Academic literature on the topic 'Gas turbine LMS 100'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gas turbine LMS 100.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gas turbine LMS 100"

1

Tafti, Danesh K., Long He, and K. Nagendra. "Large eddy simulation for predicting turbulent heat transfer in gas turbines." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2022 (August 13, 2014): 20130322. http://dx.doi.org/10.1098/rsta.2013.0322.

Full text
Abstract:
Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number ( Re ) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re =20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re =100 000 with and without rotation (rotation number Ro =0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost.
APA, Harvard, Vancouver, ISO, and other styles
2

Jain, Nishan, Luis Bravo, Dokyun Kim, Muthuvel Murugan, Anindya Ghoshal, Frank Ham, and Alison Flatau. "Massively Parallel Large Eddy Simulation of Rotating Turbomachinery for Variable Speed Gas Turbine Engine Operation." Energies 13, no. 3 (February 6, 2020): 703. http://dx.doi.org/10.3390/en13030703.

Full text
Abstract:
Gas turbine engines are required to operate at both design and off-design conditions that can lead to strongly unsteady flow-fields and aerodynamic losses severely impacting performance. Addressing this problem requires effective use of computational fluid dynamics tools and emerging models that resolve the large scale fields in detail while accurately modeling the under-resolved scale dynamics. The objective of the current study is to conduct massively parallel large eddy simulations (LES) of rotating turbomachinery that handle the near-wall dynamics using accurate wall models at relevant operating conditions. The finite volume compressible CharLES solver was employed to conduct the simulations over moving grids generated through Voronoi-based unstructured cells. A grid sensitivity analysis was carried out first to establish reliable parameters and assess the quality of the results. LES simulations were then conducted to understand the impact of blade tip clearance and operating conditions on the stage performance. Variations in tip clearance of 3% and 16% chord were considered in the analysis. Other design points included operation at 100% rotor speed and off-design conditions at 75% and 50% of the rotor speed. The simulation results showed that the adiabatic efficiency improves dramatically with reduction in tip gap due to the decrease in tip leakage flow and the resulting flow structures. The analysis also showed that the internal flow becomes highly unsteady, undergoing massive separation, as the rotor speed deviates from the design point. This study demonstrates the capability of the framework to simulate highly turbulent unsteady flows in a rotating turbomachinery environment. The results provide much needed insight and massive data to investigate novel design concepts for the US Army Future Vertical Lift program.
APA, Harvard, Vancouver, ISO, and other styles
3

Yanin, V. "The contribution of designer L.S. Lebedyanskyi to the development of the gas turbine locomotives." History of science and technology 7, no. 10 (March 30, 2017): 103–8. http://dx.doi.org/10.32703/2415-7422-2017-7-10-103-108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nakazawa, N., H. Ogita, M. Takahashi, T. Yoshizawa, and Y. Mori. "Radial Turbine Development for the 100 kW Automotive Ceramic Gas Turbine." Journal of Engineering for Gas Turbines and Power 120, no. 1 (January 1, 1998): 172–78. http://dx.doi.org/10.1115/1.2818071.

Full text
Abstract:
The development of turbine components for the automotive 100 kW ceramic gas turbine has entered the final stage of the seven-year project and is making satisfactory progress toward the goals. We have attained the interim targets of the aerodynamic performances and have been carrying out tests to further improve efficiency. As for ceramic parts, we have changed the material of the turbine rotor to a new one that is excellent in long-sustained and high-temperature strength properties, and have confirmed substantial strength at high temperature through hot-spin tests. After evaluating blade-vibration stress through analyses and experiments, we completed an endurance evaluation at 1200°C (1473 K) TIT (Turbine Inlet Gas Temperature) and a rated speed of 100,000 rpm. We are now carrying out endurance tests at 1350°C (1623 K) TIT. For ceramic stationary parts, we already finished the evaluations at 1200°C TIT and are also conducting an endurance test at 1350°C TIT. Using these parts in a full-assembly test, together with other elements, we confirmed that they cause no functional problem in tests performed at 1200°C TIT level up to the rated speed (100,000 rpm), and are evaluating their performances.
APA, Harvard, Vancouver, ISO, and other styles
5

Gašparovič, Dominik, Marián Výžinkár, Jozef Žarnovský, and Jan Blata. "Turbine Modification of Nuovo Pignone Gas Turbine." Acta Technologica Agriculturae 20, no. 3 (September 1, 2017): 74–77. http://dx.doi.org/10.1515/ata-2017-0015.

Full text
Abstract:
Abstract This paper deals with the environmental aspects of combustor modification on Nuovo Pignone gas turbines. The mentioned company is engaged in the transport of natural gas to the Slovak Republic and further to other European markets. Legislation considering emissions is getting stricter every year. Original Nuovo Pignone gas turbines would not be able to meet the required emission limits for NOx and COr determined by legislation. Therefore, the company decided to modify seven gas turbines. Due to this reason, the combustion sections had to be replaced with a dry low emission system. These modifications were aimed at improvement of impacts of temperature on the emissions of NOx, since the NOx emissions are defined as thermal (there is an increase in emissions with the increase in temperature). Emissions were monitored continuously by an emission monitoring system (these data are continuously sent to the Office of Environment) and manually by a HORIBA PG-250 analyser. Gas delivery point is located in the flue pipeline, and data was processed by means of PC after reaching this point. The results lead us to conclusion that modification was an efficient and good solution in terms of economy, because this solution reduced emissions (from 300 mg·m−3 to 50 mg·m−3) and contributed to meeting of the stricter emission limits (from 370 mg·m−3 to 100 mg·m−3). Monitoring of the impacts of growing performance of equipment on emissions represents a possibility for further development of science in this field.
APA, Harvard, Vancouver, ISO, and other styles
6

Basha, Mehaboob, S. M. Shaahid, and Luai Al-Hadhrami. "Impact of Gas Turbine Frame Size on Efficiency of Gas Turbine Power Plants." Applied Mechanics and Materials 492 (January 2014): 447–52. http://dx.doi.org/10.4028/www.scientific.net/amm.492.447.

Full text
Abstract:
A computational study to assess the effect of gas turbine (GT) frame size on efficiency of gas turbine power plant configurations is presented in this paper. The work includes the effect of relative humidity (RH), ambient inlet air temperature and frame size on gas turbine plant configurations with and without fogger unit. Investigation also covers economic analysis. 20 MWe GE 5271RA, 40 MWe GE-6561B and 70 MWe GE-6101FA frames are selected for the present study. GT PRO software has been used for carrying out the analysis including; net plant output and net efficiency, break even electricity price (BEEP) and break even fuel LHV price (BEFP), etc. The relative humidity and temperature have been varied from 30 to 45 % and from 80 to 100° F, respectively. Fuels considered in the study are natural gas, diesel and crude oil. Results show that variation of humidity does not affect the gas turbine performance appreciably for all GT frame size regardless of type of fuel. For a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to increase by 4 and 1.7 %, 4.2 and 1.3 %, 4.7 and 1.8 %, respectively for 20 MW,40MW and 70MW for crude oil and for GT only situation. However, for GT with Fogger scenario, for a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to further increase by 3.1 and 1.3 %, 3 and 0.9 %, 3.2 and 1.1 %, respectively for 20 MW,40MW and 70MW. For situations with and without fogger for crude oil, BEFP have been found to vary from 1.3968 to 1.3916, 2.13 to 2.0948, 2.387 to 2.4642 USD/MMBTU respectively for 20 MW, 40MW and 70MW and BEEP have been found to vary from 0.03142 to 0.0313, 0.02488 to 0.02504, 0.0229 to 0.0233 USD/kWh respectively for 20 MW, 40MW and 70MW.
APA, Harvard, Vancouver, ISO, and other styles
7

Lim, Hyung-Soo, Je-Sung Bang, Bum-Seog Choi, Moo-Ryong Park, Jun-Young Park, Jeongmin Seo, Soon-Chan Hwang, Jeong Lak Sohn, and Byung Ok Kim. "Secondary flow stabilization of 100 kW-class micro gas turbine." Journal of Mechanical Science and Technology 31, no. 4 (April 2017): 1753–61. http://dx.doi.org/10.1007/s12206-017-0323-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ahmad Zahidin, A. A., A. M. I. Mamat, and A. Romagnoli. "Computational performance of a-100 kW low pressure turbine to recover gas turbine exhaust energy." Journal of Mechanical Engineering and Sciences 13, no. 2 (June 28, 2019): 4777–93. http://dx.doi.org/10.15282/jmes.13.2.2019.02.0399.

Full text
Abstract:
Low Pressure Turbine (LPT) was designed to recover exhaust energy from Internal Combustion (IC) engine. The LPT is located downstream retrieved exhaust heat energy from combustion after flowing through the high pressure turbine (HPT). The work output obtained from the exhaust energy is used to drive an electric generator with power output of 1.0kW. These was not done by commercial turbine as the low efficiency resulted when operated. The main purpose of this project is to develop a scaling model for LPT with power output up to 100kW. An existing LPT that was designed with output of 1.0 kW used as guideline to upscale the turbine. Scaling factor was obtained by comparing the baseline with power output. The turbine performance was analysed by using a commercial Computational Fluid Dynamic (CFD) ANSYS CFX. The study found that the scaling factor f, of 10 can be used to produce a 100kW at passage. Thus, the geometrical parameter will be scaled accordingly. The rotational speed is reduced from 50,000 rpm to 5,000 rpm. The CFD analysis found that 81% of total-static efficiency, ht-s at velocity ratio VR, of 0.68 and the Pressure Ratio PR, of 1.12 producing power of 119.88 kW which nearest with the design point which is at 100 kW. Despite the LPT swallowing capacity is increased by 50 times, the LPT is still limited by the operational choking Pressure Ratio, PR limitation which is 1.4.
APA, Harvard, Vancouver, ISO, and other styles
9

Eidensten, L., J. Yan, and G. Svedberg. "Biomass Externally Fired Gas Turbine Cogeneration." Journal of Engineering for Gas Turbines and Power 118, no. 3 (July 1, 1996): 604–9. http://dx.doi.org/10.1115/1.2816691.

Full text
Abstract:
This paper is a presentation of a systematic study on externally fired gas turbine cogeneration fueled by biomass. The gas turbine is coupled in series with a biomass combustion furnace in which the gas turbine exhaust is used to support combustion. Three cogeneration systems have been simulated. They are systems without a gas turbine, with a non-top-fired gas turbine, and a top-fired gas turbine. For all systems, three types of combustion equipment have been selected: circulating fluidized bed (CFB) boiler, grate fired steam boiler, and grate fired hot water boiler. The sizes of biomass furnaces have been chosen as 20 MW and 100 MW fuel inputs. The total efficiencies based on electricity plus process heat, electrical efficiencies, and the power-to-heat ratios for various alternatives have been calculated. For each of the cogeneration systems, part-load performance with varying biomass fuel input is presented. Systems with CFB boilers have a higher total efficiency and electrical efficiency than other systems when a top-fired gas turbine is added. However, the systems with grate fired steam boilers allow higher combustion temperature in the furnace than CFB boilers do. Therefore, a top combustor may not be needed when high temperature is already available. Only one low-grade fuel system is then needed and the gas turbine can operate with a very clean working medium.
APA, Harvard, Vancouver, ISO, and other styles
10

Taylor, R. P. "Surface Roughness Measurements on Gas Turbine Blades." Journal of Turbomachinery 112, no. 2 (April 1, 1990): 175–80. http://dx.doi.org/10.1115/1.2927630.

Full text
Abstract:
Results are presented from profilometer measurements of the surface roughness on in-service turbine engine blades from F-100 and TF-39 aeroengines. On each blade, one roughness profile is taken in the region of the leading edge, the midchord and the trailing edge on both the pressure and suction sides for a total of six profiles. Thirty first-stage turbine blades are measured from each engine. Statistical computations are performed on these profiles and the root mean square height, skewness and kurtosis of the roughness height distribution are presented along with the correlation length of the autocorrelation function. The purpose of this work is to provide insight into the nature of surface roughness characteristics of in-service turbine blades which can be used in the development of scaled laboratory experiments of boundary layer flow and heat transfer on turbine engine blades.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Gas turbine LMS 100"

1

Vacek, Jiří. "Teplárna se spalovací turbínou o výkonu 100 MW." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231801.

Full text
Abstract:
The purpose of this thesis is to describe gas turbine LMS 100 multipurpose characteristics, as a backup power supply in case of black-outs, and in terms of energy use for cogeneration with its economics.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Gas turbine LMS 100"

1

Almutairi, Abdulrahman, Pericles Pilidis, and Nawaf Al-Mutawa. "Exergetic and Environmental Analysis of 100 MW Intercooled Gas Turbine Engine." In Exergy for A Better Environment and Improved Sustainability 1, 863–82. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62572-0_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Gas turbine LMS 100"

1

Verma, Ishan, Rakesh Yadav, Pravin Nakod, Patrick Sharkey, Shaoping Li, and Ellen Meeks. "Modeling Combustion in a Rearward-Facing Step Using a Hybrid RANS/LES Method." In ASME 2019 Gas Turbine India Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gtindia2019-2522.

Full text
Abstract:
Abstract With incremental High-Performance Computing (HPC) scalability and performance improvements, hybrid Reynolds Averaged Navier Stokes (RANS)/Large Eddy Simulation (LES) have become popular for modeling reactive flow configurations. Hybrid RANS/LES methods like Stress-Blended Eddy Simulation (SBES) are presented in this paper and have been applied to model near-wall flows using two-equation k-ω RANS formulation while switching to LES in the separated flow region using a blending function. Turbulent combustion in a rearward-facing step is modeled by using Flamelet Generated Manifold (FGM) with SBES turbulence. A turbulent premixed propane/air flame (φ = 0.57) is stabilized in the turbulent mixing layer (ReH = 22, 100) formed at the rearward-facing step. The results obtained show a good agreement with the experimental data for velocity, temperature and species mass fractions at various locations in the channel.
APA, Harvard, Vancouver, ISO, and other styles
2

Wilkes, C., M. K. Razdan, and C. B. Santanam. "A Water Quenched Low NOx Coal Slurry Combustor for Industrial Gas Turbines." In ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/89-gt-106.

Full text
Abstract:
A 1.8 kgs/sec (4 lbs/sec) bench-scale rich-quench-lean combustor has been successfully developed to burn micronized coal-water slurry (CWS) mixtures with 50% solids loading. Water quenching is used to freeze and shatter slag particles leaving the rich zone which are trapped and removed from the hot gas stream in a cyclone separator. Rich zone carbon burnout efficiencies in excess of 99% have been measured experimentally and are in good agreement with two-dimensional (2-D) coal combustion model predictions. Stable operation in the rich zone on 100% CWS at design conditions has been achieved. The low calorific value gas (125 to 445 Kcal/scm, 14 to 50 Btu/scf) produced in the quench zone, auto ignited in the lean zone at all conditions and self-sustained combustion was maintained without the need for auxiliary fuel. Low measured values of carbon monoxide (CO) and oxides of nitrogen (NOx) concentrations in the exhaust gases have demonstrated the ability of the combustor to control emissions to well within acceptable levels. The bench-scale data provides a technology base for the design of a 15 kgs/sec (33 lbs/sec) combustor that will be used for testing of an advanced coal-fueled gas turbine engine.
APA, Harvard, Vancouver, ISO, and other styles
3

Abou-Taouk, Abdallah, Suresh Sadasivuni, Daniel Lörstad, and Lars-Erik Eriksson. "Evaluation of Global Mechanisms for LES Analysis of SGT-100 DLE Combustion System." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95454.

Full text
Abstract:
This paper presents the results of Computational Fluid Dynamics (CFD) analyses obtained for the experimental version of the SGT-100 Dry Low Emission (DLE) gas turbine burner provided by Siemens Industrial Turbomachinery Ltd (SIT). A testing and measurement campaign for this burner was previously carried out at the DLR Institute of Combustion Technology, Stuttgart, Germany, for various operating pressure conditions. The present work shows the successful validation of the CFD model in terms of time-averaged temperature and velocity data within measurement errors at an operating pressure of 3 bar. Several well known global mechanisms are tested in this work, namely the Westbrook Dryer 2-step (WD) scheme, the Jones and Lindstedt 4-step (JL4) scheme, the Meredith et al. 3-step (M3) scheme and a recently developed in-house 4-step scheme (M4) for methane-air mixtures. The M4 scheme is optimized by matching the detailed GRI-Mech 3.0 mechanism in terms of 1D laminar flame speed, using the CHEMKIN software for a wide range of pressures (1 to 6 bar), unburned gas temperatures (295 to 650 K) and equivalence ratios range (0.4 to 1.6). CFD simulations are performed using the Eddy Dissipation Model (EDM)/Finite Rate Chemistry (FRC) non-premixed turbulence chemistry interaction model. Both steady-state Reynolds Averaged Navier Stokes (RANS) and hybrid Unsteady Reynolds Averaged Navier Stokes /Large Eddy Simulation (URANS/LES) turbulence models are used. The LES Wall Adaptive Large Eddy-Viscosity (WALE) model with finite rate chemistry is also tested for validation. Velocity profiles, flame temperatures and major species are compared with experiments for different global reaction mechanisms used with different turbulence models. A reasonable agreement is found with the M4 global reaction mechanism in predicting mixing, temperatures and major species. RANS simulations are observed to underpredict the temperature profiles downstream and overpredict in the upstream region, while the velocity profiles are found to be in close agreement with experiments. The SAS-SST turbulence model predicts the velocity profiles in good agreement with experimental data and slightly better than the RANS model. Both the transient simulations slightly overpredict the temperature profiles. The LES-WALE model gives too high and unrealistic temperatures.
APA, Harvard, Vancouver, ISO, and other styles
4

Mazur, Marek, Philippe Scouflaire, Franck Richecoeur, Léo Cunha Caldeira Mesquita, Aymeric Vie, and Sébastien Ducruix. "Planar Velocity Measurements at 100 kHz in Gas Turbine Combustors With a Continuous Laser Source." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64597.

Full text
Abstract:
This work aims at presenting a novel approach to measure planar velocity in gas turbine combustors at very high sampling frequencies. For this purpose, a continuous wave laser is used in order to illuminate particles that are seeded into the flow. The Mie scattering images are acquired with a high-speed camera at 100 kHz with a constant time between each frame. The velocity fields are then obtained by applying classical PIV algorithms on successive particle scattering images. While this approach has been recently used in other research fields, such as aerodynamics or hydrodynamics, it is relatively new in combustion studies, where pulsed laser systems with higher power levels are usually preferred. The proposed technique is an economical and ergonomic solution to determine velocity fields at very high sampling frequencies. It is highly portable and safe and convenient to use and align. The main drawback is the long image exposure duration due to the low laser energy. This leads to a smearing effect of the captured particles and acts as a low-pass filter. It has the consequence that the PIV algorithm does not determine the displacement of “dots”, but of “traces”. The measurement technique is tested experimentally on a model gas turbine combustor at a laboratory scale. The test is performed in three steps: (1) The instantaneous velocity fields are analysed in order to verify, whether the flame topology is represented correctly. (2) The mean and RMS velocity fields that are obtained with the present technique are compared with those obtained by classic low speed PIV. (3) Instantaneous synthetic Mie scattering fields are generated from a large eddy simulation (LES) on a similar combustor to test the algorithms. The planar velocity fields are calculated from these images and compared for the two techniques. Finally, possible error sources of the new technique are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Mallouppas, George, Graham Goldin, Yongzhe Zhang, Piyush Thakre, Niveditha Krishnamoorthy, Rajesh Rawat, David Gosman, Jim Rogerson, and Ghenadie Bulat. "Investigation of an Industrial Gas Turbine Combustor and Pollutant Formation Using LES." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64744.

Full text
Abstract:
An experimental variant of a commercial swirl burner for industrial gas turbine combustors operating at 3 bar is numerically investigated using high-fidelity Computational Fluid Dynamics models using STAR-CCM+ v11.06. This work presents the computational results of the SGT-100 Dry Low Emission gas turbine provided by Siemens Industrial Turbomachinery Ltd. The related experimental study was performed at the DLR Institute of Combustion Technology, Stuttgart, Germany. The objective of this work is to compare the performance of the Flamelet Generated Manifold model, which is the widely accepted combustion model in Gas Turbines with the Complex Chemistry model. In particular this work examines the flame shape and position, pollutant formation predicted by the aforementioned models with Large Eddy Simulations. Mean and RMS quantities of the flow field, flame temperatures and major species are presented and compared with the experiments. The results show that the predictions are insensitive on the meshing strategy and at the evaluated mesh sizes of ∼10 million and ∼44 million cells. The mean and RMS errors are ∼8% compared to the reported experiments and these differences are within the measurement errors. The results show that the calculated flame positions are in very good agreement with the reported measurements and the typical M-shape flame is reproduced independent of the combustion model. Pollutant formation in the combustor predicted by two combustion models is scrutinised. The predicted NO and CO emissions levels are in agreement with the literature.
APA, Harvard, Vancouver, ISO, and other styles
6

Xia, Yu, Davide Laera, Aimee S. Morgans, W. P. Jones, and Jim W. Rogerson. "Thermoacoustic Limit Cycle Predictions of a Pressurised Longitudinal Industrial Gas Turbine Combustor." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75146.

Full text
Abstract:
This article presents numerical prediction of a thermoacoustic limit cycle in an industrial gas turbine combustor. The case corresponds to an experimental high pressure test rig equipped with the full-scale Siemens SGT-100 combustor operated at two mean pressure levels of 3 bar and 6 bar. The Flame Transfer Function (FTF) characterising the global unsteady response of the flame to velocity perturbations is obtained for both operating pressures by means of incompressible Large Eddy Simulations (LES). A linear stability analysis is then performed by coupling the FTFs with a wave-based low order thermoacoustic network solver. All the thermoacoustic modes predicted at 3 bar pressure are stable; whereas one of the modes at 6 bar is found to be unstable at a frequency of 231 Hz, which agrees with the experiments. A weakly nonlinear stability analysis is carried out by combining the Flame Describing Function (FDF) predicted by LES with the low order thermoacoustic network solver. The frequency, mode shape and velocity amplitude corresponding to the predicted limit cycle at 209 Hz are used to compute the absolute pressure fluctuation amplitude in the combustor. The numerically reconstructed amplitude is found to be reasonably close to the measured dynamics.
APA, Harvard, Vancouver, ISO, and other styles
7

Mallouppas, George, Graham Goldin, Yongzhe Zhang, Piyush Thakre, and Jim Rogerson. "Validation of Chemistry Acceleration Techniques With an Industrial Gas Turbine." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90218.

Full text
Abstract:
Abstract Two different numerical techniques for chemistry acceleration are examined with Large Eddy Simulation of a commercial swirl industrial gas turbine combustor operating at 3 bar. This work presents the results for SGT-100 Dry Low Emission (DLE) gas turbine provided by Siemens Industrial Turbomachinery Ltd. The related experimental study was performed at the German Aerospace Centre, DLR, Stuttgart, Germany. LES with detailed chemistry calculations is an attractive tool to study turbulent premixed flames in industrial gas turbine combustors, because it can help understand turbulence-chemistry interactions, detailed flame characteristics and pollutant formation. Detailed chemistry can capture kinetically dominated processes such as ignition, extinction and pollutant formation. However, computational resources required for such calculations are often prohibitive due to the computational costs of transporting and integration of a large number of species with a wide range of chemical time-scales. Chemistry acceleration techniques can substantially reduce run-time with ideally a small loss in accuracy. Therefore, the purpose of this work is to quantify the relative increase in performance and potential loss in accuracy with two chemistry acceleration techniques namely Clustering, Dynamic Mechanism Reduction (DMR) and their combination. The results show that the different chemistry acceleration techniques do not compromise the time averaged flow statistics. However, there are some differences in NO and CO emissions. Chemistry acceleration techniques yield up to ∼3 times speed-up of the simulation.
APA, Harvard, Vancouver, ISO, and other styles
8

Devriese, C., W. Pennings, H. de Reuver, R. Bastiaans, and W. De Paepe. "The Preliminary CFD Design of a Compressor and Combustor System Towards a 100 kW Hydrogen Fuelled Micro Gas Turbine." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91342.

Full text
Abstract:
Abstract Within the context of an ever-increasing share of wind, solar and emerging tidal power, the need to store energy, not only on the short term, but also in the medium to long-term to balance out the power grid will become more important in the near future. One of the most promising routes for this mid- to long term storage, is to produce hydrogen through electrolysis using excess electricity and store it. Instead of using this hydrogen then to generate electricity in a conventional, large, power plant, a more efficient route is to use it in a Decentralised Energy System (DES) using micro Gas Turbines (mGTs). Although the mGT presents itself as a promising option to convert pure hydrogen into electricity in this DES framework, several challenges, linked to the necessary increase of Turbine Inlet Temperature (TIT) for efficiency increase to make the unit compatible and the use of pure hydrogen in the combustor, still need to be overcome. In this paper we present the first steps towards a fully hydrogen fuelled mGT. Firstly, a full thermodynamic cycle analysis was performed to determine the optimal operating parameters, such as compressor pressure ratio and mass flow rate, air-to-fuel ratio and TIT. Secondly, a full CFD design and optimisation of the compressor and the combustion chamber was performed (steady and transient RANS and LES). CFD simulations of the compressor and combustion chamber matched the 1D performance calculations and also reached the desired performance goals. This CFD supported validation of the component performance shows that the design of a pure hydrogen combustion chamber for mGT applications is possible.
APA, Harvard, Vancouver, ISO, and other styles
9

Stratton, Zachary T., Tom I.-P. Shih, Gregory M. Laskowski, Brian Barr, and Robert Briggs. "Effects of Crossflow in an Internal-Cooling Channel on Film Cooling of a Flat Plate Through Compound-Angle Holes." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42771.

Full text
Abstract:
CFD simulations were performed to study the film cooling of a flat plate from one row of compound-angles holes fed by an internal-cooling passage that is perpendicular to the hot-gas flow. Parameters examined include direction of flow in the internal cooling passage and blowing ratios of 0.5, 1.0, and 1.5 with the coolant-to-hot-gas density ratio kept at 1.5. This CFD study is based on steady RANS with the shear-stress transport (SST) and realizable k-ε turbulence models. To understand the effects of unsteadiness in the flow, one case was studied by using large-eddy simulation (LES). Results obtained showed an unsteady vortical structure forms inside the hole, causing a side-to-side shedding of the coolant jet. Values of adiabatic effectiveness predicted by CFD simulations were compared with the experimentally measured values. Steady RANS was found to be inconsistent in its ability to predict adiabatic effectiveness with relative error ranging for 10% to over 100%. LES was able to predict adiabatic effectiveness with reasonable accuracy.
APA, Harvard, Vancouver, ISO, and other styles
10

Jain, Nishan, Luis Bravo, Dokyun Kim, Muthuvel Murugan, Anindya Ghoshal, Frank Ham, and Alison Flatau. "Towards Large Eddy Simulation of Rotating Turbomachinery for Variable Speed Gas Turbine Engine Operation." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91592.

Full text
Abstract:
Abstract In this work, massively parallel wall-modeled Large Eddy Simulations (LES) are conducted to simulate flow through a single stage power turbine sector of a gas-turbine engine under realistic operating conditions. The numerical framework in the current work uses finite volume based compressible CharLES solver that utilizes a moving Voronoi diagram based grid generation. To test grid sensitivity and evaluate the capability of the solver in predicting turbomachinery flows, three grids of varying resolution are used to simulate flow through the baseline gas-turbine under design operating conditions. After assessing the flow solution quality and establishing simulation parameters, LES simulations are conducted to investigate the performance of gas-turbine at off-design conditions. The conditions include the rotor design point at 100% speed, and off-design points at 75%, and 50% speeds subject to high temperatures from the combustor exit flow. The results showed that the internal flow becomes highly unsteady as the rotational speed of rotor deviates from the design point leading to reduced aerodynamic performance. This study demonstrates that the current framework is able to robustly simulate the unsteady flow in a three-dimensional moving rotor environment towards the design of variable speed gas-turbine engines for US Army Future Vertical Lift program.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Gas turbine LMS 100"

1

Guidati, Gianfranco, and Domenico Giardini. Synthèse conjointe «Géothermie» du PNR «Energie». Swiss National Science Foundation (SNSF), February 2020. http://dx.doi.org/10.46446/publication_pnr70_pnr71.2020.4.fr.

Full text
Abstract:
La géothermie de faible profondeur avec des pompes à chaleur correspond à l’état actuel de la technique et est déjà largement répandue en Suisse. Au sein du futur système énergétique, la géothermie de moyenne à grande profondeur (1 à 6 km) devrait également jouer un rôle important, notamment en matière de fourniture de chaleur pour les bâtiments et les process industriels. Cette forme d’utilisation de la chaleur géothermique nécessite un sous-sol bien perméable, permettant à un fluide – généralement de l’eau – d’engranger la chaleur naturellement présente dans la roche et de la transporter jusqu’à la surface. Dans les roches sédimentaires, cette condition est généralement vérifiée du fait de la structure naturelle, tandis que dans les granites et les gneiss la perméabilité doit être générée artificiellement par injection d’eau. La chaleur ainsi récupérée augmente au fur et à mesure de la profondeur de forage : la température souterraine atteint environ 40°C à 1 km de profondeur et environ 100°C à 3 km de profondeur. Pour entraîner une turbine à vapeur en vue de produire de l’électricité, des températures supérieures à 100°C sont nécessaires. Étant donné que cela implique de forer à des profondeurs de 3 à 6 km, le risque de sismicité induite augmente en conséquence. Le sous-sol peut également servir à stocker de la chaleur ou des gaz, par exemple de l’hydrogène ou du méthane, ou encore à enfouir de façon permanente du CO2. À cet effet, les mêmes exigences que pour l’extraction de chaleur doivent être vérifiées et le réservoir doit en outre être surmonté d’une couche étanche, empêchant le gaz de s’échapper. Le projet conjoint « Énergie hydroélectrique et géothermique » du PNR « Énergie » était avant tout consacré à la question de savoir où en Suisse trouver des couches de sol appropriées, répondant de manière optimale aux exigences des différentes utilisations. Un deuxième grand axe de recherche concernait les mesures visant à réduire la sismicité induite par les forages profonds et les dommages aux structures qui en résultent. Par ailleurs, des modèles et des simulations ont été élaborés dans le but de mieux comprendre les processus souterrains qui interviennent dans la mise en œuvre et l’exploitation des ressources géothermiques. En résumé, les résultats de recherche montrent que la Suisse jouit de bonnes conditions pour l’utilisation de la géothermie de moyenne profondeur (1-3 km), tant pour le parc de bâtiments que pour les processus industriels. L’optimisme est également de mise en ce qui concerne le stockage saisonnier de chaleur et de gaz. Le potentiel de stockage définitif de CO2 dans des quantités pertinentes s’avère en revanche plutôt limité. Concernant la production d’électricité à partir de la chaleur issue de la géothermie profonde (> 3 km), il n’existe pas encore de certitude définitive quant à l’importance du potentiel économiquement exploitable du sous-sol. Des installations de démonstration exploitées industriellement sont absolument nécessaires à cet égard, afin de renforcer l’acceptation par la population et les investisseurs.
APA, Harvard, Vancouver, ISO, and other styles
2

Guidati, Gianfranco, and Domenico Giardini. Joint synthesis “Geothermal Energy” of the NRP “Energy”. Swiss National Science Foundation (SNSF), February 2020. http://dx.doi.org/10.46446/publication_nrp70_nrp71.2020.4.en.

Full text
Abstract:
Near-to-surface geothermal energy with heat pumps is state of the art and is already widespread in Switzerland. In the future energy system, medium-deep to deep geothermal energy (1 to 6 kilometres) will, in addition, play an important role. To the forefront is the supply of heat for buildings and industrial processes. This form of geothermal energy utilisation requires a highly permeable underground area that allows a fluid – usually water – to absorb the naturally existing rock heat and then transport it to the surface. Sedimentary rocks are usually permeable by nature, whereas for granites and gneisses permeability must be artificially induced by injecting water. The heat gained in this way increases in line with the drilling depth: at a depth of 1 kilometre, the underground temperature is approximately 40°C, while at a depth of 3 kilometres it is around 100°C. To drive a steam turbine for the production of electricity, temperatures of over 100°C are required. As this requires greater depths of 3 to 6 kilometres, the risk of seismicity induced by the drilling also increases. Underground zones are also suitable for storing heat and gases, such as hydrogen or methane, and for the definitive storage of CO2. For this purpose, such zones need to fulfil similar requirements to those applicable to heat generation. In addition, however, a dense top layer is required above the reservoir so that the gas cannot escape. The joint project “Hydropower and geo-energy” of the NRP “Energy” focused on the question of where suitable ground layers can be found in Switzerland that optimally meet the requirements for the various uses. A second research priority concerned measures to reduce seismicity induced by deep drilling and the resulting damage to buildings. Models and simulations were also developed which contribute to a better understanding of the underground processes involved in the development and use of geothermal resources. In summary, the research results show that there are good conditions in Switzerland for the use of medium-deep geothermal energy (1 to 3 kilometres) – both for the building stock and for industrial processes. There are also grounds for optimism concerning the seasonal storage of heat and gases. In contrast, the potential for the definitive storage of CO2 in relevant quantities is rather limited. With respect to electricity production using deep geothermal energy (> 3 kilometres), the extent to which there is potential to exploit the underground economically is still not absolutely certain. In this regard, industrially operated demonstration plants are urgently needed in order to boost acceptance among the population and investors.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography