Academic literature on the topic 'Gas power plants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gas power plants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gas power plants"
Goossens, M. A. "Landfill gas power plants." Renewable Energy 9, no. 1-4 (September 1996): 1015–18. http://dx.doi.org/10.1016/0960-1481(96)88452-7.
Full textMoore, Keith, and Melbourne F. Giberson. "Reengineered Coal-Fired Power Plants Competitive With Gas Turbine Plants." Natural Gas & Electricity 34, no. 5 (November 15, 2017): 11–16. http://dx.doi.org/10.1002/gas.22021.
Full textLangston, Lee S. "Gas Turbines - Major Greenhouse Gas Inhibitors." Mechanical Engineering 137, no. 12 (December 1, 2015): 54–55. http://dx.doi.org/10.1115/1.2015-nov-5.
Full textKobernik, V. S. "Fuel consumption of thermal power technologies under maneuvering modes." Problems of General Energy 2020, no. 4 (December 22, 2020): 45–49. http://dx.doi.org/10.15407/pge2020.04.045.
Full textRogalev, N. D. "CARBON FOOTPRINT COMPARATIVE ANALYSIS FOR EXISTING AND PROMISING THERMAL POWER PLANTS." Eurasian Physical Technical Journal 19, no. 4 (December 26, 2022): 34–43. http://dx.doi.org/10.31489/2022no4/34-43.
Full textPenner, S. S. "Combined power plants, including Combined Cycle Gas Turbine (CCGT) plants." Energy 18, no. 6 (June 1993): 703. http://dx.doi.org/10.1016/0360-5442(93)90049-j.
Full textUlloa, Carlos, Guillermo Rey, Ángel Sánchez, and Ángeles Cancela. "Power Plants, Steam and Gas Turbines WebQuest." Education Sciences 2, no. 4 (October 24, 2012): 180–89. http://dx.doi.org/10.3390/educsci2040180.
Full textRochman, C., D. Nasrudin, A. R. Juwita, and N. Fitriyanti. "Student physics literacy on gas power plants." Journal of Physics: Conference Series 1918, no. 5 (June 1, 2021): 052063. http://dx.doi.org/10.1088/1742-6596/1918/5/052063.
Full textSaturday, Ebigenibo Genuine, and Tamunobelema Justice Okumgba. "Performance Assessment of Gas Turbine Power Plants." Saudi Journal of Engineering and Technology 5, no. 6 (June 18, 2020): 265–70. http://dx.doi.org/10.36348/sjet.2020.v05i06.002.
Full textDoichinova, Maria, Petya Popova-Krumova, Christo Boyadjiev, and Boyan Boyadjiev. "Gas Purification from SO2in Thermal Power Plants." Chemical Engineering & Technology 37, no. 7 (June 25, 2014): 1243–50. http://dx.doi.org/10.1002/ceat.201300612.
Full textDissertations / Theses on the topic "Gas power plants"
Austrem, Inger. "The exergy efficiency of hydrogen-fired gas power plants." Thesis, Norwegian University of Science and Technology, Industrial Ecology Programme, 2003. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1427.
Full textThe work includes an exergy analysis of the steam reforming process for conversion of natural gas to hydrogen rich gas for use in hydrogen-fired gas power plant. Based on the analysis two sustainability indicators were calculated, the exergetic efficiency and the renewability fraction. The same analysis has been performed for a system using auto thermal reformer (Zvolinschi, Kjelstrup, Bolland and van der Kooi 2002) instead of steam reformer, and the results were compared in order to find the better system of the two based on the indicators. The system using an auto thermal reformer had the best exergetic efficiency, and the renewability fraction was 0 for both systems. One should be aware of insecurities in the results, mainly related to assumptions and limitations with respect to the simulation process.
The two indicators were proposed by Zvolinschi et. al, as a contribution to the introduction of exergy analysis as a tool for industrial ecology. It was concluded that this will be a useful contribution, especially when using system boundaries that include the closure of material cycles. Then one can also calculate the third indicator proposed by Zvolinschi et al., namely the environmental efficiency.
Spelling, James. "Hybrid Solar Gas-Turbine Power Plants : A Thermoeconomic Analysis." Doctoral thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121315.
Full textHållbar energiförsörjning är för närvarande en av de viktigaste frågorna förmänskligheten. Koncentrerad solenergi är nu etablerad som en tillförlitlig källaav förnybar energi. Den reglerbara karaktären hos tekniken gör den specielltintressant för uppbyggnaden av ett framtida koldioxidsnålt elsystem.Kostnaden för elektricitet från nuvarande termiska solkraftverk är hög trottsflera decennier av utveckling. Ett genombrått på tekniknivå krävs för att drivaned kostnaderna. Sol-gasturbiner är ett av de mest lovande alternativen, somger en ökad verkningsgrad samtidigt som vattenkonsumtionen reducerasdrastiskt. Sol-gasturbintekniken gör det möjligt att blandköra solenergi ochandra bränslen för att möta efterfrågan vid alla tidpunkter, en attraktiv aspekt iförhållande till alternativa lösningar.Uppbyggnaden av första generationens kommersiella hybrida solgasturbinkraftverkförsvåras dock av bristen på etablerade och standardiseradekraftverkskonfigurationer. Dessa ger planeraren ett stort antal valmöjlighetersom underlag för beslutsfattande. Termoekonomiska studier har genomförtsför ett flertal olika kraftverkskonfigurationer, däribland kraftverk med enkelcykel, kombikraftverk samt möjligheten att utnyttja termisk energilagring.Pareto-optimala konfigurationer har identifierats med hjälp av multiobjektsoptimeringför att belysa balansen mellan kostnader och utsläpp.Analysen av det enkla hybrida sol-gasturbinkraftverket visade attelektricitetskostnaden hållits på en låg nivå, men att den möjliga minskningen avkoldioxidutsläpp är relativt liten. Dessutom identifierades en inre balans mellanatt bibehålla en hög verkningsgrad hos konfigurationen och en hög andelsolenergi i produktionen. Andelen av solenergi i gasturbinen överskred aldrig63% på årlig bas, även med optimerade kraftverkskonfigurationer.Två förbättringar föreslås för att övervinna begränsningarna hos kraftverk medenkel cykel: integration av termisk energilagring samt nyttjande avkombikraftverkskonfigurationer. Termisk energilagring tillåter en ökad andelsolenergi i driften och reducerar koldioxidutsläppen drastiskt, medan denytterligare cykeln hos kombikraftverket reducerar elektricitetskostnaden.Kombinationen av dessa förbättringar ger den bästa prestandan, med enreduktion av koldioxidutsläppen på upp till 34% och reducerade elektricitetskostnaderpå upp till 22% i jämförelse med andra kombinationer avkonventionella kraftverkskonfigurationer.
QC 20130503
Hu, Yukun. "CO2 capture from oxy-fuel combustion power plants." Licentiate thesis, KTH, Energiprocesser, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-48666.
Full textQC 20111123
Al-Hamdan, Qusai Zuhair Mohammed. "Design criteria and performance of gas turbines in a combined power and power (CPP) plant for electrical power generation." Thesis, University of Hertfordshire, 2002. http://hdl.handle.net/2299/14041.
Full textBashadi, Sarah (Sarah Omer). "Using auxiliary gas power for CCS energy needs in retrofitted coal power plants." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59667.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 93-96).
Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal integration of its supercritical steam cycle with the stripper reboiler to supply the energy needed for solvent regeneration and CO2 compression. This study finds that using an auxiliary natural gas turbine plant to meet the energetic demands of carbon capture and compression may make retrofits more attractive compared to using thermal integration in some circumstances. Natural gas auxiliary plants increase the power output of the base plant and reduce technological risk associated with CCS, but require favorable natural gas prices and regional electricity demand for excess electricity to make using an auxiliary plant more desirable. Three different auxiliary plant technologies were compared to integration for 90% capture from an existing, 500 MW supercritical coal plant. CO2 capture and compression is simulated using Aspen Plus and a monoethylamine (MEA) absorption process. Thermoflow software is used to simulate three gas plant technologies. The three technologies assessed are the gas turbine (GT) with heat recovery steam generator (HRSG), gas turbine with HRSG and back pressure steam turbine, and natural gas boiler with back pressure steam turbine. The capital cost of the MEA unit is estimated using the Aspen Icarus Process Evaluator, and the capital cost of the external GT plants are estimated using the Thermoflow Plant Engineering and Cost Estimator. The gas turbine options are found to lead to electricity costs similar to integration, but their performance is highly sensitive to the price of natural gas and the economic impact of integration. Using a GT with a HRSG only has a lower capital cost but generates less excess electricity than the GT with HRSG and back pressure steam turbine. In order to generate enough steam for the reboiler, a significant amount of excess power was produced using both gas turbine configurations. This excess power could be attractive for coal plants located in regions with increasing electricity demand. An alternate capture plant scenario where a greater demand for power exists relative to steam is also considered. The economics of using auxiliary plant power improve slightly under this alternate energy profile scenario, but the most important factors affecting desirability of the auxiliary plant retrofit remain the cost of natural gas, the full cost of integration, and the potential for sale of excess electricity.
by Sarah Bashadi.
S.M.in Technology and Policy
Russ, Matthias. "Elaboration of Thermo-Economic Models of Solar Gas-Turbine Power Plants." Thesis, KTH, Energiteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-72483.
Full textTsoudis, Evangelos. "Technoeconomic Environmental and Risk Analysis of Marine Gas Turbine Power Plants." Thesis, Cranfield University, 2008. http://hdl.handle.net/1826/3535.
Full textKaldahl, Jonas Aase, and Kristoffer Ingebrigtsen. "Sequential investment in gas fired power plants : A real options analysis." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for industriell økonomi og teknologiledelse, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25908.
Full textYeung, Hon-chung. "Clean technology advancement in the power industry /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18734765.
Full textBerry, David A. "Investigation of hot gas desulfurization utilizing a transport reactor." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=500.
Full textTitle from document title page. Document formatted into pages; contains vi, 101 p. : ill. (some col.) Includes abstract. Includes bibliographical references (p. 82-85).
Books on the topic "Gas power plants"
Kehlhofer, Rolf. Combined-cycle gas & steam turbine power plants. Lilburn, GA: Fairmont Press, 1991.
Find full text1951-, Kehlhofer Rolf, ed. Combined-cycle gas & steam turbine power plants. 3rd ed. Tulsa, Okla: Penwell, 2008.
Find full text1951-, Kehlhofer Rolf, and Kehlhofer Rolf 1951-, eds. Combined-cycle gas & steam turbine power plants. 2nd ed. Tusla, Okla: PennWell, 1999.
Find full textInc, Energy Consulting. Gas-fired cogeneration plant in Stettler. Calgary, Alta: Energy Resources Conservation Board, 1993.
Find full textCommission, California Energy. Comparative analysis of future gas and electric infrastructure options in the California/Mexico border region: Consultant report. [Sacramento, Calif.]: California Energy Commission, 2008.
Find full textCorfee, Karin. Current status, plans, and constraints related to expansion of natural gas-fired power plants, pipelines and bulk electric transmission in the California/Mexico border region. Sacramento, Calif.]: California Energy Commission, 2008.
Find full textLäuferts, Monika. The Johannesburg Gas Works. Johannesburg: Fourthwall Books, 2015.
Find full textJames, Newcomb, and Cambridge Energy Research Associates, eds. Generation gap: U.S. natural gas and electric power in the 1990s. Cambridge, MA (Charles Square, 20 University Rd., Cambridge 02138): Cambridge Energy Research Associates, 1991.
Find full textSangyōshō, Japan Keizai, ed. Feasibility study report CNG power generation project at Bali, Indonesia. [Tokyo]: Ministry of Economy, Trade and Industry, 2006.
Find full textK, Sudarshan, Kaushish S. P, Bakshi A. S, and India. Central Board of Irrigation and Power., eds. Compendium of gas based generating stations in India. New Delhi: Central Board of Irrigation and Power, 2002.
Find full textBook chapters on the topic "Gas power plants"
Ibrahim, Jimoh, Christoph Loch, and Kishore Sengupta. "Two Power Plants." In How Megaprojects Are Damaging Nigeria and How to Fix It, 151–60. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96474-0_8.
Full textYang, Zongming, Huabing Wen, Xinglin Yang, Viktor Gorbov, Vira Mitienkova, and Serhiy Serbin. "Marine Gas Turbine Power Plants." In Marine Power Plant, 249–322. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4935-3_6.
Full textKanoglu, Mehmet, and Ali Bolatturk. "Thermodynamic Analysis of Geothermal Power Plants." In Alternative Energy and Shale Gas Encyclopedia, 290–300. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119066354.ch28.
Full textWehowsky, P., D. Stahl, J. de Marcos, and L. Crespo. "The Gas-Cooled Solar Tower Project ‘Gast’." In Thermo-Mechanical Solar Power Plants, 433–38. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5402-1_64.
Full textGuan, Zhiqiang, Kamel Hooman, and Hal Gurgenci. "Dry Cooling Towers for Geothermal Power Plants." In Alternative Energy and Shale Gas Encyclopedia, 333–49. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119066354.ch32.
Full textYang, Xinglin, Zongming Yang, Huabing Wen, Viktor Gorbov, Vira Mitienkova, and Serhiy Serbin. "Liquefied Natural Gas as Marine Fuel." In Alternative Fuels in Ship Power Plants, 83–110. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4850-9_3.
Full textSyam, Dhruba J. "Gas Turbine Driven Thermal Power Plants (GTG Plants) Combined Cycle Power Plants (CCPP) Diesel Generating Sets (DG Sets)." In Electrical Power Generation, 49–64. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003403128-4.
Full textEl Hefni, Baligh, and Daniel Bouskela. "Gas Turbine Modeling." In Modeling and Simulation of Thermal Power Plants with ThermoSysPro, 297–309. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05105-1_11.
Full textSisti, G., and G. Ferrari Aggradi. "Expert Diagnostic System for Gas Turbines." In Diagnostics of Rotating Machines in Power Plants, 99–109. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-2706-3_7.
Full textZohuri, Bahman, and Patrick McDaniel. "Open Air-Brayton Gas Power Cycle." In Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants, 175–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70551-4_8.
Full textConference papers on the topic "Gas power plants"
Ghezel-Ayagh, Hossein, Joseph M. Daly, and Zhao-Hui Wang. "Advances in Direct Fuel Cell/Gas Turbine Power Plants." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38941.
Full textMita, T., H. Ohara, S. Hoizumi, and N. Ando. "Construction of Combined Cycle Power Generation Plants for Kawagoe Power Station by Chubu Electric Power." In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-492.
Full textGambini, Marco, and Michela Vellini. "Natural Gas Decarbonisation Technologies for Advanced Power Plants." In ASME 2006 Power Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/power2006-88105.
Full textLugand, Paul, and Yves Boissenin. "VEGA Combined Cycle Power Plants." In ASME 1985 Beijing International Gas Turbine Symposium and Exposition. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-igt-6.
Full textIncer-Valverde, Jimena, Oyeniyi Olaniyi, Tatiana Morosuk, and George Tsatsaronis. "Evaluation of “Natural Gas/Hydrogen” Mixtures for Power to Gas Application." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-71418.
Full textSchemenau, Wolfgang, and Ulrich Häuser. "The Extension of Gas Turbine Power Plants to Combined Cycle Power Stations." In ASME 1986 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1986. http://dx.doi.org/10.1115/86-gt-64.
Full textTuccillo, R., G. Fontana, and E. Jannelli. "Coal-Derived Gas Utilization in Combined Gas-Steam Cycle Power Plants." In ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-366.
Full textHejazi, Amin, and Habib Rajabi Mashhadi. "Effects of Natural Gas network on optimal operation of gas-fired power plants." In 2016 6th Conference on Thermal Power Plants (CTPP). IEEE, 2016. http://dx.doi.org/10.1109/ctpp.2016.7483061.
Full textGanjikunta, Jaya. "Design Considerations for Syngas Turbine Power Plants." In ASME 2015 Gas Turbine India Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gtindia2015-1261.
Full textYadav, R., Sunil Kumar Jumhare, Pradeep Kumar, and Samir Saraswati. "Thermodynamic Analysis of Intercooled Gas-Steam Combined and Steam Injected Gas Turbine Power Plants." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-54097.
Full textReports on the topic "Gas power plants"
Arbaje, Paul, and Mark Specht. Gas Malfunction: Calling into Question the Reliability of Gas Power Plants. Union of Concerned Scientists, January 2024. http://dx.doi.org/10.47923/2024.15312.
Full textMarinkovic, Catalina, and Adrien Vogt-Schilb. Is Energy Planning Consistent with Climate Goals? Assessing Future Emissions from Power Plants in Latin America and the Caribbean. Inter-American Development Bank, October 2023. http://dx.doi.org/10.18235/0005183.
Full textSkone, Timothy J., Greg Schivley, Matt Jamieson, Joe Marriott, Greg Cooney, James Littlefield, Michele Mutchek, Michelle Krynock, and Chung Yan Shih. Life Cycle Analysis: Natural Gas Combined Cycle (NGCC) Power Plants. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1562914.
Full textSudhoff, F. A., and G. Steinfeld. Intermediate-sized natural gas fueled carbonate fuel cell power plants. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/10116392.
Full textSudhoff, F. A., and D. K. Fleming. Intermediate-sized natural gas fueled carbonate fuel cell power plants. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10116397.
Full textCvetic, Patricia, Kyle Buchheit, Norma Kuehn, Alex Zoelle, Mark Woods, Gregory Hackett, and Timothy Fout. Natural Gas Combined Cycle (NGCC) Power Plants with Carbon Capture and Exhaust Gas Recycle (EGR). Office of Scientific and Technical Information (OSTI), October 2023. http://dx.doi.org/10.2172/2251495.
Full textKuehn, Norma J., Kajal Mukherjee, Paul Phiambolis, Lora L. Pinkerton, Elsy Varghese, and Mark C. Woods. Current and Future Technologies for Natural Gas Combined Cycle (NGCC) Power Plants. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1490262.
Full textLeptinsky, Sarah, Tommy Schmitt, Alex Zoelle, Sally Homsy, Mark Woods, Travis Shultz, Jeff Hoffmann, and Gregory Hackett. Cost and Performance Projections for Coal- and Natural Gas-Fired Power Plants. Office of Scientific and Technical Information (OSTI), May 2023. http://dx.doi.org/10.2172/1988750.
Full textJeffrey C. Quick, David E. Tabet, Sharon Wakefield, and Roger L. Bon. Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/909152.
Full textJeffrey C. Quick, David E. Tabet, Sharon Wakefield, and Roger L. Bon. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/909153.
Full text