Journal articles on the topic 'Gas-source molecular-beam epitaxy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Gas-source molecular-beam epitaxy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Panish, M. B., and H. Temkin. "Gas-Source Molecular Beam Epitaxy." Annual Review of Materials Science 19, no. 1 (1989): 209–29. http://dx.doi.org/10.1146/annurev.ms.19.080189.001233.
Full textDavies, G. J., P. J. Skevington, E. G. Scott, C. L. French, and J. S. Foord. "Some comparisons of chemical beam epitaxy with gas source molecular beam epitaxy." Journal of Crystal Growth 107, no. 1-4 (1991): 999–1008. http://dx.doi.org/10.1016/0022-0248(91)90593-t.
Full textKondow, M., K. Uomi, A. Niwa, et al. "GaNAs grown by gas source molecular beam epitaxy." Solid-State Electronics 41, no. 2 (1997): 209–12. http://dx.doi.org/10.1016/s0038-1101(96)00168-2.
Full textOhbu, Isao, Yuta Tezen, Saburo Ataka, and Teruo Mozume. "AsH3Cracking Characteristics in Gas Source Molecular Beam Epitaxy." Japanese Journal of Applied Physics 29, Part 1, No. 12 (1990): 2768–73. http://dx.doi.org/10.1143/jjap.29.2768.
Full textHirayama, Hiroyuki, Toru Tatsumi, Atsushi Ogura, and Naoaki Aizaki. "Gas source silicon molecular beam epitaxy using silane." Applied Physics Letters 51, no. 26 (1987): 2213–15. http://dx.doi.org/10.1063/1.99009.
Full textHirayama, Hiroyuki, Toru Tatsumi, and Naoaki Aizaki. "Gas source silicon molecular beam epitaxy using disilane." Applied Physics Letters 52, no. 18 (1988): 1484–86. http://dx.doi.org/10.1063/1.99106.
Full textGoldstein, L., C. Starck, J. Y. Emery, et al. "Optoelectronic devices by gas source molecular beam epitaxy." Journal of Crystal Growth 120, no. 1-4 (1992): 157–61. http://dx.doi.org/10.1016/0022-0248(92)90382-s.
Full textIshikawa, Hideaki, Hideyasu Ando, Kazuhiro Kondo, et al. "Metalorganic gas control system for gas source molecular beam epitaxy." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 8, no. 2 (1990): 805–10. http://dx.doi.org/10.1116/1.576922.
Full textWan, J., Y. H. Luo, J. L. Liu, et al. "Carbon nanotubes grown by gas source molecular beam epitaxy." Journal of Crystal Growth 227-228 (July 2001): 820–24. http://dx.doi.org/10.1016/s0022-0248(01)00892-2.
Full textZhao, Y. "Effects of arsenic in gas-source molecular beam epitaxy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16, no. 3 (1998): 1297. http://dx.doi.org/10.1116/1.590004.
Full textDavis, R. F., M. J. Paisley, Z. Sitar, et al. "Gas-source molecular beam epitaxy of III–V nitrides." Journal of Crystal Growth 178, no. 1-2 (1997): 87–101. http://dx.doi.org/10.1016/s0022-0248(97)00077-8.
Full textCoronado, C. A., E. Ho, P. A. Fisher, et al. "Gas source molecular beam epitaxy of ZnSe and ZnSe:N." Journal of Electronic Materials 23, no. 3 (1994): 269–73. http://dx.doi.org/10.1007/bf02670635.
Full textBiswas, Dhrubes, and Hadis Morkoc. "A safety system for gas source molecular beam epitaxy." III-Vs Review 4, no. 6 (1991): 20–24. http://dx.doi.org/10.1016/0961-1290(91)90168-v.
Full textSuemitsu, Maki, Fumihiko Hirose, Yuji Takakuwa, and Nobuo Miyamoto. "Growth kinetics in silane gas-source molecular beam epitaxy." Journal of Crystal Growth 105, no. 1-4 (1990): 203–8. http://dx.doi.org/10.1016/0022-0248(90)90362-o.
Full textBiswas, Dhrubes, and Hadis Morkoç. "A safety system for gas source molecular beam epitaxy." Journal of Crystal Growth 113, no. 1-2 (1991): 209–20. http://dx.doi.org/10.1016/0022-0248(91)90026-2.
Full textSuemitsu, Maki, Fumihiko Hirose, and Nobuo Miyamoto. "Si and Ge gas-source molecular beam epitaxy (GSMBE)." Journal of Crystal Growth 107, no. 1-4 (1991): 1015–20. http://dx.doi.org/10.1016/0022-0248(91)90595-v.
Full textAi, Likun, Shuxing Zhou, Ming Qi, Anhuai Xu, and Shumin Wang. "InGaAsBi materials grown by gas source molecular beam epitaxy." Journal of Crystal Growth 477 (November 2017): 135–38. http://dx.doi.org/10.1016/j.jcrysgro.2017.03.011.
Full textScheinowitz, D. A., J. Trommel, K. Werner, S. Radelaar, and P. Balk. "Comparative study of molecular beam injection systems for gas source molecular beam epitaxy." Journal of Crystal Growth 127, no. 1-4 (1993): 986–89. http://dx.doi.org/10.1016/0022-0248(93)90773-p.
Full textMcCollum, M. J., S. L. Jackson, I. Szafranek, and G. E. Stillman. "Effects of high source flow and high pumping speed on gas source molecular beam epitaxy / chemical beam epitaxy." Journal of Crystal Growth 105, no. 1-4 (1990): 316–25. http://dx.doi.org/10.1016/0022-0248(90)90381-t.
Full textMatsubara, Yuya, Kei S. Takahashi, Yoshinori Tokura, and Masashi Kawasaki. "Single-crystalline BaTiO3films grown by gas-source molecular beam epitaxy." Applied Physics Express 7, no. 12 (2014): 125502. http://dx.doi.org/10.7567/apex.7.125502.
Full textHirayama, Hiroyuki, Masayuki Hiroi, and Kazuhisa Koyama. "B doping using B2H6in gas source Si molecular beam epitaxy." Applied Physics Letters 58, no. 18 (1991): 1991–93. http://dx.doi.org/10.1063/1.105042.
Full textShiralagi, K. T., K. Y. Choi, R. Droopad, G. N. Maracas, and W. E. Quinn. "Hydride cracker nozzle design for gas source molecular beam epitaxy." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, no. 1 (1992): 46–50. http://dx.doi.org/10.1116/1.578148.
Full textLee, H. Y., M. D. Crook, M. J. Hafich, et al. "InGaP/GaAs superlattices grown by gas‐source molecular beam epitaxy." Applied Physics Letters 55, no. 22 (1989): 2322–24. http://dx.doi.org/10.1063/1.102050.
Full textWan, J., Y. H. Luo, Sung D. Choi, et al. "Growth of carbon nanotubes by gas source molecular beam epitaxy." Journal of Applied Physics 89, no. 3 (2001): 1973. http://dx.doi.org/10.1063/1.1337083.
Full textSchäfer, H. Ch, B. Rösen, H. Moritz, et al. "Gas source molecular beam epitaxy of FeSi2/Si(111) heterostructures." Applied Physics Letters 62, no. 18 (1993): 2271–73. http://dx.doi.org/10.1063/1.109411.
Full textHou, H. Q. "Growth studies of GaAsP in gas-source molecular beam epitaxy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, no. 2 (1992): 953. http://dx.doi.org/10.1116/1.586098.
Full textKuo, J. M. "High quality In0.48Ga0.52P grown by gas source molecular beam epitaxy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, no. 2 (1992): 959. http://dx.doi.org/10.1116/1.586100.
Full textHafich, M. J. "Gas-source molecular-beam epitaxy growth of InxGa1−x−yAlyP." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, no. 2 (1992): 969. http://dx.doi.org/10.1116/1.586103.
Full textSitar, Z., M. J. Paisley, B. Yan, R. F. Davis, J. Ruan, and J. W. Choyke. "AlN/GaN superlattices grown by gas source molecular beam epitaxy." Thin Solid Films 200, no. 2 (1991): 311–20. http://dx.doi.org/10.1016/0040-6090(91)90203-a.
Full textPanish, M. B. "Gas source molecular beam epitaxy of InP, GaInAs and GaInAsP." Progress in Crystal Growth and Characterization 12, no. 1-4 (1986): 1–28. http://dx.doi.org/10.1016/0146-3535(86)90004-3.
Full textTsai, Gene, De-Lun Wang, Chia-En Wu, Chen-Jun Wu, Yan-Ting Lin, and Hao-Hsiung Lin. "InAsPSb quaternary alloy grown by gas source molecular beam epitaxy." Journal of Crystal Growth 301-302 (April 2007): 134–38. http://dx.doi.org/10.1016/j.jcrysgro.2006.09.010.
Full textGong, Q., P. Chen, S. G. Li, et al. "Quantum dot lasers grown by gas source molecular-beam epitaxy." Journal of Crystal Growth 323, no. 1 (2011): 450–53. http://dx.doi.org/10.1016/j.jcrysgro.2010.12.014.
Full textDroopad, R., K. T. Shiralagi, R. A. Puechner, K. Y. Choi, and G. N. Maracas. "Low temperature GaAs grown by gas source molecular beam epitaxy." Journal of Crystal Growth 120, no. 1-4 (1992): 200–205. http://dx.doi.org/10.1016/0022-0248(92)90391-u.
Full textSakata, H., K. Utaka, and Y. Matsushima. "Triangular-barrier optoelectronic switch by gas source molecular beam epitaxy." Journal of Crystal Growth 150 (May 1995): 1384–88. http://dx.doi.org/10.1016/0022-0248(95)80165-9.
Full textSeta, Masumichi, Hajime Asahi, Song Gang Kim, Kumiko Asami, and Shun‐ichi Gonda. "Gas source molecular beam epitaxy/migration enhanced epitaxy growth of InAs/AlSb superlattices." Journal of Applied Physics 74, no. 8 (1993): 5033–37. http://dx.doi.org/10.1063/1.354284.
Full textXie, M. H., J. Zhang, J. M. Fernandez, A. K. Lees, and B. A. Joyce. "Arsenic doping kinetics in silicon during gas source molecular beam epitaxy." Surface Science 397, no. 1-3 (1998): 164–69. http://dx.doi.org/10.1016/s0039-6028(97)00728-0.
Full textFehrenbacher, M., H. Rauscher, and R. J. Behm. "Self-limited SiH2Cl2 gas source molecular beam epitaxy on Si(100)." Surface Science 491, no. 1-2 (2001): 275–99. http://dx.doi.org/10.1016/s0039-6028(01)01417-0.
Full textJenny, J. R., R. Kaspi, and K. R. Evans. "Growth kinetics of GaN grown by gas-source molecular beam epitaxy." Journal of Crystal Growth 175-176 (May 1997): 89–93. http://dx.doi.org/10.1016/s0022-0248(96)01020-2.
Full textHirose, F. "Modeling growth in Si gas-source molecular beam epitaxy using Si2H6." Journal of Crystal Growth 179, no. 1-2 (1997): 108–14. http://dx.doi.org/10.1016/s0022-0248(97)00092-4.
Full textMasselink, W. Ted, and Martin Zachau. "In0.35Ga0.65P light‐emitting diodes grown by gas‐source molecular beam epitaxy." Applied Physics Letters 61, no. 1 (1992): 58–60. http://dx.doi.org/10.1063/1.107668.
Full textChou, Li-Chang, Yu-Ru Lin, Cheng-Tien Wan, and Hao-Hsiung Lin. "[111]B-oriented GaAsSb grown by gas source molecular beam epitaxy." Microelectronics Journal 37, no. 12 (2006): 1511–14. http://dx.doi.org/10.1016/j.mejo.2006.05.012.
Full textPaisley, M. J., and R. F. Davis. "Photoassisted growth of gallium nitride by gas source molecular beam epitaxy." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11, no. 1 (1993): 18–24. http://dx.doi.org/10.1116/1.578700.
Full textKarpov, S. Yu, Yu N. Makarov, M. S. Ramm, and R. A. Talalaev. "Analysis of gallium nitride growth by gas-source molecular beam epitaxy." Journal of Crystal Growth 187, no. 3-4 (1998): 397–401. http://dx.doi.org/10.1016/s0022-0248(98)00005-0.
Full textTaylor, N., H. Kim, P. Desjardins, Y. L. Foo, and J. E. Greene. "Si(011)16×2 gas-source molecular beam epitaxy: Growth kinetics." Applied Physics Letters 76, no. 20 (2000): 2853–55. http://dx.doi.org/10.1063/1.126495.
Full textKipshidze, G., V. Kuryatkov, K. Choi, et al. "AlN/AlGaN Bragg Reflectors Grown by Gas Source Molecular Beam Epitaxy." physica status solidi (a) 188, no. 2 (2001): 881–84. http://dx.doi.org/10.1002/1521-396x(200112)188:2<881::aid-pssa881>3.0.co;2-#.
Full textHirayama, Hiroyuki, Masayuki Hiroi, Kazuhisa Koyama, and Toru Tatsumi. "Selective heteroepitaxial growth of Si1−xGexusing gas source molecular beam epitaxy." Applied Physics Letters 56, no. 12 (1990): 1107–9. http://dx.doi.org/10.1063/1.102582.
Full textHirayama, Hiroyuki, Toru Tatsumi, and Naoaki Aizaki. "Selective growth condition in disilane gas source silicon molecular beam epitaxy." Applied Physics Letters 52, no. 26 (1988): 2242–43. http://dx.doi.org/10.1063/1.99654.
Full textTakanashi, Yoshifumi, and Naoto Kondo. "Deep trap in InGaAs grown by gas source molecular beam epitaxy." Journal of Applied Physics 85, no. 1 (1999): 633–34. http://dx.doi.org/10.1063/1.369420.
Full textQuigley, J. H. "Growth of InGaP on GaAs using gas-source molecular-beam epitaxy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 7, no. 2 (1989): 358. http://dx.doi.org/10.1116/1.584750.
Full textKim, H. S., M. J. Hafich, G. A. Patrizi, et al. "Electron traps in InGaP grown by gas source molecular beam epitaxy." Journal of Applied Physics 74, no. 2 (1993): 1431–33. http://dx.doi.org/10.1063/1.355330.
Full text