To see the other types of publications on this topic, follow the link: Gas hydrate structures morphology.

Dissertations / Theses on the topic 'Gas hydrate structures morphology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 dissertations / theses for your research on the topic 'Gas hydrate structures morphology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Attias, Eric. "Geophysical analysis of marine gas hydrate structures." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/416892/.

Full text
Abstract:
Gas hydrate deposits are known to store vast amounts of methane, and occur worldwide in marine and permafrost regions. Methane emissions driven by hydrate dissociation may contribute to submarine slope failures, geohazards to deep water infrastructures, and possibly climate change. Alternatively, hydrates are perceived as a viable energy resource. These environmental and economic implications mean that gas hydrate research is of both academic and industrial interest. To determine the environmental impact or economic potential of gas hydrate accumulations in any given geologic setting with a high level of confidence, it is mandatory to acquire lithological and geophysical information for a well-constrained joint interpretation. Robust delineation and quantification of gas hydrate structures is not a trivial task, due to inherent uncertainties from the absence of information regarding the physical properties of the reservoir of interest. In this thesis, I develop a rigorous joint interpretation scheme using marine controlled-source electromagnetic (CSEM), seismic and core data coupled by effective medium modelling, for the detection, delineation, and quantification of marine gas hydrate structures. The study area for this research is the CNE03 pockmark, situated on the Norwegian continental slope, Nyegga region, offshore Norway. The CNE03 pockmark is underlain by a pipe-like structure, where gas hydrate and free gas coexist. Marine CSEM data and sediment cores were acquired from the CNE03 pockmark, integrated and interpreted with collocated high-resolution two-dimensional seismic reflection and three-dimensional tomographic seismic data. The CNE03 pipe-like hydrate structure is detected and characterised using unconstrained and seismically constrained CSEM inversions of data obtained by ocean bottom electric field receivers (OBE). The unconstrained CSEM inversions detected the CNE03 pipe-like structure satisfactorily though with undefined and diffusive margins, which is mitigated by the seismically constrained inversions that improved the delineation of the CNE03 boundaries significantly. High-resolution resistivity imaging of the CNE03 pipe-like structure is achieved by a combined CSEM inversion of both the OBE and 3-axis towed electric field receiver (Vulcan) data. Robust quantification of hydrate content within the CNE03 structure is derived by comparison between CSEM and seismic datasets with joint elastic-electrical effective medium modelling scheme. The work I present in this thesis provides an integrated approach to elucidate both structural and fluid properties of sub-seafloor gas hydrate and free gas deposits. The joint interpretation framework applied here could also be utilised to map and monitor seafloor mineralisation, freshwater reservoirs, carbon capture and storage sites, and near-surface geothermal systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Vargas, Cordero Ivan De La Cruz. "Gas hydrate occurrence and Morpho-structures along Chilean margin." Doctoral thesis, Università degli studi di Trieste, 2009. http://hdl.handle.net/10077/3207.

Full text
Abstract:
2007/2008<br>During the last decades, the scientific community spent many efforts to study the gas hydrates in oceanic and permafrost environments. In fact, the gas hydrate occurrence has a global significance because of the potential energy resource represented by the large amount of hydrocarbon trapped in the hydrate phase. Moreover, it may play a role in global climate change, and it is also study because of the hazard that accumulations of gas hydrate may cause to drilling and seabed installations. In seismic data, the base of the gas hydrate presence is detected by a strong reflector, called BSR. Along the Chilean continental margin, in the last decades the BSR is well reported by several geophysical cruises. In particular, the BSR is recognized along the accretionary prism. An important aspect related to the gas hydrates is the estimate of gas concentration in the pore space by using seismic data. In fact, both compressional and shear wave velocities provide information about the presence of gas hydrate and free gas in marine sediments. A quantitative estimate of gas hydrate and free gas concentrations can be obtained by fitting the theoretical velocity to the experimental velocity. For this purpose, in this Thesis several seismic data are analyzed in order to detect, quantify and explain the gas hydrate presence in this region. Frontal and basal accretions were identified by interpreting six post-stack time migrated sections, which across the entire margin (continental shelf, continental slope, oceanic trench and oceanic crust). The trench infill southwards of Juan Fernandez Ridge is characterized by a succession of reflectors with high and low amplitude associated to turbidites. A thinner bed (0.3 s) was recognized in correspondence to the accretionary prism characterized by several morphological highs. These morphological highs were associated to different accretional stages. On the contrary, a thicker bed (0.8 s) was recognized in correspondence to an uplifted accretionary prism characterized by a smoother topography. Basal and frontal accretions can be related to the morpho-structures recognized in this part of the Chilean margin. Negative and positive flower structures can help to explain the deformational variability of the Chilean margin, because negative flowers structures are associated to transtensional domain, where the continental slope morphology is characterized by normal faults, submarine erosive channels and slump heads. Positive flower structures, instead, are associated to transpresional domain and could explain the presence of older re-activated thrusts, slightly deformed slope basins. Moreover a strike-slip component affecting the oceanic crust, can also involve the continental margin, in fact on the continental slope, positive and negative flower structures can be associated to strike-slip faults parallel to the coast or to Riedel shear. The BSR is an important indicator of gas hydrate and free gas presence and we performed a processing to enhance its presence. In all analysed sections, the BSR was recognized in correspondence to an ancient accretionary prism with different seismic characteristics along the margin. A strong and continuous BSR was recognized in the northern sector (offshore Itata) and southern sector (offshore Coyhaique), while a discontinuous and weak BSR was recognized in the central Chile (offshore Arauco and Valdivia). In order to quantify the gas-phase, an advanced processing was performed. Two portions of sections were selected of about 20 km length. The first one is located in the central part (offshore Arauco) and another one is located in the southernmost part (offshore Coyhaique). In the Coyhaique offshore, the seismic section evidences the presence of a structural high that acts as structural trap for the gas and the fluid upwards migrating. Here, the BSR depth varies from 250 mbsf (in the middle of the accretionary prism) to 130 mbsf (in the structural high), reaching its maximum (330 mbsf) in the fore-arc basin. This depth variability is partially due to the different water depth and partially to the variable geothermal gradient, which varies from 35 to 95° C/km, caused by fluid migration that modifies the gas hydrate stability field. In the Arauco offshore, the BSR is strong and continuous only in a limited area, where it is possible suppose that the fluid is accumulated below the gas hydrate layer and, somewhere, the fluid reaches the seafloor. In this area, the BSR depth reaches 500 mbsf. Here, the higher BSR depth with respect to offshore Coyhaique can be justified by the high water depth and the presence of a lower geothermal gradient (about 30° C/km). The results allowed us to recognize a high (2200 m/s) and low (1270 m/s) velocity layers associated to gas hydrate and free gas presence respectively. The highest gas hydrates and free gas concentrations were detected in the Coyhaique offshore (at 44.5 °S) with an average of 12% and 1% of total volume respectively. By using the instantaneous amplitude, in particular using the BSR/seafloor ratio, it is possible conclude that the section located northernmost in offshore Itata (close to 36 °S; RC2901-728 section), can be considered an interesting reservoir of gas hydrates and free gas, because of the high estimated values of the BSR/seafloor ratio (>0.5). This study suggests that the gas hydrate can play an important role in this part of the Chilean margin for two main reasons. The first one is related to the potentiality of the hydrate reservoir. In fact, the local high concentrations of both hydrate and free gas, as suggested by previous and our studies, could be considered as a future energy resources. The second one is related to the important geo-hazard related to the gas hydrate destabilization. For example, high amount of the free gas, presumably in overpressure condition (Coyhaique offshore), could be naturally released and trigger submarine slides, inducing hydrate instability. Moreover, a possible strong earthquake could generate anomalous sea waves, which could affect at vicinity coast, inducing the gas hydrate destabilization.<br>XX Ciclo<br>1977
APA, Harvard, Vancouver, ISO, and other styles
3

Rees, Emily V. L. "Methane gas hydrate morphology and its effect on the stiffness and damping of some sediments." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/79442/.

Full text
Abstract:
Gas hydrates are ice–like compounds found in deep sea sediments and permafrosts. Concise detection and quantification of natural methane gas hydrate deposits, will allow for a more robust assessment of gas hydrate as a potential energy resource or natural geohazard. Current seismic methods, used to identify and quantify gas hydrates, have proved to be unreliable in providing accurate information on the extent of natural gas hydrate deposits, due to the lack of understanding on how gas hydrate affects the host sediment. Direct measurement of some hydrate bearing sediment properties has been made possible in recent years through advances in pressure coring techniques, but methods for dynamically testing these samples at in–situ pressures are still unavailable. Laboratory tests on synthetic hydrate bearing sediments have shown that factors such as formation technique, sediment type and use of hydrate former affects the form and structure of hydrate in the pore space and how it interacts with the sediment. The aim of this research was therefore to create methane hydrate in sediments under a variety of conditions, so that the influence of hydrate morphology could be investigated. A number of experiments were conducted using two distinct formation techniques. The first technique formed methane hydrate from the free gas phase in almost fully water saturated conditions. Five sand specimens, with a range of hydrate contents from 10% to 40% were formed and tested in the gas hydrate resonant column (GHRC). Results from these tests were compared with previous results from tests where methane hydrate had been formed from free gas in partially saturated conditions. It was found that formation method had a significant influence on the properties of the hydrate bearing sand, and therefore the morphology of the hydrate in the pore space. The second set of experiments formed methane hydrate from free gas within partially saturated sediments, but where the sediments were made up of coarse granular materials with a variety of particle size and shape. As it had been established that hydrate acts as a cement when formed under partially saturated conditions, the experiments aimed to observe the effect of particle size and shape on hydrate bonding mechanisms. The results showed that the influence of disseminated hydrate on the physical properties of the specimens was affected by both mean particle size and by particle shape, with the surface area of the sediment grains influencing the volume and distribution of hydrate throughout a material and therefore it’s bonding capabilities. In addition to the experiments on synthetic hydrate specimens, five core sections containing naturally occurring gas hydrate in fine grained sedimentsweremade available to the University of Southampton from the Indian National Gas Hydrate Program (NGHP) 01 expedition. High resolution CT imaging of the core sections observed large volumes of methane hydrate as a network of veins throughout the specimens. Due to sample disturbance caused during the depressurisation and subsequent freezing of the samples prior to delivery, dynamic testing in the gas hydrate resonant column apparatus was not feasible. Therefore, the hydrate was dissociated and a number of geotechnical tests were undertaken on the remaining host sediment. Results from these tests suggested that hydrate dissociation could affect host sediment properties, due to a change in water content, salinity and structure.
APA, Harvard, Vancouver, ISO, and other styles
4

Yoslim, Jeffry. "The effect of surfactant on the morphology of methane/propane clathrate hydrate crystals." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/3415.

Full text
Abstract:
Considerable research has been done to improve hydrate formation rate. One of the ideas is to introduce mechanical mixing which later tend to complicate the design and operation of the hydrate formation processes. Another approach is to add surfactant (promoter) that will improve the hydrate formation rate and also its storage capacity to be closer to the maximum hydrate storage capacity. Surfactant is widely known as a substance that can lower the surface or interfacial tension of the water when it is dissolved in it. Surfactants are known to increase gas hydrate formation rate, increase storage capacity of hydrates and also decrease induction time. However, the role that surfactant plays in hydrate crystal formation is not well understood. Therefore, understanding of the mechanism through morphology studies is one of the important aspects to be studied so that optimal industrial processes can be designed. In the present study the effect of three commercially available anionic surfactants which differ in its alkyl chain length on the formation/dissociation of hydrate from a gas mixture of 90.5 % methane – 9.5% propane mixture was investigated. The surfactants used were sodium dodecyl sulfate (SDS), sodium tetradecyl sulfate (STS), and sodium hexadecyl sulfate (SHS). Memory water was used and the experiments for SDS were carried out at three different degrees of under-cooling and three different surfactant concentrations. In addition, the effect of the surfactant on storage capacity of gas into hydrate was assessed. The morphology of the growing crystals and the gas consumption were observed during the experiments. The results show that branches of porous fibre-like crystals are formed instead of dendritic crystals in the absence of any additive. In addition, extensive hydrate crystal growth on the crystallizer walls is observed. Also a “mushy” hydrate instead of a thin crystal film appears at the gas/water interface. Finally, the addition of SDS with concentration range between 242ppm – 2200ppm (ΔT =13.10C) was found to increase the mole consumption for hydrate formation by 14.3 – 18.7 times. This increase is related to the change in hydrate morphology whereby a more porous hydrate forms with enhanced water/gas contacts.
APA, Harvard, Vancouver, ISO, and other styles
5

Le, Thi Xiu. "Experimental study on the mechanical properties and the microstructure of methane hydrate-bearing sandy sediments." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC1039.

Full text
Abstract:
Les hydrates de méthane (MHs), composés de gaz de méthane et d’eau, se forment naturellement à haute pression et faible température dans les sédiments marins ou pergélisols. Ils sont actuellement considérés comme une ressource énergétique (principalement MHs dans les sédiments sableux) mais aussi une source de géo-hasards et du changement climatique (MHs dans les sédiments grossiers et fins). La connaissance de leurs propriétés mécaniques/physiques, qui changent considérablement avec la morphologie et distribution des hydrates dans les pores, est très importante pour minimiser les impacts environnementaux liés aux futures exploitations du gaz de méthane à partir des sédiments sableux contenant des MHs (MHBS). La plupart des études expérimentales concernent MHBS synthétiques à cause des difficultés pour récupérer des échantillons intacts. Différentes méthodes ont été proposées pour former MHs dans les sédiments au laboratoire pour reconstituer des sédiments naturels, mais sans grand succès. Cette thèse a pour objectif d’évaluer la morphologie, la distribution des MHs dans les MHBS synthétiques à différentes échelles et d’étudier les effets des MHs (leur morphologie et teneur en hydrate) sur les propriétés mécaniques des MHBS. Deux méthodes de formation d’hydrates dans les sédiments sableux ont été proposées. Au niveau macroscopique, la distribution des hydrates au niveau des pores est évaluée en se basant sur la vitesse de propagation d’onde de compression (mesurée et calculée à partir des modèles existants). Des essais triaxiaux ont été utilisés pour étudier l’influence des MHs à différentes teneurs en hydrate sur les propriétés mécaniques des MHBS. Par ailleurs, l’Imagerie par Résonance Magnétique a été utilisée pour étudier la cinétique de formation/dissociation d’hydrates et aussi la distribution des hydrates sur l’ensemble de l’échantillon. Les résultats montrent qu’un cycle de température en conditions non drainées complète la redistribution des hydrates dans les pores après la saturation en eau de l’échantillon à haute teneur en hydrate. La distribution des hydrates sur l’ensemble de l’échantillon devient plus homogène avec la saturation en eau suivie par un cycle de température. En outre, les propriétés mécaniques des sédiments augmentent avec l’augmentation de la teneur en hydrate.A l’échelle du grain, la tomographie aux rayons X (XRCT) et celle au Synchrotron XRCT (SXRCT, Synchrotron SOLEIL) ont été utilisées pour observer la morphologie et la distribution des MHs au niveau des pores des sédiments sableux. Ce travail n’a pas été facile car il nécessitait des dispositifs expérimentaux compliqués (pour maintenir la haute pression et faible température) mais aussi en raison du faible contraste entre MHs et l’eau sur les images de XRCT, SXRCT. Des dispositifs spécifiques ont été développés pour étudier la formation d’hydrates, la morphologie et la distribution à l’échelle du grain des MHs en utilisant XRCT, SXRCT. De plus, une nouvelle méthode a été développée pour déterminer plus précisément les fractions volumiques d’un milieu triphasé à partir des images XRCT. Des observations au Microscope Optique (en coopération avec l’Université de Pau) ont également été faites pour confirmer diverses morphologies de MHs dans les sédiments sableux. Les morphologies et distributions d’hydrates observées sont comparées avec les modèles existants. Les observations montrent que la formation des MHs dans les sédiments sableux est un processus instable et compliqué. Différentes morphologies et distributions au niveau des pores des MHs peuvent coexister. Il parait indispensable de tenir compte des vraies morphologies et distributions au niveau des pores des MHs pour les études numériques utilisant des modèles simplifiés.Mots-clés: hydrate de méthane, sédiments sableux, formation, dissociation, morphologies, distribution, propriétés mécaniques, XRCT, SXRCT, microscope optique, essais triaxiaux, modèle de mécanique des roches<br>Methane hydrates (MHs), being solid ice-like compounds of methane gas and water, form naturally at high pressure and low temperature in marine or permafrost settings. They are being considered as an alternative energy resource (mainly methane hydrate-bearing sand, MHBS) but also a source of geo-hazards and climate change (MHs in both coarse and fine sediments). Knowledge of physical/mechanical properties of sediments containing MHs, depending considerably on hydrate morphologies and pore-habits, is of the importance to minimize the environmental impacts of future exploitations of methane gas from MHBS. Existing experimental works mainly focus on synthetic samples due to challenges to get cored intact methane hydrate-bearing sediment samples. Various methods have been proposed for MH formation in sandy sediments to mimic natural MHBS, but without much success. The main interests of this thesis are to investigate morphologies and pore-habits of MHs formed in synthetic MHBS at various scales and to study the effects of MHs (MH morphology and MH saturation) on the mechanical properties of MHBS.Two MH formation methods (modified from two methods existing in the literature) have been first proposed to create MHs in sandy sediments at different pore-habits. At the macroscopic scale, MH pore-habits have been predicted via comparisons between sonic wave velocities, measured and that calculated based on rock physic models. The effects of MHs formed following the two proposed methods (at different hydrate saturations) on the mechanical properties of MHBS were investigated by triaxial tests. Furthermore, Magnetic Resonance Imaging (MRI) has been used to investigate the kinetics of MH formation, MH distribution along with sample height and also MH dissociation following the depressurization method which has been considered as the most economical method for MH production from MHBS. A temperature cycle in undrained conditions was supposed to not only complete MH redistribution in pore space after the water saturation of the sample at high hydrate saturation but also make MHs distributed more homogeneously in the sample even at low hydrate saturation. Furthermore, the mechanical properties of sediments (e.g. stiffness, strength) were found higher at higher MH saturation.At the grain scale, the MH morphologies and pore habits in sandy sediments were observed by X-Ray Computed Tomography (XRCT, at Navier laboratory, Ecole des Ponts ParisTech) and Synchrotron XRCT (SXRCT, at Psiche beamline of Synchrotron SOLEIL). It has been really challenging due to not only the need of special experimental setups (needing both high pressure and low temperature controls) but also poor XRCT, SXRCT image contrast between methane hydrate and water. Specific experimental setups and scan conditions were then developed for pore-scale investigations of MH growth and MH morphologies in sandy sediments by using XRCT, SXRCT. Besides, a new method has been developed for accurate determination of volumetric fractions of a three-phase media from XRCT images. Observations (at better spatial and temporal resolution) via Optical Microscopy (in cooperation with the University of Pau) were finally used to confirm diverse MH morphologies in sandy sediments. Comparisons between observed MH morphologies, pore habits, and existing idealized models have been discussed. Methane hydrate formation in sandy sediments was supposed to be an unstable and complex process. Different types of MH morphologies and pore habits could exist in the sample. It seems vital that numerical studies on the mechanical behavior of gas hydrates in sediments, based on four idealized hydrate pore-habits, should take into account realistic hydrate morphologies and pore habits.Keywords:Methane hydrates, sandy sediments, formation, dissociation, morphologies, pore-habits, mechanical properties, XRCT, SXRCT, optical microscopy, triaxial tests, rock physic model
APA, Harvard, Vancouver, ISO, and other styles
6

Delroisse, Henry. "Effets de tensioactifs ioniques sur les interfaces et l’agglomération d’hydrates de gaz." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3036/document.

Full text
Abstract:
Lors de la production d’hydrocarbures, les conditions de pression et température dans les conduites peuvent être favorables à la formation d’hydrates de gaz (composés cristallins formés par l’association de molécules d’eau et de gaz). Leur formation peut entraîner le bouchage des conduites et mener à l’arrêt de la production, entraînant d’importantes pertes économiques. Pour remédier au risque « hydrate », les pétroliers disposent de diverses méthodes dont l’utilisation d’additifs antiagglomérants. Les antiagglomérants sont des tensioactifs capables de s’adsorber à la surface des cristaux d’hydrate et de les maintenir dispersés dans la phase hydrocarbonée, qui est généralement majoritaire. L’objectif de cette thèse est de progresser dans la compréhension des mécanismes d’action de tensioactifs ioniques pour la prévention de l’agglomération d’hydrates de gaz. Plusieurs tensioactifs cationiques ont été étudiés sur un hydrate de cyclopentane (CP) (qui se forme à pression atmosphérique) et sur un hydrate de méthane/propane (qui se forme sous pression).Pour les deux hydrates, l’effet des tensioactifs sur la morphologie des cristaux et sur leur mouillabilité a été étudié, et leur performance antiagglomérante (AA) a été évaluée en réacteur agité pour différentes conditions et compositions des systèmes. Les tensioactifs conduisant à la formation de cristaux individuels présentent les meilleures performances AA. Les observations montrent qu’il n’est pas indispensable que les tensioactifs rendent les cristaux mouillables à l’huile pour qu’ils procurent une bonne protection contre l’agglomération dans un système agité où l’huile est la phase majoritaire. Nous avons vu que la modification (par ajout de sel par exemple) de l’environnement physicochimique des molécules tensioactives peut jouer un rôle déterminant sur leurs propriétés AA. De même, la modification de la structure des molécules (nature du contre-ion, longueur des chaînes hydrocarbonées) impacte leur adsorption sur l’hydrate, la morphologie et la mouillabilité des cristaux, et par suite leur performance AA. Les principaux facteurs identifiés pour la bonne performance d’une molécule tensioactive sont sa capacité à se fixer efficacement et en quantité suffisante à la surface de l’hydrate, et à rendre les cristaux d’hydrate hydrophobes, ou dans le cas où il les rend hydrophiles d’abaisser fortement la tension interfaciale entre les phases aqueuse et huileuse de manière à réduire l’intensité des forces capillaires entre les particules. Enfin, nous avons pu établir une corrélation entre les observations faites à l’échelle microscopique et la performance AA des tensioactifs évaluée à l’échelle macroscopique. Ce travail confirme que l’hydrate de CP est globalement un bon modèle pour des évaluations simples de la performance de molécules tensioactives. L’utilisation de l’hydrate de CP présente néanmoins des limitations pour mener des études à forts sous-refroidissements et avec de grandes fractions volumiques d’eau<br>Pressure and temperature conditions encountered in the pipelines of hydrocarbons production may be favorable to the formation of gas hydrates (crystalline compounds formed by the association of molecules of gas and water). Their agglomeration in pipelines may form plugs and lead to production shutdowns and cause significant economic losses. To prevent it, oil and gas companies use various methods and more particularly anti-agglomerant additives. Anti-agglomerants are surfactants that can adsorb at the hydrate crystals surface and keep them dispersed in a hydrocarbon phase. The objective of this thesis is to progress in the understanding of mechanisms of action of ionic surfactant to prevent the gas hydrates agglomeration. Several cationic surfactants were studied on a cyclopentane (CP) hydrate (formed at atmospheric pressure) and on a methane/propane hydrate (formed under pressure). For both hydrates, the effect of surfactants on the crystals morphology and on their wettability was investigated, and their anti-agglomerant (AA) performance was evaluated in an agitated reactor for systems at different conditions and compositions. The surfactants leading to the formation of individual crystals had the best AA performances. In order to have a good protection against the agglomeration, it is not necessary that the surfactants make the crystals oil wettable in a system where the oil phase is in excess. We showed that the modification (by the addition of salt for example) of the physicochemical environment of surfactant molecules plays an important role on their AA properties. Similarly, the modification of the structure of molecules (counter-ion nature, length of the hydrocarbon chains) affects their adsorption on the hydrate, the morphology and wettability of crystals and consequently their AA performance. The main factors identified for a good performance of a surfactant molecule are its capacity to be efficiently fixed and in a sufficient amount on the hydrate surface in order to make the hydrate crystals hydrophobic. In the case where it makes the hydrate hydrophilic, the surfactant has to strongly reduce the interfacial tension between the aqueous and oil phases and then reduce the intensity of capillary forces between hydrate particles. Lastly, we set a correlation between the observations done at the microscopic scale and the AA performance of surfactants evaluated at the macroscopic scale. This work confirms that the CP-hydrate is overall a good model for a simple evaluation of the surfactant molecules performance. However, the use of the CP-hydrate has some limitations to conduct studies at high subcooling and watercut
APA, Harvard, Vancouver, ISO, and other styles
7

Furlong, Jonathan. "Characteristic morphology, backscatter, and sub-seafloor structures of cold-vents on the Northern Cascadia Margin from high-resolution autonomous underwater vehicle data." Thesis, 2013. http://hdl.handle.net/1828/4648.

Full text
Abstract:
In this thesis seafloor cold vents are examined using autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV) data on the Northern Cascadia margin. These data were collected in a 2009 joint cruise between the Monterey Bay Aquarium Research Institute (MBARI) and Natural Resources Canada (NRCan). High- resolution bathymetry data, acoustic reflectivity (backscatter) data, and 3.5 kHz sub bottom profiler data were examined for cold-vent-related features that include pockmarks, chemosynthetic biological communities (CBC), and authigenic carbonate. Additionally subsequent ROV observations, sediments from push cores and seafloor video/photos were used to ground truth AUV data. Numerous prolific venting sites were examined in detail and a model for the evolution of venting was generated. Vents are categorized as juvenile, intermediate, or mature depending on the presence and or absence of cold-vent-features. High near-surface reflection amplitudes are coincident with an anomalous area of seafloor backscatter. In June of 2012, NEPTUNE (North East Pacific Time-series Underwater Networked Experiment) collected a near-surface push core with their ROV ROPOS (Remotely Operated Platform for Ocean Sciences) in the high reflective area. The retrieved core showed stacked turbidites in the top 0.5 meters of the sediment column. Closely spaced high-velocity turbidite sands are highly reflective and inhibit acoustic penetration to depth. The presence of high-density, high-velocity sands in the near surface is linked to steady ocean bottom currents. These bottom currents progress northeast to southwest over the study area and differentially erode the surface sediments by removing muds and leaving heavy sands over the exposed area.<br>Graduate<br>0373<br>0374<br>jonfurlong@hotmail.com
APA, Harvard, Vancouver, ISO, and other styles
8

Park, Youngjune, Minjun Cha, Jong-Ho Cha, et al. "SWAPPING CARBON DIOXIDE FOR COMPLEX GAS HYDRATE STRUCTURES." 2008. http://hdl.handle.net/2429/1153.

Full text
Abstract:
Large amounts of CH4 in the form of solid hydrates are stored on continental margins and in permafrost regions. If these CH4 hydrates could be converted into CO2 hydrates, they would serve double duty as CH4 sources and CO2 storage sites. Herein, we report the swapping phenomena between global warming gas and various structures of natural gas hydrate including sI, sII, and sH through 13C solid-state nuclear magnetic resonance, and FT-Raman spectrometer. The present outcome of 85% CH4 recovery rate in sI CH4 hydrate achieved by the direct use of binary N2 + CO2 guests is quite surprising when compared with the rate of 64 % for a pure CO2 guest attained in the previous approach. The direct use of a mixture of N2 + CO2 eliminates the requirement of a CO2 separation/purification process. In addition, the simultaneously-occurring dual mechanism of CO2 sequestration and CH4 recovery is expected to provide the physicochemical background required for developing a promising large-scale approach with economic feasibility. In the case of sII and sH CH4 hydrates, we observe a spontaneous structure transition to sI during the replacement and a cage-specific distribution of guest molecules. A significant change of the lattice dimension due to structure transformation induces a relative number of small cage sites to reduce, resulting in the considerable increase of CH4 recovery rate. The mutually interactive pattern of targeted guest-cage conjugates possesses important implications on the diverse hydratebased inclusion phenomena as clearly illustrated in the swapping process between CO2 stream and complex CH4 hydrate structure.
APA, Harvard, Vancouver, ISO, and other styles
9

Kingston, Emily, Chris R. I. Clayton, and Jeffery Priest. "GAS HYDRATE GROWTH MORPHOLOGIES AND THEIR EFFECT ON THE STIFFNESS AND DAMPING OF A HYDRATE BEARING SAND." 2008. http://hdl.handle.net/2429/1738.

Full text
Abstract:
Using a specially constructed Gas Hydrate Resonant Column (GHRC), the University of Southampton explored different methods of hydrate synthesis and measured the properties of the resulting sediments, such as shear wave velocity (Vs), compressional wave velocity (Vp) and their respective attenuation measurements (Qs -1 and Qp -1). Two approaches were considered. The first utilises an excess gas technique, where known water volume in the pore space dictates the quantity of hydrate. The second approach uses a known quantity of methane gas within the water saturated pore space to constrain the volume of hydrate. Results from the two techniques show that hydrates formed in excess gas environments cause stiffening of the sediment structure at low concentrations (3%), whereas, even at high concentrations of hydrate (40%) in excess water environments, only moderate increase in stiffness was observed. Additionally, attenuation results show a peak in damping at approximately 5% hydrate in excess gas tests, whereas in excess water tests, damping continues to increase with increasing hydrate content in the pore space. By considering the results from the two approaches, it becomes apparent that formation method has an influence on the properties of the hydrate bearing sand, and must therefore influence the morphology of the hydrate in the pore space.
APA, Harvard, Vancouver, ISO, and other styles
10

Yoslim, Jeffry, and Peter Englezos. "THE EFFECT OF SURFACTANT ON THE MORPHOLOGY OF METHANE/PROPANE CLATHRATE HYDRATE CRYSTALS." 2008. http://hdl.handle.net/2429/1028.

Full text
Abstract:
In the present study the effect of one commercially available anionic surfactant on the formation/dissociation of hydrate from a gas mixture of 90.5 % methane – 9.5% propane mixture was investigated. Surfactants are known to increase gas hydrate formation rate. Memory water was used and the experiments were carried out at three different degrees of undercooling and two different surfactant concentrations. In addition, the effect of the surfactant on storage capacity of gas into hydrate was assessed. The morphology of the growing crystals and the gas consumption were observed during the experiments. The results show that branches of porous fibre-like crystals are formed instead of dendritic crystals in the absence of any additive. Finally, the addition of 2200 ppm of SDS was found to increase the mole consumption for hydrate formation by 4.4 times.
APA, Harvard, Vancouver, ISO, and other styles
11

Zhong, Dong-Liang, Dao-Ping Liu, Zhi-Min Wu, and Liang Zhang. "NATURAL GAS HYDRATE FORMATION AND GROWTH ON SUSPENDED WATER DROPLET." 2008. http://hdl.handle.net/2429/1391.

Full text
Abstract:
The experimental formation of natural gas hydrate on pendant water droplet exposed to natural gas was conducted and visually observed under the pressures from 3.86MPa to 6.05MPa. The temperature was set at 274.75K and 273.35K. The diameter of the pendant water droplet was around 4mm. The nucleation and growth of hydrate film on the pendant water drop exhibited a generalized trend. The film initially generated at the boundary between the water drop and suspension tube, and afterwards grew laterally and longitudinally on the surface of the water drop. The phenomenon of the two layers of hydrate films growing on the pendant water drop distinguished from the experiments on the sessile water drop. The effect of the driving force that resulted from the overpressure from the three equilibrium pressure on the hydrate nucleation and growth was investigated. It was found that the elevation of the driving force reduced the nucleation time and shortened the process of the hydrate growth on the pendant water drop. The crystals on the hydrate shell became coarser with the increase of the driving force. The mechanism for the hydrate film formation and growth on static pedant water droplet included four stages, such as nucleation, generation of the hydrate film, growth of the hydrate film, and hydration below the hydrate shell.
APA, Harvard, Vancouver, ISO, and other styles
12

Swidinsky, Andrei. "Transient Electromagnetic Modelling and Imaging of Thin Resistive Structures: Applications for Gas Hydrate Assessment." Thesis, 2011. http://hdl.handle.net/1807/29520.

Full text
Abstract:
Gas hydrates are a solid, ice-like mixture of water and low molecular weight hydrocarbons. They are found under the permafrost and to a far greater extent under the ocean, usually at water depths greater than 300m. Hydrates are a potential energy resource, a possible factor in climate change, and a geohazard. For these reasons, it is critical that gas hydrate deposits are quantitatively assessed so that their concentrations, locations and distributions may be established. Due to their ice-like nature, hydrates are electrically insulating. Consequently, a method which remotely detects changes in seafloor electrical conductivity, such as marine controlled source electromagnetics (CSEM), is a useful geophysical tool for marine gas hydrate exploration. Hydrates are geometrically complex structures. Advanced electromagnetic modelling and imaging techniques are crucial for proper survey design and data interpretation. I develop a method to model thin resistive structures in conductive host media which may be useful in building approximate geological models of gas hydrate deposits using arrangements of multiple, bent sheets. I also investigate the possibility of interpreting diffusive electromagnetic data using seismic imaging techniques. To be processed in this way, such data must first be transformed into its non-diffusive, seismic-like counterpart. I examine such a transform from both an analytical and a numerical point of view, focusing on methods to overcome inherent numerical instabilities. This is the first step to applying seismic processing techniques to CSEM data to rapidly and efficiently image resistive gas hydrate structures. The University of Toronto marine electromagnetics group has deployed a permanent marine CSEM array offshore Vancouver Island, in the framework of the NEPTUNE Canada cabled observatory, for the purposes of monitoring gas hydrate deposits. In this thesis I also propose and examine a new CSEM survey technique for gas hydrate which would make use of the stationary seafloor transmitter already on the seafloor, along with a cabled receiver array, towed from a ship. I furthermore develop a modelling algorithm to examine the electromagnetic effects of conductive borehole casings which have been proposed to be placed in the vicinity of this permanent marine CSEM array, and make preliminary recommendations about their locations.
APA, Harvard, Vancouver, ISO, and other styles
13

Mei, Via Ramadlona Pramuktia, and 羅薇雅. "Multi-channel Seismic Study For Imaging Gas Hydrate and Ocean Fine Structures Offshore Southwest Taiwan." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/49970378885269356767.

Full text
Abstract:
碩士<br>國立中央大學<br>地球科學學系<br>101<br>Multi-channel seismic data has been implemented for simultaneous imaging the sub-seafloor sedimentary structure features and characterizing the spatial distribution of gas hydrate and the large-scale ocean current structure in the water column. The imaging sub-seabed features in exploration of gas hydrate potential in SW Taiwan have been investigated and supported under Central Geology Survey since 2004. This study was primarily focusing on the gas hydrate investigation to determine the distribution of BSRs in the subsurface and additional purpose to detect the possible presence of the oceanic current acoustic structure features in the water column along the survey line. Multi-channel seismic reflection data along MGL0905-01 and 01R were acquired by the TAiwan Integrated GEodynamics Research (TAIGER) project. The surveys were performed during April 2-3, 2009. Acoustic energy produced from 40 of air-gun array with combined volume of 6600 cubic inches was fired every 50 m. The airgun array was towed behind Langseth at depth of 8 m. An six-km-long streamer containing 468 hydrophone groups with receiver space of 12.5 m was towed behind the ship resulting in a horizontal subsurface sampling spacing of 6.25 m. Reflected signal was sampled every 2 ms. The survey line covered about 215 km and along lower slope of Kaoping shelf with water depth of less than 100 m then further south towards the deep marine environment where water depth reaches 2600 m. The MCS data was sequentially processed with conventional seismic processing strategy including trace editing, bandpass filtering, noise suppression, predictive deconvolution, velocity analysis, stacking and Kirchhoff post-stack time migration to create the final seismic profile. The presence of gas hydrates are associated with blanking, low frequency contents and clear reverse polarity of continuous BSRs. The distribution of the BSR varied from 0.2 to 0.5 s in two-way travel-time (TWTT) below seafloor. Several thrust faults had been interpreted which act role as fluid conduits. The brittle zone and porous tilted beds can be speculated as the other potential migration pathways for gas-seepages. At the same time, the appearance of reflectors revealed the existence of distinct impedance contrast inside the water column affected by complex physical processes. The reflectors were identified as thermohaline fine structures that appear relatively strong in approximately above 1200 ms TWTT. The major reflectors patterns in the middle layer are more continuous with clear amplitude changes in deeper water region and fairly discontinuous when it is near the continental slope. Rough morphologic seafloor could be attributed to the dynamics oceanographic processes that occur.
APA, Harvard, Vancouver, ISO, and other styles
14

Tsai, Houng-Ruai, and 蔡宏睿. "The Velocity Structures of Gas Hydrate from Wide-angle Seismic Tomography in the Offshore SW Taiwan." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/13182919033092806340.

Full text
Abstract:
碩士<br>國立臺灣海洋大學<br>應用地球科學研究所<br>95<br>Offshore southwestern Taiwan is located at the junction of the South China Sea continental margin and the accretionary wedge of the Luzon subduction-collision system. Many bottom simulating reflectors ( BSRs ) have been observed in offshore southwest Taiwan. These indicate that a potential submarine gas hydrate deposits may exist in this area. In 2004, a seismic reflection survey in an area of 20 × 20 km2 in of a reported high potential gas hydrate area and some 24 Ocean Bottom Seismographs ( OBSs ) records were acquired in a semi-3D grid. A total of 4 profiles oriented in E-W and N-S direction, it is aimed with a goal to map the velocity structure of marine sediments. In this study area, the BSR has been previously identified in the multi-channel seismic reflection data. The thickness of BSR is about 200-400 meters beneath the seafloor. By considering the velocity information near the survey region, we build an initial velocity-interface model base on the time-to-depth conversion from the picked horizons of the near-offset sections. Then, using the refraction and reflection travel-time data of OBSs, it is attempted to inverse the velocity structure. By contrasting the velocity structures and that of the multi-channel seismic reflection data, we have found that most of gas hydrate ( 2.0 – 2.6 km / s ) accumulated in the passive continental margin and west of Young-An Lineament, where the distribution of the free gas ( 1.2 – 1.6 km / s ) is not affected by Young-An Lineament. In the study area across the Young-An Lineament, we estimate that the total volume of gas hydrate is 26 km3 which is equivalent to 624 km3 for a reservoir of the gas hydrate.
APA, Harvard, Vancouver, ISO, and other styles
15

McGee, T., J. R. Woolsey, L. Lapham, et al. "STRUCTURE OF A CARBONATE/HYDRATE MOUND IN THE NORTHERN GULF OF MEXICO." 2008. http://hdl.handle.net/2429/1203.

Full text
Abstract:
A one-kilometer-diameter carbonate/hydrate mound in Mississippi Canyon Block 118 has been chosen to be the site of a multi-sensor, multi-discipline sea-floor observatory. Several surveys have been carried out in preparation for installing the observatory. The resulting data set permits discussing the mound’s structure in some detail. Samples from the water column and intact hydrate outcrops show gas associated with the mound to be thermogenic. Lithologic and bio-geochemical studies have been done on sediment samples from gravity and box cores. Pore-fluid analyses carried out on these cores reveal that microbial sulfate reduction, anaerobic methane oxidation, and methanogenesis are important processes in the upper sediment. These microbial processes control the diffusive flux of methane into the overlying water column. The activity of microbes is also focused within patches near active vents. This is primarily dependent upon an active flux of hydrocarbon-rich fluids. The geochemical evidence suggests that the fluid flux waxes and wanes over time and that the microbial activity is sensitive to such change. Swath bathymetry by AUV combined with sea-floor video provides sub-meter resolution of features on the surface of the mound. Seismic reflection profiling with source-signature processing resolves layer thicknesses within the upper 200-300m of sediment to about a meter. Exploration-scale 3-D seismic imaging shows that a network of faults connects the mound to a salt diapir a few hundred meters below. Analyses of gases from fluid vents and hydrate outcrops imply that the faults act as migration conduits for hydrocarbons from a deep, hot reservoir. Source-signature-processed seismic traces provide normal-incidence reflection coefficients at 30,000 locations over the mound. Picking reflection horizons at each location allows a 3-D model of the mound’s interior to be constructed. This model provides a basis for understanding the movement of fluids within the mound.
APA, Harvard, Vancouver, ISO, and other styles
16

Malaret, Francisco, Christine Dalmazzone, and Anne Sinquin. "STUDY OF THE EFFECT OF COMMERCIAL KINETIC INHIBITORS ON GAS-HYDRATE FORMATION BY DSC: NON-CLASSICAL STRUCTURES?" 2008. http://hdl.handle.net/2429/1163.

Full text
Abstract:
A HP micro DSC-VII from SETARAM was used to study the efficiency and mechanism of action of commercial kinetic inhibitors for gas-hydrate formation in drilling fluids (OBM). The main objective was to find a suitable and reliable method of screening for these chemicals. The DSC technique consists in monitoring the heat exchanges, due to phase changes (here hydrate formation or dissociation), either versus time at constant temperature or versus temperature during a heating or cooling program. All products showed a gas hydrate dissociation temperature (at a given pressure) that matched with theoretical and previously published data. Nevertheless, for some additives two thermal signals were observed on the thermograms, one that corresponds to the theoretical value and another at a higher temperature (about +4°C). This second peak is insensitive to the heating rate applied for the dissociation, but the areas ratio (1stpeak/2nd peak) changes with the additive concentration and with the driving force applied during the hydrate formation. Additionally, additive/water and additive/water/THF systems were tested. In each case, two dissociation peaks were also measured. The results allow us to disregard any kinetic effects bonded to this thermal phenomenon, and lead us to infer that some additives may induce non-classical crystalline structures of gas hydrates. To verify these results, crystallographic and spectroscopic experiments must be performed. The stabilities of these new compounds are under study.
APA, Harvard, Vancouver, ISO, and other styles
17

Roach, Lisa Aretha Nyala. "Temporal Variations in the Compliance of Gas Hydrate Formations." Thesis, 2012. http://hdl.handle.net/1807/44081.

Full text
Abstract:
Seafloor compliance is a non-intrusive geophysical method sensitive to the shear modulus of the sediments below the seafloor. A compliance analysis requires the computation of the frequency dependent transfer function between the vertical stress, produced at the seafloor by the ultra low frequency passive source-infra-gravity waves, and the resulting displacement, related to velocity through the frequency. The displacement of the ocean floor is dependent on the elastic structure of the sediments and the compliance function is tuned to different depths, i.e., a change in the elastic parameters at a given depth is sensed by the compliance function at a particular frequency. In a gas hydrate system, the magnitude of the stiffness is a measure of the quantity of gas hydrates present. Gas hydrates contain immense stores of greenhouse gases making them relevant to climate change science, and represent an important potential alternative source of energy. Bullseye Vent is a gas hydrate system located in an area that has been intensively studied for over 2 decades and research results suggest that this system is evolving over time. A partnership with NEPTUNE Canada allowed for the investigation of this possible evolution. This thesis describes a compliance experiment configured for NEPTUNE Canada’s seafloor observatory and its failure. It also describes the use of 203 days of simultaneously logged pressure and velocity time-series data, measured by a Scripps differential pressure gauge, and a Güralp CMG-1T broadband seismometer on NEPTUNE Canada’s seismic station, respectively, to evaluate variations in sediment stiffness near Bullseye. The evaluation resulted in a (- 4.49 x10-3± 3.52 x 10-3) % change of the transfer function of 3rd October, 2010 and represents a 2.88% decrease in the stiffness of the sediments over the period. This thesis also outlines a new algorithm for calculating the static compliance of isotropic layered sediments.
APA, Harvard, Vancouver, ISO, and other styles
18

Haacke, R. Ross, Keun-Pil Park, Iulia Stoian, Roy D. Hyndman, and Ulrike Schmidt. "HIGH-FLUX GAS VENTING IN THE EAST SEA, KOREA, FROM ANALYSIS OF 2D SEISMIC REFLECTION DATA." 2008. http://hdl.handle.net/2429/1049.

Full text
Abstract:
Seismic reflection data from a multi-channel streamer deployed offshore Korea reveal evidence of hydrateforming gases being vented into the ocean. Numerous, localised vent structures are apparent from reduced seismic reflection amplitude, high seismic velocities, and reflector pull-up. These structures penetrate upward from the base of the gas hydrate stability zone (GHSZ) and are typically several hundred metres wide, and only a few hundred metres high. Underlying zones of reduced reflection amplitude and low velocities indicate the presence of gas many kilometers below the seabed, which migrates upward through near-vertical conduits to feed the vent structures. Where the local geology and underlying plumbing indicates a high flux of gases migrating through the system, the associated vent structures show the greatest change of reflector pull-up (the greatest concentration of hydrate) to be near the seabed; where the local geology and underlying plumbing indicates a moderate flux of gases, the greatest change of reflector pullup (the greatest concentration of hydrate) is near the base of the GHSZ. The distribution of gas hydrate in the high-flux gas vent is consistent with the recent salinity-driven model developed for a rapid and continuous flow of migrating gas, while the hydrate distribution in the lower-flux vent is consistent with a liquid-dominated system. The high-flux vent shows evidence of recent activity at the seabed, and it is likely that a substantial amount of gas is passing, or has passed, through this vent structure directly into the overlying ocean.
APA, Harvard, Vancouver, ISO, and other styles
19

He, Tao. "Mound and vent structures associated with gas hydrates offshore Vancouver Island: analysis of single-channel and deep-towed multichannel seismic data." Thesis, 2007. http://hdl.handle.net/1828/201.

Full text
Abstract:
The study focuses mainly on two gas hydrate-related targets, located on the Northern Cascadia Margin, offshore Vancouver Island: (1) a recently identified 70-80-m high carbonate mound, Cucumber Ridge, located ~3.5-km west of Ocean Drilling Program (ODP) Site 889 and Integrated Ocean Drilling Program (IODP) Site U1327, and (2) a large cold vent, Bullseye vent, which is up to ~500 m in diameter and was drilled by IODP at Site U1328. The objective of this thesis is to analyze seismic data that provide indicators of locally focused fluid flow and characteristics of the gas hydrate occurrence associated with these two features. A grid of closely-spaced single channel seismic (SCS) data was collected at Cucumber Ridge in July/August 2001, and deep-towed multichannel seismic (MCS) lines were collected using Deep-towed Acoustics and Geophysics System (DTAGS) at the Bullseye vent area and at Cucumber Ridge in October 2002. The high-resolution SCS data, with a frequency bandpass of 40-150 Hz, recorded coherent reflectivity down to about 400 m beneath the seafloor, and provide excellent images of the subseafloor structure of Cucumber Ridge and of the gas hydrate bottom-simulating reflector (BSR) beneath it. Cucumber Ridge is interpreted to have developed as a structural topographic high in the hanging wall of a large reverse fault formed at the base of the current seaward slope. The fault zone provides pathways for fluids including gas to migrate to the seafloor where diagenetic carbonate forms and cements the near-surface sediments. Over the seismic grid, heat flow was derived from the depth of the BSR. A simple 2-D analytical correction for theoretical heat flow variations due to topography is applied to the data. Across the mound, most of the variability in heat flow is explained by topographic effects, including a local 6 mW/m2 negative anomaly over the central mound and a large 20 mW/m2 positive anomaly over the mound steep side slope. However, just south of the mound, there is a 6-7 mW/m2 positive anomaly in a 2-km-long band that has predominantly flat seafloor. Most of this anomaly is probably unrelated to topographic effects, but rather likely due to warm upward fluid flow along faults or fracture zones. Towed ~300 m above seafloor, the high frequency (220-1k Hz) DTAGS signal can provide high vertical resolution images with increased lateral resolution. The major problems of DTAGS are significant nonlinear variations of the source depths and receivers locations. New routines were developed for optimal DTAGS data processing, mainly including (1) cable geometry estimation by node depths, direct arrivals and seasurface reflections using a Genetic Algorithm inversion method, (2) acoustic image stitching based on accurate relative-source positioning by crosscorrelation of redundant data between two adjacent shots, and (3) velocity inversion of wide-angle traveltimes using a nonlinear global grid search method. The final processed DTAGS images resolve multiple seismic blanking zones and fine details of subseafloor features in the slope sediments. At Bullseye vent, where a 35-m-thick near-surface massive hydrate layer was drilled at U1328, the DTAGS data resolved the upper part of layer as a dipping diffraction zone, likely corresponding to a fracture zone. The inverted velocity structure in upper 100 m sediments successfully revealed a 17-m-thick layer of high velocity (~1650 m/s) just below seafloor, probably related to carbonate presence. A local high velocity zone, with a positive velocity anomaly of ~40-80 m/s in the upper 50 m beneath seafloor, was observed over the ~100-m wide region between U1328 and the deepest part of a seafloor depression; the high velocity zone is consistent with the dipping diffraction zone in the DTAGS image and with the massive hydrate drilled at U1328.
APA, Harvard, Vancouver, ISO, and other styles
20

Gotthardt, Frank. "Struktur und Umwandlungen von Eisphasen in Gegenwart der Gase Helium, Neon und Argon." Doctoral thesis, 2001. http://hdl.handle.net/11858/00-1735-0000-0006-B564-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!