Journal articles on the topic 'Gas sensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Gas sensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
VM, Aroutiounian. "Hydrogen Peroxide Gas Sensors." Physical Science & Biophysics Journal 5, no. 2 (2021): 1–22. http://dx.doi.org/10.23880/psbj-16000194.
Full textStetter, Joseph R., and Tamara Russ. "(Invited) Past, Present and Future for Electrochemical Gas Sensors in Energy Applications." ECS Meeting Abstracts MA2024-01, no. 51 (August 9, 2024): 2750. http://dx.doi.org/10.1149/ma2024-01512750mtgabs.
Full textGuo, Tao, Tianhao Zhou, Qiulin Tan, Qianqian Guo, Fengxiang Lu, and Jijun Xiong. "A Room-Temperature CNT/Fe3O4 Based Passive Wireless Gas Sensor." Sensors 18, no. 10 (October 19, 2018): 3542. http://dx.doi.org/10.3390/s18103542.
Full textAndo, Masanori, Hideya Kawasaki, Satoru Tamura, Yoshikazu Haramoto, and Yasushi Shigeri. "Recent Advances in Gas Sensing Technology Using Non-Oxide II-VI Semiconductors CdS, CdSe, and CdTe." Chemosensors 10, no. 11 (November 15, 2022): 482. http://dx.doi.org/10.3390/chemosensors10110482.
Full textSu, Kuo Lan, Sheng Wen Shiau, Yi Lin Liao, and J. H. Guo. "Bayesian Estimation Algorithm Applying in Gas Detection Modules." Applied Mechanics and Materials 284-287 (January 2013): 1764–69. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.1764.
Full textHadi, Amran Abdul, Nurulain Nadhirah Shaipuzaman, Mohd Amir Shahlan Mohd Aspar, Mohd Rashidi Salim, and Hadi Manap. "Advancements in ammonia gas detection: a comparative study of sensor technologies." International Journal of Electrical and Computer Engineering (IJECE) 14, no. 5 (October 1, 2024): 5107. http://dx.doi.org/10.11591/ijece.v14i5.pp5107-5116.
Full textKozubovskiy, V. R. "Sensors for fire gas detectors." Semiconductor Physics Quantum Electronics and Optoelectronics 14, no. 3 (September 25, 2011): 330–33. http://dx.doi.org/10.15407/spqeo14.03.330.
Full textRahbarpour, S., S. Sajed, and H. Ghafoorifard. "Temperature Dependence of Responses in Metal Oxide Gas Sensors." Key Engineering Materials 644 (May 2015): 181–84. http://dx.doi.org/10.4028/www.scientific.net/kem.644.181.
Full textAbdullah, Abdulnasser Nabil, Kamarulzaman Kamarudin, Latifah Munirah Kamarudin, Abdul Hamid Adom, Syed Muhammad Mamduh, Zaffry Hadi Mohd Juffry, and Victor Hernandez Bennetts. "Correction Model for Metal Oxide Sensor Drift Caused by Ambient Temperature and Humidity." Sensors 22, no. 9 (April 26, 2022): 3301. http://dx.doi.org/10.3390/s22093301.
Full textMukhtarov, Farrukh, Nurmaxamad Jo'rayev, Sanjar Zokirov, Munira Sadikova, Azamatjon Muhammadjonov, and Nargizakhon Iskandarova. "Analysis of automation through sensors through gas sensors in different directions." E3S Web of Conferences 508 (2024): 06004. http://dx.doi.org/10.1051/e3sconf/202450806004.
Full textSui, Ran, Erpan Zhang, Xiaoshui Tang, Wenjun Yan, Yun Liu, and Houpan Zhou. "Thermal Modulation of Resistance Gas Sensor Facilitates Recognition of Fragrance Odors." Chemosensors 12, no. 6 (June 5, 2024): 101. http://dx.doi.org/10.3390/chemosensors12060101.
Full textKotarski, Mateusz, and Janusz Smulko. "Fluctuation Enhanced Gas Sensing at Modulated Temperature of Gas Sensor." International Journal of Measurement Technologies and Instrumentation Engineering 2, no. 2 (April 2012): 41–52. http://dx.doi.org/10.4018/ijmtie.2012040104.
Full textHoneycutt, Wesley T., M. Tyler Ley, and Nicholas F. Materer. "Precision and Limits of Detection for Selected Commercially Available, Low-Cost Carbon Dioxide and Methane Gas Sensors." Sensors 19, no. 14 (July 18, 2019): 3157. http://dx.doi.org/10.3390/s19143157.
Full textYang, Taicong, Fengchun Tian, James A. Covington, Feng Xu, Yi Xu, Anyan Jiang, Junhui Qian, Ran Liu, Zichen Wang, and Yangfan Huang. "Resistance-Capacitance Gas Sensor Based on Fractal Geometry." Chemosensors 7, no. 3 (July 15, 2019): 31. http://dx.doi.org/10.3390/chemosensors7030031.
Full textMing, An Jie, Yao Hui Ren, Yu Zhang, Le Zhang, Wen Bo Zhang, Zhen Xin Tan, Wen Ou, et al. "A Compact Infrared Gas Sensor Based on an Asymmetry Gas Cavity." Key Engineering Materials 645-646 (May 2015): 1111–14. http://dx.doi.org/10.4028/www.scientific.net/kem.645-646.1111.
Full textDougami, Naganori, Takeshi Miyata, Taishi Orita, Tadashi Nakatani, Rui Kakunaka, Takafumi Taniguchi, Hirokazu Mitsuhashi, and Shoichiro Nakao. "Hot-wire-type micromachined chemiresistive gas sensors for battery-powered city gas alarms." Japanese Journal of Applied Physics 64, no. 1 (January 1, 2025): 01SP13. https://doi.org/10.35848/1347-4065/ada29c.
Full textKorotcenkov, Ghenadii. "Electrospun Metal Oxide Nanofibers and Their Сonductometric Gas Sensor Application. Part 2: Gas Sensors and Their Advantages and Limitations." Nanomaterials 11, no. 6 (June 12, 2021): 1555. http://dx.doi.org/10.3390/nano11061555.
Full textImmanuel, Phillip Nathaniel, Song-Jeng Huang, Yudhistira Adityawardhana, and Yi-Kuang Yen. "A Review of Paper-Based Sensors for Gas, Ion, and Biological Detection." Coatings 13, no. 8 (July 28, 2023): 1326. http://dx.doi.org/10.3390/coatings13081326.
Full textSensors, Gas. "Gas sensors." Hyomen Kagaku 10, no. 11 (1989): 925–32. http://dx.doi.org/10.1380/jsssj.10.925.
Full textKocache, Ray. "Gas sensors." Sensor Review 14, no. 1 (March 1994): 8–12. http://dx.doi.org/10.1108/eum0000000004256.
Full textYamazoe, Noboru. "Gas Sensors." IEEJ Transactions on Sensors and Micromachines 115, no. 1 (1995): 30–33. http://dx.doi.org/10.1541/ieejsmas.115.30.
Full textKudo, Tetsuichi. "Gas sensors." Catalysis Today 8, no. 2 (December 1990): 263–74. http://dx.doi.org/10.1016/0920-5861(90)87022-u.
Full textNazemi, Haleh, Aashish Joseph, Jaewoo Park, and Arezoo Emadi. "Advanced Micro- and Nano-Gas Sensor Technology: A Review." Sensors 19, no. 6 (March 14, 2019): 1285. http://dx.doi.org/10.3390/s19061285.
Full textBaur, Tobias, Manuel Bastuck, Caroline Schultealbert, Tilman Sauerwald, and Andreas Schütze. "Random gas mixtures for efficient gas sensor calibration." Journal of Sensors and Sensor Systems 9, no. 2 (November 27, 2020): 411–24. http://dx.doi.org/10.5194/jsss-9-411-2020.
Full textKim, Sohyeon, Ju-Eun Yang, Yoon-Seo Park, Minwoo Park, Sang-Jo Kim, and Kyoung-Kook Kim. "Convergence Gas Sensors with One-Dimensional Nanotubes and Pt Nanoparticles Based on Ultraviolet Photonic Energy for Room-Temperature NO2 Gas Sensing." Nanomaterials 13, no. 20 (October 17, 2023): 2780. http://dx.doi.org/10.3390/nano13202780.
Full textRyu, Jongwon, Seob Shim, Jeongin Song, Jaeseo Park, Ha Sul Kim, Seoung-Ki Lee, Jae Cheol Shin, Jihun Mun, and Sang-Woo Kang. "Effect of Measurement System Configuration and Operating Conditions on 2D Material-Based Gas Sensor Sensitivity." Nanomaterials 13, no. 3 (January 31, 2023): 573. http://dx.doi.org/10.3390/nano13030573.
Full textBondar, O. G., E. O. Brezhneva, O. G. Dobroserdov, K. G. Andreev, and N. V. Polyakov. "Synthesis and Parameterization of Gas Sensor Models." Proceedings of the Southwest State University 25, no. 1 (May 30, 2021): 138–61. http://dx.doi.org/10.21869/2223-1560-2021-25-1-138-161.
Full textXu, Hong Yan, Teng Teng Wu, Wen Ru Li, Huan Qin Yu, Ting Zhai, Jie Qiang Wang, and Bing Qiang Cao. "Low-Working-Temperature and High-NO2-Sensing Properties of SnO2/PANI Hybrid Material Sensors." Key Engineering Materials 727 (January 2017): 503–7. http://dx.doi.org/10.4028/www.scientific.net/kem.727.503.
Full textPotyrailo, Radislav A., Brian Scherer, Baokai Cheng, Majid Nayeri, Shiyao Shan, Janell Crowder, Richard St-Pierre, Joleyn Brewer, and Renner Ruffalo. "First-Order Individual Gas Sensors as Next Generation Reliable Analytical Instruments." Applied Spectroscopy 77, no. 8 (August 2023): 860–72. http://dx.doi.org/10.1177/00037028231186821.
Full textMa, Minzhen, Xinting Yang, Xiaoguo Ying, Ce Shi, Zhixin Jia, and Boce Jia. "Applications of Gas Sensing in Food Quality Detection: A Review." Foods 12, no. 21 (October 30, 2023): 3966. http://dx.doi.org/10.3390/foods12213966.
Full textTang, Xiaohui, Marc Debliquy, Driss Lahem, Yiyi Yan, and Jean-Pierre Raskin. "A Review on Functionalized Graphene Sensors for Detection of Ammonia." Sensors 21, no. 4 (February 19, 2021): 1443. http://dx.doi.org/10.3390/s21041443.
Full textHsiao, Chun Ching, and Li Siang Luo. "Gas Sensors Fabricated by Aerosol Deposition." Applied Mechanics and Materials 541-542 (March 2014): 151–54. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.151.
Full textChoi, Hee-Jung, Soon-Hwan Kwon, Won-Seok Lee, Kwang-Gyun Im, Tae-Hyun Kim, Beom-Rae Noh, Sunghoon Park, Semi Oh, and Kyoung-Kook Kim. "Ultraviolet Photoactivated Room Temperature NO2 Gas Sensor of ZnO Hemitubes and Nanotubes Covered with TiO2 Nanoparticles." Nanomaterials 10, no. 3 (March 4, 2020): 462. http://dx.doi.org/10.3390/nano10030462.
Full textMaslennikov, Aleksandr, Ilya Zubkov, and S. Kovalenko. "Optical chemical sensor for solving gas analysis tasks." MATEC Web of Conferences 212 (2018): 01029. http://dx.doi.org/10.1051/matecconf/201821201029.
Full textAhmad, Ibtisam, Mohsin Ali, and Hee-Dong Kim. "Role of en-APTAS Membranes in Enhancing the NO2 Gas-Sensing Characteristics of Carbon Nanotube/ZnO-Based Memristor Gas Sensors." Biosensors 14, no. 12 (December 20, 2024): 635. https://doi.org/10.3390/bios14120635.
Full textLuo, Jianghua, Yishan Jiang, Feng Xiao, Xin Zhao, and Zheng Xie. "Highly Sensitive p + n Metal Oxide Sensor Array for Low-Concentration Gas Detection." Sensors 18, no. 8 (August 17, 2018): 2710. http://dx.doi.org/10.3390/s18082710.
Full textHuang, Bo, Yanqiong Li, and Wen Zeng. "Application of Metal-Organic Framework-Based Composites for Gas Sensing and Effects of Synthesis Strategies on Gas-Sensitive Performance." Chemosensors 9, no. 8 (August 14, 2021): 226. http://dx.doi.org/10.3390/chemosensors9080226.
Full textQin, Song, Lu Qu, Dong Wei, Bao Cai Zhang, and Nan Wan Qiu. "Research and Practice of New Gas Sensors Based Materials on Internet of Things." Advanced Materials Research 301-303 (July 2011): 497–502. http://dx.doi.org/10.4028/www.scientific.net/amr.301-303.497.
Full textCao, Rongtao, Jingyu Wu, Yang Yang, Mohan Wang, Yuqi Li, and Kevin P. Chen. "A High-Temperature Multipoint Hydrogen Sensor Using an Intrinsic Fabry–Perot Interferometer in Optical Fiber." Photonics 10, no. 3 (March 8, 2023): 284. http://dx.doi.org/10.3390/photonics10030284.
Full textDmitrzak, Marta, Pawel Kalinowski, Piotr Jasinski, and Grzegorz Jasinski. "Identification of defected sensors in an array of amperometric gas sensors." Sensor Review 42, no. 2 (December 17, 2021): 195–203. http://dx.doi.org/10.1108/sr-10-2021-0348.
Full textCämmerer, Malcolm, Thomas Mayer, Stefanie Penzel, Mathias Rudolph, and Helko Borsdorf. "Application of Low-Cost Electrochemical Sensors to Aqueous Systems to Allow Automated Determination of NH3 and H2S in Water." Sensors 20, no. 10 (May 15, 2020): 2814. http://dx.doi.org/10.3390/s20102814.
Full textQuelennec, Aurore, Éric Duchesne, Hélène Frémont, and Dominique Drouin. "Source Separation Using Sensor’s Frequency Response: Theory and Practice on Carbon Nanotubes Sensors." Sensors 19, no. 15 (August 2, 2019): 3389. http://dx.doi.org/10.3390/s19153389.
Full textChen, Xiaohu, Ryan Wreyford, and Noushin Nasiri. "Recent Advances in Ethylene Gas Detection." Materials 15, no. 17 (August 23, 2022): 5813. http://dx.doi.org/10.3390/ma15175813.
Full textXu, Hong Yan, Xing Qiao Chen, Ling Zhan Fang, and Bing Qiang Cao. "Preparation and Characterization of Cerium-Doped Tin Oxide Gas Sensors." Advanced Materials Research 306-307 (August 2011): 1450–55. http://dx.doi.org/10.4028/www.scientific.net/amr.306-307.1450.
Full textYadav, Anshul, and Niraj Sinha. "Nanomaterial-based gas sensors: A review on experimental and theoretical studies." Materials Express 12, no. 1 (January 1, 2022): 1–33. http://dx.doi.org/10.1166/mex.2022.2121.
Full textSembodo, Shafanda Nabil, Nazrul Effendy, Kenny Dwiantoro, and Nidlom Muddin. "Radial basis network estimator of oxygen content in the flue gas of debutanizer reboiler." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 3 (June 1, 2022): 3044. http://dx.doi.org/10.11591/ijece.v12i3.pp3044-3050.
Full textPeng, Kaiyan, Qiang Li, Mingwei Ma, Na Li, Haoran Sheng, Haoyu Li, Yujie Huang, and Feng Yun. "Acidic Gas Determination Using Indium Tin Oxide-Based Gas Sensors." Sensors 24, no. 4 (February 17, 2024): 1286. http://dx.doi.org/10.3390/s24041286.
Full textLee, Jae-Hyoung, Thanh-Binh Nguyen, Duy-Khoi Nguyen, Jae-Hun Kim, Jin-Young Kim, Bach Thang Phan, and Sang Sub Kim. "Gas Sensing Properties of Mg-Incorporated Metal–Organic Frameworks." Sensors 19, no. 15 (July 29, 2019): 3323. http://dx.doi.org/10.3390/s19153323.
Full textQin, Song, Bao Cai Zhang, Dong Wei, Lu Qu, and Nan Wan Qiu. "Research and Development of Thin Film Gas Sensor and its GPRS Wireless Sensor Based on Internet of Things." Advanced Materials Research 301-303 (July 2011): 503–8. http://dx.doi.org/10.4028/www.scientific.net/amr.301-303.503.
Full textKim, June Young, Igor Kaganovich, and Hyo-Chang Lee. "Review of the gas breakdown physics and nanomaterial-based ionization gas sensors and their applications." Plasma Sources Science and Technology 31, no. 3 (March 1, 2022): 033001. http://dx.doi.org/10.1088/1361-6595/ac4574.
Full text