maximum liquid dropout under constant composition expansion (CCE) was 31.7% for Reservoir A, and 42.5% for Reservoir B (Fig. 1). Reservoir B is a richer gas condensate and exhibits more near-critical phase behavior than Reservoir A.
APA, Harvard, Vancouver, ISO, and other styles
2

Hu, Wen Ge, Xiang Fang Li, Xin Zhou Yang, Ke Liu Wu, and Jun Tai Shi. "Energy Control in the Depletion of Gas Condensate Reservoirs with Different Permeabilities." Advanced Materials Research 616-618 (December 2012): 796–803. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.796.

Full text
Abstract:
Energy control (i. e. pressure control) has an obvious effect on development effect in the depletion of gas condensate reservoir. Phase change behavior and characteristics of the relative pemeability in gas condensate reservoirs were displayed in this paper, then pressure and condensate distribution were showed through reservoir simulation. Finally, the influence of the pressure drop on condensate distribution and condensate oil production in gas condensate reservoirs with different permeabilities was studied. Results show that: First, in high / moderate permeability gas condensate reservoirs, the pressure and the condensate blocking will extend to further reservoir, while the pressure and condensate just appear in the vicinity of wellbore in low permeability gas condensate reservoirs. Second, the influence of pressure drop on condensate distribution in high permeability gas condensate reservoirs is obvious, the condensate blocking extends with the increasing of the pressure drop, and condensate extent can be controlled by optimizing a rational pressure drop, while the influence is inconspicuous in low permeability gas condensate reservoirs. Third, the influence of pressure drop on condensate oil production in high / moderate permeability gas condensate reservoirs is conspicuous, a rational pressure drop exists, while the influence is indistinct in low permeability or tight gas condensate reservoirs, before the retrograde condensation, a low pressure drop should be adopted in a long term until the bottom hole flowing pressure drops below the dew point pressure, when the condensate blocking forms, well stimulation is advised before developing by pressure control.
APA, Harvard, Vancouver, ISO, and other styles
3

Panja, Palash, and Milind Deo. "Factors That Control Condensate Production From Shales: Surrogate Reservoir Models and Uncertainty Analysis." SPE Reservoir Evaluation & Engineering 19, no. 01 (2015): 130–41. http://dx.doi.org/10.2118/179720-pa.

Full text
Abstract:
Summary Rapid development of shales for the production of oils and condensates may not be permitting adequate analysis of the important factors governing recovery. Understanding the performance of shales or tight oil reservoirs producing condensates requires numerically extensive compositional simulations. The purpose of this study is to identify important factors that control production of condensates from low-permeability plays and to develop analytical “surrogate” models suitable for Monte Carlo analysis. In this study, the surrogate reservoir models were second-order response surfaces functionally dependent on the nine main factors that most affect condensate recovery in ultralow-permeability reservoirs. The models were developed by regressing the results of experimentally designed compositional simulations. The Box-Behnken (Box and Behnken 1960) technique, a partial-factorial method, was used for design of these experiments or simulations. The main factors that controlled condensate recovery from ultralow-permeability reservoirs were reservoir permeability, rock compressibility, initial condensate/gas ratio (CGR), initial reservoir pressure, and fracture spacing. Another main outcome of this paper was the generation of probability-density functions, and P10, P50, and P90 values for condensate recovery on the basis of the uncertainty in input parameters. The condensate-recovery P50 for rate-based outcome of a 5-B/D per fracture was found to be less than 10%.
APA, Harvard, Vancouver, ISO, and other styles
4

Meng, Xingbang, Zhan Meng, Jixiang Ma, and Tengfei Wang. "Performance Evaluation of CO2 Huff-n-Puff Gas Injection in Shale Gas Condensate Reservoirs." Energies 12, no. 1 (2018): 42. http://dx.doi.org/10.3390/en12010042.

Full text
Abstract:
When the reservoir pressure is decreased lower than the dew point pressure in shale gas condensate reservoirs, condensate would be formed in the formation. Condensate accumulation severely reduces the commercial production of shale gas condensate reservoirs. Seeking ways to mitigate condensate in the formation and enhance both condensate and gas recovery in shale reservoirs has important significance. Very few related studies have been done. In this paper, both experimental and numerical studies were conducted to evaluate the performance of CO2 huff-n-puff to enhance the condensate recovery in shale reservoirs. Experimentally, CO2 huff-n-puff tests on shale core were conducted. A theoretical field scale simulation model was constructed. The effects of injection pressure, injection time, and soaking time on the efficiency of CO2 huff-n-puff were examined. Experimental results indicate that condensate recovery was enhanced to 30.36% after 5 cycles of CO2 huff-n-puff. In addition, simulation results indicate that the injection period and injection pressure should be optimized to ensure that the pressure of the main condensate region remains higher than the dew point pressure. The soaking process should be determined based on the injection pressure. This work may shed light on a better understanding of the CO2 huff-n-puff- enhanced oil recovery (EOR) strategy in shale gas condensate reservoirs.
APA, Harvard, Vancouver, ISO, and other styles
5

Shams, Bilal, Jun Yao, Kai Zhang, and Lei Zhang. "Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir." Open Physics 15, no. 1 (2017): 525–35. http://dx.doi.org/10.1515/phys-2017-0060.

Full text
Abstract:
AbstractGas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources.In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days.In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery preventing financial, economic and resource loss that previously occurred.
APA, Harvard, Vancouver, ISO, and other styles
6

Bilotu Onoabhagbe, Benedicta, Paul Russell, Johnson Ugwu, and Sina Rezaei Gomari. "Application of Phase Change Tracking Approach in Predicting Condensate Blockage in Tight, Low, and High Permeability Reservoirs." Energies 13, no. 24 (2020): 6551. http://dx.doi.org/10.3390/en13246551.

Full text
Abstract:
Prediction of the timing and location of condensate build-up around the wellbore in gas condensate reservoirs is essential for the selection of appropriate methods for condensate recovery from these challenging reservoirs. The present work focuses on the use of a novel phase change tracking approach in monitoring the formation of condensate blockage in a gas condensate reservoir. The procedure entails the simulation of tight, low and high permeability reservoirs using global and local grid analysis in determining the size and timing of three common regions (Region 1, near wellbore; Region 2, condensate build-up; and Region 3, single-phase gas) associated with single and two-phase gas and immobile and mobile gas condensate. The results show that permeability has a significant influence on the occurrence of the three regions around the well, which in turn affects the productivity of the gas condensate reservoir studied. Predictions of the timing and location of condensate in reservoirs with different permeability levels of 1 mD to 100 mD indicate that local damage enhances condensate formation by 60% and shortens the duration of the immobile phase by 45%. Meanwhile, the global change in permeability increases condensate formation by 80% and reduces the presence of the immobile phase by 60%. Finally, this predictive approach can help in mitigating condensate blockage around the wellbore during production.
APA, Harvard, Vancouver, ISO, and other styles
7

Hou, Dali, Yang Xiao, Yi Pan, Lei Sun, and Kai Li. "Experiment and Simulation Study on the Special Phase Behavior of Huachang Near-Critical Condensate Gas Reservoir Fluid." Journal of Chemistry 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/2742696.

Full text
Abstract:
Due to the special phase behavior of near-critical fluid, the development approaches of near-critical condensate gas and near-critical volatile oil reservoirs differ from conventional oil and gas reservoirs. In the near-critical region, slightly reduced pressure may result in considerable change in gas and liquid composition since a large amount of gas or retrograde condensate liquid is generated. It is of significance to gain insight into the composition variation of near-critical reservoir during the depletion development. In our study, we performed a series ofPVTexperiments on a real near-critical gas condensate reservoir fluid. In addition to the experimental studies, a commercial simulator combined with the PREOS model was utilized to study retrograde condensate characteristics and reevaporation mechanism of condensate oil with CO2injection based on vapor-liquid phase equilibrium thermodynamic theory. The research shows that when reservoir pressure drops below a certain pressure, the variation of retrograde condensate liquid saturation of the residual reservoir fluid exhibits the phase behavior of volatile oil.
APA, Harvard, Vancouver, ISO, and other styles
8

Ayala, Luis F., Turgay Ertekin, and Michael A. Adewumi. "Compositional Modeling of Retrograde Gas-Condensate Reservoirs in Multimechanistic Flow Domains." SPE Journal 11, no. 04 (2006): 480–87. http://dx.doi.org/10.2118/94856-pa.

Full text
Abstract:
Summary A multimechanistic flow environment is the result of the combined action of a Darcian flow component (the macroscopic flow of the phase caused by pressure gradients) and a Fickian-like or diffusive flow component (diffusive flow caused by molecular concentration gradients) taking place in a hydrocarbon reservoir. The present work presents the framework needed for the assessment of the impact of multimechanistic flow on systems where complex fluid behavior—such as that of retrograde gas-condensate fluids—requires the implementation of compositional reservoir simulators. Because of the complex fluid behavior nature of gas-condensate fluids, a fully-implicit (IMPISC-type) compositional model is implemented and the model is used for the study of the isothermal depletion of naturally fractured retrograde gas reservoirs. In these systems, especially those tight systems with very low permeability (k < 0.1 md), bulk fluid flow as predicted by Darcy's law might not take place despite the presence of large pressure gradients. The use of an effective diffusion coefficient in the gas phase—which accounts for the combined effect of the different diffusion mechanisms that could take place in a porous medium—and its relative contribution to fluid recovery is discussed. The compositional tracking capabilities of the model are tested, and the conditions where Fickian flow can be the major player in recovery predictions and considerably overcome the flow impairment to gas flow posed by the eventual appearance of a condensate barrier—typical of gas-condensate systems—are investigated. Finally, a mapping that defines different domains where multimechanistic flow can be expected in compositional simulators of retrograde gas-condensate reservoirs is presented. Introduction In typical natural-gas reservoirs, all hydrocarbons exist as a single free gas phase at conditions of discovery. Depending on the composition of the initial hydrocarbon mixture in place and their depletion behavior, we recognize up to three kinds of natural gas reservoirs: dry gas reservoirs, wet gas reservoirs, and retrograde gas or gas-condensate reservoirs. The latter is the richest in terms of heavy hydrocarbons, and thus it is very likely to develop a second heavier hydrocarbon phase (liquid condensate) upon isothermal depletion. This situation is illustrated by Fig. 1. In contrast, dry gases and wet gases do not undergo phase changes upon reservoir depletion, as their phase envelope's cricondentherms are found to the left of the reservoir temperature isotherm.
APA, Harvard, Vancouver, ISO, and other styles
9

Onoabhagbe, Gomari, Russell, Ugwu, and Ubogu. "Phase Change Tracking Approach to Predict Timing of Condensate Formation and its Distance from the Wellbore in Gas Condensate Reservoirs." Fluids 4, no. 2 (2019): 71. http://dx.doi.org/10.3390/fluids4020071.

Full text
Abstract:
Production from gas condensate reservoir poses the major challenge of condensate banking or blockage. This occurs near the wellbore, around which a decline in pressure is initially observed. A good sign of condensate banking is a rise in the gas–oil ratio (GOR) during production and/or a decline in the condensate yield of the well, which leads to considerable reductions in well deliverability and well rate for gas condensate reservoirs. Therefore, determining the well deliverability of a gas condensate reservoir and methods to optimize productivity is paramount in the industry.
APA, Harvard, Vancouver, ISO, and other styles
10

Lopez Jimenez, Bruno A., and Roberto Aguilera. "Flow Units in Shale Condensate Reservoirs." SPE Reservoir Evaluation & Engineering 19, no. 03 (2016): 450–65. http://dx.doi.org/10.2118/178619-pa.

Full text
Abstract:
Summary Recent work has shown that flow units characterized by process or delivery speed (the ratio of permeability to porosity) provide a continuum between conventional, tight-gas, shale-gas, tight-oil, and shale-oil reservoirs (Aguilera 2014). The link between the various hydrocarbon fluids is provided by the word “petroleum” in “Total Petroleum System” (TPS), which encompasses liquid and gas hydrocarbons found in conventional, tight, and shale reservoirs. The work also shows that, other things being equal, the smaller pores lead to smaller production rates. There is, however, a positive side to smaller pores that, under favorable conditions, can lead to larger economic benefits from organic-rich shale reservoirs. This occurs in the case of condensate fluids that behave as dry gas in the smaller pores of organic-rich shale reservoirs. Flow of this dry gas diminishes the amount of liquids that are released and lost permanently in a shale reservoir. Conversely, this dry gas can lead to larger recovery of liquids in the surface from a given shale reservoir and consequently more attractive economics. This study shows how the smaller pores and their associated dry gas can be recognized with the use of process speed (flow units) and modified Pickett plots. Data from the Niobrara and Eagle Ford shales are used to demonstrate these crossplots. It is concluded that there is significant practical potential in the use of process speed as part of the flow-unit characterization of shale condensate reservoirs. This, in turn, can help in locating sweet spots for improved liquid production. The main contribution of this work is the association of flow units and different scales of pore apertures for improving recovery of liquids from shale reservoirs.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography