To see the other types of publications on this topic, follow the link: Gas turbine.

Journal articles on the topic 'Gas turbine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Gas turbine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Valenti, Michael. "Keeping it Cool." Mechanical Engineering 123, no. 08 (August 1, 2001): 48–52. http://dx.doi.org/10.1115/1.2001-aug-2.

Full text
Abstract:
This article provides details of various aspects of air cooling technologies that can give gas turbines a boost. Air inlet cooling raises gas turbine efficiency, which is proportional to the mass flow of air fed into the turbine. The higher the mass flow, the greater the amount of electricity produced from the gas burned. Researchers at Mee Industries conduct laser scattering studies of their company’s fogging nozzles to determine if the nozzles project properly sized droplets for cooling. The goal for turbine air cooling systems is to reduce the temperature of inlet air from the dry bulb temperature, the ambient temperature, to the wet bulb temperature. The Turbidek evaporative cooling system designed by Munters Corp. of Fort Myers, Florida, is often retrofit to turbines, typically installed in front of pre-filters that remove particulates from inlet air. Turbine Air Systems designs standard chillers to improve the performance of the General Electric LM6000 and F-class gas turbines during the hottest weather.
APA, Harvard, Vancouver, ISO, and other styles
2

AOKI, Shigeki, Kiyoshi MATSUMOTO, Yasushi DOUURA, Takeo ODA, Masahiro Ogata, and Yasuhiro KINOSHITA. "A106 Upgraded lineup of KAWASAKI Green Gas Turbine combustion systems(Gas Turbine-2)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–53_—_1–57_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-53_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brady, C. O., and D. L. Luck. "The Increased Use of Gas Turbines as Commercial Marine Engines." Journal of Engineering for Gas Turbines and Power 116, no. 2 (April 1, 1994): 428–33. http://dx.doi.org/10.1115/1.2906839.

Full text
Abstract:
Over the last three decades, aeroderivative gas turbines have become established naval ship propulsion engines, but use in the commercial marine field has been more limited. Today, aeroderivative gas turbines are being increasingly utilized as commercial marine engines. The primary reason for the increased use of gas turbines is discussed and several recent GE aeroderivative gas turbine commercial marine applications are described with particular aspects of the gas turbine engine installations detailed. Finally, the potential for future commercial marine aeroderivative gas turbine applications is presented.
APA, Harvard, Vancouver, ISO, and other styles
4

Bander, F. "Multifuel Gas Turbine Propulsion for Naval Ships: Gas Turbine Cycles Implementing a Rotating Gasifier." Journal of Engineering for Gas Turbines and Power 107, no. 3 (July 1, 1985): 758–68. http://dx.doi.org/10.1115/1.3239798.

Full text
Abstract:
The purpose of this paper is to investigate the possibilities of implementing a rotating gasifier to convert aero-derived gas turbines into multifuel ship propulsion units, thereby combining the advantages of lightweight and compact gas turbines with the multifuel characteristics of a rotating gasifier. Problems (and possible solutions) to be discussed are: (i) aerodynamic interaction between gas turbine and gasifier; (ii) attaining maximum energy productivity together with ease of control; (iii) corrosion and/or erosion of gas turbine components.
APA, Harvard, Vancouver, ISO, and other styles
5

Sanaye, Sepehr, and Salahadin Hosseini. "Off-design performance improvement of twin-shaft gas turbine by variable geometry turbine and compressor besides fuel control." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234, no. 7 (December 3, 2019): 957–80. http://dx.doi.org/10.1177/0957650919887888.

Full text
Abstract:
A novel procedure for finding the optimum values of design parameters of industrial twin-shaft gas turbines at various ambient temperatures is presented here. This paper focuses on being off design due to various ambient temperatures. The gas turbine modeling is performed by applying compressor and turbine characteristic maps and using thermodynamic matching method. The gas turbine power output is selected as an objective function in optimization procedure with genetic algorithm. Design parameters are compressor inlet guide vane angle, turbine exit temperature, and power turbine inlet nozzle guide vane angle. The novel constrains in optimization are compressor surge margin and turbine blade life cycle. A trained neural network is used for life cycle estimation of high pressure (gas generator) turbine blades. Results for optimum values for nozzle guide vane/inlet guide vane (23°/27°–27°/6°) in ambient temperature range of 25–45 ℃ provided higher net power output (3–4.3%) and more secured compressor surge margin in comparison with that for gas turbines control by turbine exit temperature. Gas turbines thermal efficiency also increased from 0.09 to 0.34% (while the gas generator turbine first rotor blade creep life cycle was kept almost constant about 40,000 h). Meanwhile, the averaged values for turbine exit temperature/turbine inlet temperature changed from 831.2/1475 to 823/1471°K, respectively, which shows about 1% decrease in turbine exit temperature and 0.3% decrease in turbine inlet temperature.
APA, Harvard, Vancouver, ISO, and other styles
6

Kosowski, Krzysztof, and Marian Piwowarski. "Design Analysis of Micro Gas Turbines in Closed Cycles." Energies 13, no. 21 (November 5, 2020): 5790. http://dx.doi.org/10.3390/en13215790.

Full text
Abstract:
The problems faced by designers of micro-turbines are connected with a very small volume flow rate of working media which leads to small blade heights and a high rotor speed. In the case of gas turbines this limitation can be overcome by the application of a closed cycle with very low pressure at the compressor inlet (lower than atmospheric pressure). In this way we may apply a micro gas turbine unit of accepted efficiency to work in a similar range of temperatures and the same pressure ratios, but in the range of smaller pressure values and smaller mass flow rate. Thus, we can obtain a gas turbine of a very small output but of the efficiency typical of gas turbines with a much higher power. In this paper, the results of the thermodynamic calculations of the turbine cycles are discussed and the designed gas turbine flow parts are presented. Suggestions of the design solutions of micro gas turbines for different values of power output are proposed. This new approach to gas turbine arrangement makes it possible to build a gas turbine unit of a very small output and a high efficiency. The calculations of cycle and gas turbine design were performed for different cycle parameters and different working media (air, nitrogen, hydrogen, helium, xenon and carbon dioxide).
APA, Harvard, Vancouver, ISO, and other styles
7

Karusitio Silaban, Haleonar Mycson, and Abdul Ghofur. "ANALISA PERFORMA TURBIN GAS TIPE CW251 B11 PADA SYSTEM PEMBANGKITAN LISTRIK TENAGA GAS SEKTOR PEMBANGKITAN BALI." JTAM ROTARY 2, no. 2 (September 29, 2020): 161. http://dx.doi.org/10.20527/jtam_rotary.v2i2.2412.

Full text
Abstract:
Di Bali, kebutuhan listrik berdasarkan data PLN 446.172 MW. Untuk memenuhi kebutuhan beban ini, PLN Bali mengandalkan empat pembangkit listrik berbeda di Pesanggaran, Gilimanuk, Pemaron, dan Pontianak. Sebagian besar pembangkit listrik di Bali menggunakan Pembangkit Listrik Tenaga Gas. Pada pembangkit gas generasi Bali terjadi kerusakan pada bagian turbin. Untuk mengetahui pengaruh kerusakan tersebut, dilakukan penelitian. Dari penelitian ini diketahui bahwa hubungan antara efisiensi dan kinerja suatu turbin gas adalah jika performansi naik maka efisiensi akan meningkat. Temperatur masuk turbin dan temperatur keluar turbin akan mempengaruhi kinerja turbin.In Bali, electricity demand is based on PLN data of 446,172 MW. To meet this load requirement PLN Bali relies on four different power plants in Pesanggaran, Gilimanuk, Pemaron, and Pontianak. Most electricity generation in Bali uses Gas Power Plants. In the gas generation of the Bali generation there is damage in the turbine section. To find out the effect of this damage, a study was conducted. From this study it is known that the relationship between efficiency and the performance of a gas turbine is that if the performance rises, efficiency will increase. The turbine intake temperature and turbine exit temperature will affect turbine performance.ANALISA PERFORMA TURBIN GAS TIPE CW251 B11 PADA SYSTEM PEMBANGKITAN LISTRIK TENAGA GAS SEKTOR PEMBANGKITAN BALI
APA, Harvard, Vancouver, ISO, and other styles
8

Gregory, Brent A. "How Many Turbine Stages?" Mechanical Engineering 139, no. 05 (May 1, 2017): 56–57. http://dx.doi.org/10.1115/1.2017-may-5.

Full text
Abstract:
This article discusses various stages of turbines and the importance of having more stages in turbine design. The article also highlights reasons that determine the designer’s choice to select the number of turbine stages for a given design of gas turbine. The highest performance turbines are defined by lower work requirements and slower velocities in the gas path. The fundamental factors determining performance might be relegated to only two factors: demand on the turbine and axial velocity. Aircraft engine technologies drive new initiatives because of the need to increase firing temperature and dramatically improve efficiency for substantially less weight. Also, the expansion across each stage determined the annulus area so that the optimums implied by the Pearson chart were largely ignored in the article. Developments in aircraft engine gas turbines have forced heavy frame gas turbines’ original equipment manufacturers to rethink many historical paradigms.
APA, Harvard, Vancouver, ISO, and other styles
9

Selviyanty, Veny, and Aris Fiatno. "ANALISA UNJUK KERJA TURBIN GAS PLTG DUAL FUEL SYSTEM (STUDY KASUS DI PT. XXX SIAK)." Jurnal Teknik Industri Terintegrasi 3, no. 1 (May 14, 2020): 33–48. http://dx.doi.org/10.31004/jutin.v3i1.810.

Full text
Abstract:
PT. XXX serviced the Kawasaki GPB80 gas turbine with the latest data on the use of gas fuel in gas turbine unit 6 on average 32,028 liters / day and the use of diesel fuel in turbine unit 3 is 39,111 liters / day. This research was conducted with field observations and literature studies. Field observations obtained the following data: pressure, temperature at predetermined points, engine generator, the surrounding environment and required supporting data. The specific fuel consumption obtained in unit 6 gas turbines using diesel fuel is 0.049 l / kW hour. turbine efficiency obtained in unit 3 gas turbines using diesel fuel is 9.02%. Decreased Torque performance in unit 3 gas turbine of 6186 Nm caused by an average T2 temperature of 85 0C before entering the combustion chamber so that the combustion process is incomplete in the combustion chamber resulting in thermal efficiency in the unit 3 gas turbine not proportional to the Specific Fuel Consumtion or usage diesel fuel against the effective power produced. The specific fuel consumption in unit 3 gas turbine is 0.06 l / kW.h while the unit 6 gas turbine is 0.04 l / k.W.h.
APA, Harvard, Vancouver, ISO, and other styles
10

Langston, Lee S. "Clear Skies Ahead." Mechanical Engineering 138, no. 06 (June 1, 2016): 38–43. http://dx.doi.org/10.1115/1.2016-jun-3.

Full text
Abstract:
This article discusses various fields where gas turbines can play a vital role. Building engines for commercial jetliners is the largest market segment for the gas turbine industry; however, it is far from being the only one. One 2015 military gas turbine program of note was the announcement of an U.S. Air Force competition for an innovative design of a small turbine engine, suitable for a medium-size drone aircraft. The electrical power gas turbine market experienced a sharp boom and bust from 2000 to 2002 because of the deregulation of many electric utilities. Since then, however, the electric power gas turbine market has shown a steady increase, right up to present times. Coal-fired plants now supply less than 5 percent of the electrical load, having been largely replaced by new natural gas-fired gas turbine power plants. Working in tandem with renewable energy power facilities, the new fleet of gas turbines is expected to provide reliable, on-demand electrical power at a reasonable cost.
APA, Harvard, Vancouver, ISO, and other styles
11

Deng, Chao, Ahmed N. Abdalla, Thamir K. Ibrahim, MingXin Jiang, Ahmed T. Al-Sammarraie, and Jun Wu. "Implementation of Adaptive Neuro-fuzzy Model to Optimize Operational Process of Multiconfiguration Gas-Turbines." Advances in High Energy Physics 2020 (July 3, 2020): 1–17. http://dx.doi.org/10.1155/2020/6590138.

Full text
Abstract:
In this article, the adaptive neuro-fuzzy inference system (ANFIS) and multiconfiguration gas-turbines are used to predict the optimal gas-turbine operating parameters. The principle formulations of gas-turbine configurations with various operating conditions are introduced in detail. The effects of different parameters have been analyzed to select the optimum gas-turbine configuration. The adopted ANFIS model has five inputs, namely, isentropic turbine efficiency (Teff), isentropic compressor efficiency (Ceff), ambient temperature (T1), pressure ratio (rp), and turbine inlet temperature (TIT), as well as three outputs, fuel consumption, power output, and thermal efficiency. Both actual reported information, from Baiji Gas-Turbines of Iraq, and simulated data were utilized with the ANFIS model. The results show that, at an isentropic compressor efficiency of 100% and turbine inlet temperature of 1900 K, the peak thermal efficiency amounts to 63% and 375 MW of power resulted, which was the peak value of the power output. Furthermore, at an isentropic compressor efficiency of 100% and a pressure ratio of 30, a peak specific fuel consumption amount of 0.033 kg/kWh was obtained. The predicted results reveal that the proposed model determines the operating conditions that strongly influence the performance of the gas-turbine. In addition, the predicted results of the simulated regenerative gas-turbine (RGT) and ANFIS model were satisfactory compared to that of the foregoing Baiji Gas-Turbines.
APA, Harvard, Vancouver, ISO, and other styles
12

Marin, G. E., B. M. Osipov, and D. I. Mendeleev. "Research on the influence of fuel gas on energy characteristics of a gas turbine." E3S Web of Conferences 124 (2019): 05063. http://dx.doi.org/10.1051/e3sconf/201912405063.

Full text
Abstract:
The purpose of this paper is to study and analyze the gas turbine engine and the thermodynamic cycle of a gas turbine. The article describes the processes of influence of the working fluid composition on the parameters of the main energy gas turbines, depending on the composition of the fuel gas. The calculations of the thermal scheme of a gas turbine, which were made using mathematical modeling, are given. As a result of research on the operation of the GE PG1111 6FA gas turbine installation with various gas compositions, it was established that when the gas turbine is operating on different fuel gases, the engine efficiency changes. The gas turbine efficiency indicators were determined for various operating parameters and fuel composition. The impact of fuel components on the equipment operation is revealed.
APA, Harvard, Vancouver, ISO, and other styles
13

Konishi, Tetsu, Toshishige Ai, Hisato Arimura, and Carlos Koeneke. "A101 DEVELOPMENT OF AIR COOLED COMBUSTOR FOR G SERIES GAS TURBINE(Gas Turbine-1)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–23_—_1–28_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-23_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

TAKATA, Kazumasa, Keizo TSUKAGOSHI, Junichiro MASADA, and Eisaku ITO. "A102 DEVELOPMENT OF ADVANCED TECHNOLOGIES FOR THE NEXT GENERATION GAS TURBINE(Gas Turbine-1)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–29_—_1–34_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-29_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

LIU, Yongwen, and Jianhua XIN. "A207 SCALING COMPONENT MAPS FOR GAS TURBINE STEADY STATE PERFORMANCE SIMULATION(Gas Turbine-5)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.2 (2009): _2–37_—_2–41_. http://dx.doi.org/10.1299/jsmeicope.2009.2._2-37_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ebigenibo Genuine Saturday and Celestine Ebieto Ebieto. "Nigerian power sector: Why gas turbines will be relevant for the next 50 years." Global Journal of Engineering and Technology Advances 5, no. 1 (October 30, 2020): 066–75. http://dx.doi.org/10.30574/gjeta.2020.5.1.0078.

Full text
Abstract:
Several cases of the need for continuous utilization of gas turbines for power production and why gas turbines will be relevant in the next 50 years in the Nigerian power sector are presented in this paper. Using 7 criteria; the cost of installation, operation and maintenance costs, levelized cost of electricity, capacity factor, the efficiency of energy conversion, power to size ratio/area coverage and environmental pollution, gas turbine operation was compared with wind and solar energy technologies. Gas turbine for power production appears to be more favourable in 5 out of the 7 criteria including lower installation cost which is a very important factor for poor and developing nations like Nigeria. The quantity of fuel for producing different quantities of power using gas turbines was estimated. Nigeria has huge proven reserves of natural gas which is the fuel for gas turbines. If we go for combined cycle power plants which have low specific fuel consumption (SFC), 50% of the natural gas reserves are enough to produce some 35 GW of electricity for over 50 years. The current rate of natural gas production can produce 27.06 GW of electricity at 0.06kg/s.MW sfc. It was also observed that the current installed power from gas turbines is too low compared to the power demand; hence, further installations are required. Pollution should not be an issue in installing more gas turbine plants because the gas turbine is a clean-burning engine and the present installed capacity is insignificant compared to what is obtainable in some advanced nations. The results in this work will guide gas turbine operators in planning for further installation of gas turbine power plants. The study does not rule out the need to exploit solar photovoltaic system and wind turbines in areas with high sunshine and high wind speeds respectively, for off-grid power production.
APA, Harvard, Vancouver, ISO, and other styles
17

Langston, Lee S. "Gas Turbine Disc Resurrection?" Mechanical Engineering 138, no. 05 (May 1, 2016): 56–57. http://dx.doi.org/10.1115/1.2016-may-5.

Full text
Abstract:
This article discusses various aspects and need for gas turbine disc resurrection. Depending on the record keeping system used by the government, airlines, OEMs, and users, gas turbine discs are retired before they reach a critical state that might lead to their failure. Experts have reviewed current approaches to gas turbine life management. They point out that the high reliability and safety of modern gas turbines is largely due to a combination of improved materials, conservative design and maintenance philosophies, and improved life prediction capabilities. However, there are significant safety and economic concerns involved in the use of life predictions applied to extend disc life. Another resurrection path is the question of appropriating used discs to manage safe continued operation from unexpected field damage until new discs become available. Disc resurrection may be an attractive prospect, but lots of questions need to be answered before gas turbine users adopt the practice.
APA, Harvard, Vancouver, ISO, and other styles
18

Langston, Lee S. "Cogeneration: Gas Turbine Multitasking." Mechanical Engineering 134, no. 08 (August 1, 2012): 50. http://dx.doi.org/10.1115/1.2012-aug-4.

Full text
Abstract:
This article describes the functioning of the gas turbine cogeneration power plant at the University of Connecticut (UConn) in Storrs. This 25-MW power plant serves the 18,000 students’ campus. It has been in operation since 2006 and is expected to save the University $180M in energy costs over its 40-year design life. The heart of the UConn cogeneration plant consists of three 7-MW Solar Taurus gas turbines burning natural gas, with fuel oil as a backup. These drive water-cooled generators to produce up to 20–24 MW of electrical power distributed throughout the campus. Gas turbine exhaust heat is used to generate up to 200,000 pounds per hour of steam in heat recovery steam generators (HRSGs). The HRSGs provide high-pressure steam to power a 4.6-MW steam turbine generator set for more electrical power and low-pressure steam for campus heating. The waste heat from the steam turbine contained in low-pressure turbine exhaust steam is combined with the HRSG low-pressure steam output for campus heating.
APA, Harvard, Vancouver, ISO, and other styles
19

Saitoh, Keijiro, Eisaku Ito, Koichi Nishida, Satoshi Tanimura, and Keizo Tsukagoshi. "A105 DEVELOPMENT OF COMBUSTOR WITH EXHAUST GAS RECIRCULATION SYSTEM FOR THE NEXT GENERATION GAS TURBINE(Gas Turbine-2)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–47_—_1–52_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-47_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fukuizumi, Y., J. Masada, V. Kallianpur, and Y. Iwasaki. "Application of “H Gas Turbine” Design Technology to Increase Thermal Efficiency and Output Capability of the Mitsubishi M701G2 Gas Turbine." Journal of Engineering for Gas Turbines and Power 127, no. 2 (April 1, 2005): 369–74. http://dx.doi.org/10.1115/1.1850490.

Full text
Abstract:
Mitsubishi completed design development and verification load testing of a steam-cooled M501H gas turbine at a combined cycle power plant at Takasago, Japan in 2001. Several advanced technologies were specifically developed in addition to the steam-cooled components consisting of the combustor, turbine blades, vanes, and the rotor. Some of the other key technologies consisted of an advanced compressor with a pressure ratio of 25:1, active clearance control, and advanced seal technology. Prior to the M501H, Mitsubishi introduced cooling-steam in “G series” gas turbines in 1997 to cool combustor liners. Recently, some of the advanced design technologies from the M501H gas turbine were applied to the G series gas turbine resulting in significant improvement in output and thermal efficiency. A noteworthy aspect of the technology transfer is that the upgraded G series M701G2 gas turbine has an almost equivalent output and thermal efficiency as H class gas turbines while continuing to rely on conventional air cooling of turbine blades and vanes, and time-proven materials from industrial gas turbine experience. In this paper we describe the key design features of the M701G2 gas turbine that make this possible such as the advanced 21:1 compressor with 14 stages, an advanced premix DLN combustor, etc., as well as shop load test results that were completed in 2002 at Mitsubishi’s in-house facility.
APA, Harvard, Vancouver, ISO, and other styles
21

Faqih, Mochammad, Madiah Binti Omar, Rosdiazli Ibrahim, and Bahaswan A. A. Omar. "Dry-Low Emission Gas Turbine Technology: Recent Trends and Challenges." Applied Sciences 12, no. 21 (October 27, 2022): 10922. http://dx.doi.org/10.3390/app122110922.

Full text
Abstract:
Dry-low emission (DLE) is one of the cleanest combustion types used in a gas turbine. DLE gas turbines have become popular due to their ability to reduce emissions by operating in lean-burn operation. However, this technology leads to challenges that sometimes interrupt regular operations. Therefore, this paper extensively reviews the development of the DLE gas turbine and its challenges. Numerous online publications from various databases, including IEEE Xplore, Scopus, and Web of Science, are compiled to describe the evolution of gas turbine technology based on emissions, fuel flexibility, and drawbacks. Various gas turbine models, including physical and black box models, are further discussed in detail. Working principles, fuel staging mechanisms, and advantages of DLE gas turbines followed by common faults that lead to gas turbine tripping are specifically discussed. A detailed evaluation of lean blow-out (LBO) as the major fault is subsequently highlighted, followed by the current methods in LBO prediction. The literature confirms that the DLE gas turbine has the most profitable features against other clean combustion methods. Simulation using Rowen’s model significantly imitates the actual behavior of the DLE gas turbine that can be used to develop a control strategy to maintain combustion stability. Lastly, the data-driven LBO prediction method helps minimize the flame’s probability of a blow-out.
APA, Harvard, Vancouver, ISO, and other styles
22

Domachowski, Zygfryd, and Marek Dzida. "Applicability of Inlet Air Fogging to Marine Gas Turbine." Polish Maritime Research 26, no. 1 (March 1, 2019): 15–19. http://dx.doi.org/10.2478/pomr-2019-0002.

Full text
Abstract:
Abstract The dependency of marine gas turbine on the ambient temperature leads to a decrease of the gas turbine power output in arid areas. Very often gas turbine power output demand is high and the power margins originally designed into the driver, has been exhausted. In such circumstances the inlet air fogging is an effective compensation of gas turbine power. In this paper an analysis of inlet air fogging applicability to marine gas turbine has been conducted. Different areas of ship’s voyage have been taken into account. The use of inlet air fogging in marine gas turbine must be evaluated on the basis of turbine characteristics, climate profile of ship’s voyage, and expectations of gas turbine power augmentation. The authors expect that the considerations provide useful guidance for users of marine gas turbines to decide the feasibility of installing an inlet air fogging system.
APA, Harvard, Vancouver, ISO, and other styles
23

Bulanin, V. A. "USE OF GAS TURBINES FOR COMBINED ENERGY PRODUCTION." Herald of Dagestan State Technical University. Technical Sciences 47, no. 1 (April 21, 2020): 8–18. http://dx.doi.org/10.21822/2073-6185-2020-47-1-8-18.

Full text
Abstract:
Abstract. Aim. Despite the obvious expediency of their widespread implementation, gas turbine (GT) and combined cycle gas turbine (CCGT) plants were only used in limited quantities in the former USSR and CIS countries. Due to the exhaustion of possibilities to increase the fuel use efficiency and return on investment (ROI) in steam-turbine combined heat and power (CHP) plants, the development of GT and CCGT plants becomes an urgent problem. In current global practice, the primary fuel for gas turbines and combined cycle gas turbines is natural gas. However, until recently, there has been a lack of experience in the design, construction and operation of GT and CCGT plants in the CIS countries. Method. Due to the ad hoc nature of research in this area, it was necessary to systematise the results of existing studies and assess the state of research at the world level taking regional characteristics into account. Results. The article presents the main considerations and potential effectiveness of the use of gas turbines. Basic gas turbine construction schemes are investigated along with their techno-economic characteristics and an assessment of their comparative utility. Conclusion. Considering the widespread availability of natural gas, it is recommended that gas turbine and combined-cycle plants be installed as part of the process of technical re-equipment in the fuel and energy complex, industry, agriculture and municipal energy sectors as part of the design and construction of new energy sources in the light of positive world experience and the current level of development of gas turbine technologies. Ubiquitous implementation of gas turbine units in the centres supplying heat and electric loads will reduce the regional economy’s need for energy fuel and ensure an increase in energy capacity without the need to construct new complex and uneconomic steam turbine power plants.
APA, Harvard, Vancouver, ISO, and other styles
24

Langston, Lee S. "Gas Turbines and Natural Gas Synergism." Mechanical Engineering 135, no. 02 (February 1, 2013): 30–35. http://dx.doi.org/10.1115/1.2013-feb-4.

Full text
Abstract:
This article presents a study on new electric power gas turbines and the advent of shale natural gas, which now are upending electrical energy markets. Energy Information Administration (EIA) results show that total electrical production cost for a conventional coal plant would be 9.8 cents/kWh, while a conventional natural gas fueled gas turbine combined cycle plant would be a much lower at 6.6 cents/kWh. Furthermore, EIA estimates that 70% of new US power plants will be fueled by natural gas. Gas turbines are the prime movers for the modern combined cycle power plant. On the natural gas side of the recently upended electrical energy markets, new shale gas production and the continued development of worldwide liquefied natural gas (LNG) facilities provide the other element of synergism. The US natural gas prices are now low enough to compete directly with coal. The study concludes that the natural gas fueled gas turbine will continue to be a growing part of the world’s electric power generation.
APA, Harvard, Vancouver, ISO, and other styles
25

Heng, Haoyu, Jitong Li, and Tianyi Zhou. "Research of Heavy-Duty Gas Turbines through Computer Mathematical Statistics and Big Data Analysis." Highlights in Science, Engineering and Technology 27 (December 27, 2022): 767–73. http://dx.doi.org/10.54097/hset.v27i.3842.

Full text
Abstract:
Heavy duty gas turbine is the core power equipment of energy efficient conversion and clean utilization system in the 21st century and even longer. It is important for an efficient, clean and safe energy system. The heavy duty gas turbine is developed and manufactured at a level that represents a country's heavy industry and is by far the most efficient thermoelectric conversion equipment. This paper introduces the development status of the heavy duty gas turbine industry at home and abroad, summarizes the working principle and characteristics of heavy duty gas turbines, and prospects the development trend of heavy duty gas turbines.
APA, Harvard, Vancouver, ISO, and other styles
26

Takeishi, Kenichiro. "Evolution of Turbine Cooled Vanes and Blades Applied for Large Industrial Gas Turbines and Its Trend toward Carbon Neutrality." Energies 15, no. 23 (November 25, 2022): 8935. http://dx.doi.org/10.3390/en15238935.

Full text
Abstract:
Photovoltaics and wind power are expected to account for a large share of power generation in the carbon-neutral era. A gas turbine combined cycle (GTCC) with an industrial gas turbine as the main engine has the ability to rapidly start up and can follow up to load fluctuations to smooth out fluctuations in power generation from renewable energy sources. Simultaneously, the system must be more efficient than today’s state-of-the-art GTCCs because it will use either Carbon dioxide Capture and Storage (CCS) when burning natural gas or hydrogen/ammonia as fuel, which is more expensive than natural gas. This paper describes the trend of cooled turbine rotor blades used in large industrial gas turbines that are carbon neutral. First, the evolution of cooled turbine stationary vanes and rotor blades is traced. Then, the current status of heat transfer technology, blade material technology, and thermal barrier coating technology that will lead to the realization of future ultra-high-temperature industrial gas turbines is surveyed. Based on these technologies, this paper introduces turbine vane and blade cooling technologies applicable to ultra-high-temperature industrial gas turbines for GTCC in the carbon-neutral era.
APA, Harvard, Vancouver, ISO, and other styles
27

Han, Je-Chin, and Srinath Ekkad. "Recent Development in Turbine Blade Film Cooling." International Journal of Rotating Machinery 7, no. 1 (2001): 21–40. http://dx.doi.org/10.1155/s1023621x01000033.

Full text
Abstract:
Gas turbines are extensively used for aircraft propulsion, land-based power generation, and industrial applications. Thermal efficiency and power output of gas turbines increase with increasing turbine rotor inlet temperature (RIT). The current RIT level in advanced gas turbines is far above the .melting point of the blade material. Therefore, along with high temperature material development, a sophisticated cooling scheme must be developed for continuous safe operation of gas turbines with high performance. Gas turbine blades are cooled internally and externally. This paper focuses on external blade cooling or so-called film cooling. In film cooling, relatively cool air is injected from the inside of the blade to the outside surface which forms a protective layer between the blade surface and hot gas streams. Performance of film cooling primarily depends on the coolant to mainstream pressure ratio, temperature ratio, and film hole location and geometry under representative engine flow conditions. In the past number of years there has been considerable progress in turbine film cooling research and this paper is limited to review a few selected publications to reflect recent development in turbine blade film cooling.
APA, Harvard, Vancouver, ISO, and other styles
28

Dzida, Marek, and Wojciech Olszewski. "Comparing combined gas tubrine/steam turbine and marine low speed piston engine/steam turbine systems in naval applications." Polish Maritime Research 18, no. 4 (January 1, 2011): 43–48. http://dx.doi.org/10.2478/v10012-011-0025-8.

Full text
Abstract:
Comparing combined gas tubrine/steam turbine and marine low speed piston engine/steam turbine systems in naval applications The article compares combined systems in naval applications. The object of the analysis is the combined gas turbine/steam turbine system which is compared to the combined marine low-speed Diesel engine/steam turbine system. The comparison refers to the additional power and efficiency increase resulting from the use of the heat in the exhaust gas leaving the piston engine or the gas turbine. In the analysis a number of types of gas turbines with different exhaust gas temperatures and two large-power low-speed piston engines have been taken into account. The comparison bases on the assumption about comparable power ranges of the main engine.
APA, Harvard, Vancouver, ISO, and other styles
29

Becker, B., and B. Schetter. "Gas Turbines Above 150 MW for Integrated Coal Gasification Combined Cycles (IGCC)." Journal of Engineering for Gas Turbines and Power 114, no. 4 (October 1, 1992): 660–64. http://dx.doi.org/10.1115/1.2906639.

Full text
Abstract:
Commercial IGCC power plants need gas turbines with high efficiency and high power output in order to reduce specific installation costs and fuel consumption. Therefore the well-proven 154 MW V94.2 and the new 211 MW V94.3 high-temperature gas turbines are well suited for this kind of application. A high degree of integration of the gas turbine, steam turbine, oxygen production, gasifier, and raw gas heat recovery improves the cycle efficiency. The air use for oxygen production is taken from the gas turbine compressor. The N2 fraction is recompressed and mixed with the cleaned gas prior to combustion. Both features require modifications of the gas turbine casing and the burners. Newly designed burners using the coal gas with its very low heating value and a mixture of natural gas and steam as a second fuel are developed for low NOx and CO emissions. These special design features are described and burner test results presented.
APA, Harvard, Vancouver, ISO, and other styles
30

Langston, Lee S. "Air Race." Mechanical Engineering 132, no. 05 (May 1, 2010): 34–38. http://dx.doi.org/10.1115/1.2010-may-3.

Full text
Abstract:
This article presents an overview of the existence and use of gas turbines in the past, present, and future. The article uses the data provided by Forecast International of Newtown, Conn., which covers both aviation and nonaviation gas turbine markets. The gas turbine has proven to be an example of technological evolution, where improvements in efficiency and reliability continue to amass, 70 years after its invention. Advanced technology developed in military jet engines has often migrated to commercial jet engines and nonaviation gas turbines, and improved their performance. Gas turbine combined-cycle power plants come in all sizes. The largest combined-cycle gas turbines are the H class machines made by GE and Siemens. Given the world’s current focus on sustainable or renewable energy, how do natural gas-fired gas turbines fit in? In some instances, renewable energy, such as solar or wind, just would not be practical without assistance from gas turbines. As power production moves tentatively into a low-carbon future, or as people look for more fuel-efficient ways to cross continents, it’s a sure bet that gas turbines will be there.
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Heyu, and Kai Hong Luo. "Aerothermal Performance and Soot Emissions of Reacting Flow in a Micro-Gas Turbine Combustor." Energies 16, no. 7 (March 23, 2023): 2947. http://dx.doi.org/10.3390/en16072947.

Full text
Abstract:
Micro-gas turbines are used for power generation and propulsion in unmanned aerial vehicles. Despite the growing demand for electric engines in a world striving for a net zero carbon footprint, combustion gas turbines will continue to play a critical role. Hence, there is a need for improved micro-gas turbines that can meet stringent environmental regulations. This paper is the first part of a comprehensive study focused on understanding the fundamental performance and emission characteristics of a micro-gas turbine model, with the aim of finding ways to enhance its operation. The study used a multidisciplinary CFD model to simulate the reacting flow in the combustion chamber and validated the results against experimental data and throughflow simulations. The present work is one of the few work that attempts to address both the aerothermal performance and emissions of the gas turbine. The findings highlight that parameters such as non-uniform outlet pressure, fuel-to-air ratio, and fuel injection velocity can greatly influence the performance and emissions of the micro-gas turbine. These parameters can affect the combustion efficiency, the formation of hot spots at the combustor–turbine interface, and the soot emissions. The results provide valuable insights for optimizing the performance and reducing the emissions of micro-gas turbines and serve as a foundation for further research into the interaction between the combustor and the turbine.
APA, Harvard, Vancouver, ISO, and other styles
32

Wilson, Jay M., and Henry Baumgartner. "A New Turbine for Natural Gas Pipelines." Mechanical Engineering 121, no. 05 (May 1, 1999): 72–74. http://dx.doi.org/10.1115/1.1999-may-7.

Full text
Abstract:
The new Cooper-Bessemer power turbine is a high-efficiency, center frame-mounted, three-stage unit that can be driven by either the existing RB211-24 gas generator or the new improved version. The upgraded gas generator combined with the new power turbine offers an increase in nominal output from 28.4 MW (38,000 hp) to 31.8 MW (42,600 hp). The new coupled turbine, now being tested, is called the Coberra 6761. Besides improving core engine performance, the program's objectives included improved fuel efficiency and reliability, and easier site serviceability; extension of the modular concept from the gas generator into the power turbine with improvements in sealing, materials, and temperature capability as well as interchangeability of both upgraded turbines with existing hardware. The Rolls-Royce industrial RB211 turbine, derived from an aircraft engine, is the basis for the gas generator end of Cooper Energy Services' Coberra coupled turbines. The power turbine design capacity has a significant effect on the power at a given speed. The flow capacity was optimized to achieve the best thermal efficiency and lower IP speeds to optimize IP compressor efficiency and permit future throttle push.
APA, Harvard, Vancouver, ISO, and other styles
33

Batayev, Nurlan. "Axial compressor fouling detection for gas turbine driven gas compression unit." Indonesian Journal of Electrical Engineering and Computer Science 15, no. 3 (September 1, 2019): 1257. http://dx.doi.org/10.11591/ijeecs.v15.i3.pp1257-1263.

Full text
Abstract:
<span>One of the main reasons of the performance degradation of gas turbines is the axial compressor fouling due to air pollutants. Considering the fact that the fouling leads to high consumption of fuel, reducing of the axial compressor’s discharge air pressure and increasing of the exhaust temperature, thus designing a compressor degradation detection system will allow prevent such issues. Many gas turbine plants lose power due to dirty axial compressor blades, which can add up to 4% loss of power. In case of power plants, the power loosing could be observed by less megawatts produced by generator. But in case of gas compression stations the effect of power loosing could not be quickly detected, because there is not direct measurement of the discharge power produced by gas turbine. This article represents technique for detection of gas turbine axial compressor degradation in case of gas turbine driven natural gas compression units. Calculation of the centrifugal gas compressor power performed using proven methodology. Approach for evaluation of the gas turbine performance based on machine learning prediction model is shown. Adequacy of the model has been made to three weeks’ operation data of the 10 Megawatt class industrial gas turbine.</span>
APA, Harvard, Vancouver, ISO, and other styles
34

Kurz, Rainer. "Natural Gas." Mechanical Engineering 133, no. 04 (April 1, 2011): 52. http://dx.doi.org/10.1115/1.2011-apr-7.

Full text
Abstract:
This article discusses the importance of gas turbines, centrifugal compressors and pumps, and other turbomachines in processes that bring natural gas to the end users. To be useful, the natural gas coming from a large number of small wells has to be gathered. This process requires compression of the gas in several stages, before it is processed in a gas plant, where contaminants and heavier hydrocarbons are stripped from the gas. From the gas plant, the gas is recompressed and fed into a pipeline. In all these compression processes, centrifugal gas compressors driven by industrial gas turbines or electric motors play an important role. Turbomachines are used in a variety of applications for the production of oil and associated gas. For example, gas turbine generator sets often provide electrical power for offshore platforms or remote oil and gas fields. Offshore platforms have a large electrical demand, often requiring multiple large gas turbine generator sets. Similarly, centrifugal gas compressors, driven by gas turbines or by electric motors are the benchmark products to pump gas through pipelines, anywhere in the world.
APA, Harvard, Vancouver, ISO, and other styles
35

Langston, Lee S. "Riding the Surge." Mechanical Engineering 135, no. 05 (May 1, 2013): 37–41. http://dx.doi.org/10.1115/1.2013-may-2.

Full text
Abstract:
This article explores the advantages of gas turbines in the marine industry. Marine gas turbines, which are designed specifically for use on ships, have long been one of the segments of the gas turbine market. One advantage that gas turbines have over conventional marine diesels is volume. Gas turbines are the prime movers for the modern combined cycle electric power plant. Both CFM International (a joint venture of General Electric and France’s Snecma) and Pratt & Whitney are working on new engines for this multibillion dollar single-aisle, narrow-body market. Pratt & Whitney’s new certified PW1500G geared turbofans will have a first flight powering the first Bombardier CSeries aircraft. On land, sea, and air, the surge in gas turbine production is remarkable. The experts suggest that what the steam engine was to the 19th century and the internal combustion engine was to the 20th, the gas turbine might be to the 21st century: the ubiquitous prime mover of choice.
APA, Harvard, Vancouver, ISO, and other styles
36

Zhang, Yuanzhe, Pei Liu, and Zheng Li. "Impact of Cooling with Thermal Barrier Coatings on Flow Passage in a Gas Turbine." Energies 15, no. 1 (December 23, 2021): 85. http://dx.doi.org/10.3390/en15010085.

Full text
Abstract:
Inlet temperature is vital to the thermal efficiency of gas turbines, which is becoming increasingly important in the context of structural changes in power supplies with more intermittent renewable power sources. Blade cooling is a key method for gas turbines to maintain high inlet temperatures whilst also meeting material temperature limits. However, the implementation of blade cooling within a gas turbine—for instance, thermal barrier coatings (TBCs)—might also change its heat transfer characteristics and lead to challenges in calculating its internal temperature and thermal efficiency. Existing studies have mainly focused on the materials and mechanisms of TBCs and the impact of TBCs on turbine blades. However, these analyses are insufficient for measuring the overall impact of TBCs on turbines. In this study, the impact of TBC thickness on the performance of gas turbines is analyzed. An improved mathematical model for turbine flow passage is proposed, considering the impact of cooling with TBCs. This model has the function of analyzing the impact of TBCs on turbine geometry. By changing the TBCs’ thickness from 0.0005 m to 0.0013 m, its effects on turbine flow passage are quantitatively analyzed using the proposed model. The variation rules of the cooling air ratio, turbine inlet mass flow rate, and turbine flow passage structure within the range of 0.0005 m to 0.0013 m of TBC thicknesses are given.
APA, Harvard, Vancouver, ISO, and other styles
37

Bunker, Ronald S. "Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges." Journal of Turbomachinery 129, no. 2 (July 16, 2006): 193–201. http://dx.doi.org/10.1115/1.2464142.

Full text
Abstract:
The advancement of turbine cooling has allowed engine design to exceed normal material temperature limits, but it has introduced complexities that have accentuated the thermal issues greatly. Cooled component design has consistently trended in the direction of higher heat loads, higher through-wall thermal gradients, and higher in-plane thermal gradients. The present discussion seeks to identify ten major thermal issues, or opportunities, that remain for the turbine hot gas path (HGP) today. These thermal challenges are commonly known in their broadest forms, but some tend to be little discussed in a direct manner relevant to gas turbines. These include uniformity of internal cooling, ultimate film cooling, microcooling, reduced incident heat flux, secondary flows as prime cooling, contoured gas paths, thermal stress reduction, controlled cooling, low emission combustor-turbine systems, and regenerative cooling. Evolutionary or revolutionary advancements concerning these issues will ultimately be required in realizable engineering forms for gas turbines to breakthrough to new levels of performance. Herein lies the challenge to researchers and designers. It is the intention of this summary to provide a concise review of these issues, and some of the recent solution directions, as an initial guide and stimulation to further research.
APA, Harvard, Vancouver, ISO, and other styles
38

Langston, Lee S. "Fahrenheit 3,600." Mechanical Engineering 129, no. 04 (April 1, 2007): 34–37. http://dx.doi.org/10.1115/1.2007-apr-3.

Full text
Abstract:
This article illustrates capabilities of gas turbines to be able to work in extremely elevated temperatures. The turbine airfoils in the new F135 jet engine that powers the Joint Strike Fighter (JSF) Lightning II are capable of operating at these extreme temperatures. The F135 gas turbine is the first production jet engine in this new 3,600°F class, designed to withstand these highest, record-breaking turbine inlet temperatures. The JSF engine is just one product in the $3.7 billion military gas turbine market, which includes jet engine production for the world’s fighter aircraft military cargo, transport, refuelling, and special-purpose aircraft. The article also discusses the features of H Class, which is the largest electric power gas turbine that has been interpreted as an abbreviation for humongous. Non-aviation gas turbines consist of electrical power generation, mechanical drive, and marine. The largest segment of that market by far is electrical power generation, in simple cycle, combined cycle, and cogeneration. Forecast International predicts significant growth in coming years in demand for gas turbine electrical power generation, rising from $8.6 billion in 2006 to a projected $13.5 billion in 2008, a 60 percent increase.
APA, Harvard, Vancouver, ISO, and other styles
39

Langston, Lee S. "Powering Ahead." Mechanical Engineering 133, no. 05 (May 1, 2011): 30–33. http://dx.doi.org/10.1115/1.2011-may-2.

Full text
Abstract:
This article explores the increasing use of natural gas in different turbine industries and in turn creating an efficient electrical system. All indications are that the aviation market will be good for gas turbine production as airlines and the military replace old equipment and expanding economies such as China and India increase their air travel. Gas turbines now account for some 22% of the electricity produced in the United States and 46% of the electricity generated in the United Kingdom. In spite of this market share, electrical power gas turbines have kept a much lower profile than competing technologies, such as coal-fired thermal plants and nuclear power. Gas turbines are also the primary device behind the modern combined power plant, about the most fuel-efficient technology we have. Mitsubishi Heavy Industries is developing a new J series gas turbine for the combined cycle power plant market that could achieve thermal efficiencies of 61%. The researchers believe that if wind turbines and gas turbines team up, they can create a cleaner, more efficient electrical power system.
APA, Harvard, Vancouver, ISO, and other styles
40

Gautam, Yastuti Rao. "Review of Recuperator used in Micro Gas Turbine." International Journal for Research in Applied Science and Engineering Technology 9, no. VIII (August 15, 2021): 634–37. http://dx.doi.org/10.22214/ijraset.2021.36681.

Full text
Abstract:
Micro gas turbines are an auspicious technology for power generation because of their small size, low pollution, low maintenance, high reliability and natural fuel used. Recuperator is vital requirement in micro gas turbine unit for improve the efficiency of micro turbine unit . Heat transfer and pressure drop characteristics are important for designing an efficient recuperator. Recuperators preheat compressed air by transfer heat from exhaust gas of turbines, thus reducing fuel consumption and improving the thermal efficiency of micro gas turbine unit from 16–20% to 30%. The fundamental principles for optimization design of PSR are light weight, low pressure loss and high heat-transfer between exhaust gas to compressed air. There is many type of recuperator used in micro gas turbine like Annular CWPS recuperator , recuperator with involute-profile element , honey well , swiss-Roll etc . In this review paper is doing study of Heat transfer and pressure drop characteristics of many types recuperator.
APA, Harvard, Vancouver, ISO, and other styles
41

El Hadik, A. A. "The Impact of Atmospheric Conditions on Gas Turbine Performance." Journal of Engineering for Gas Turbines and Power 112, no. 4 (October 1, 1990): 590–96. http://dx.doi.org/10.1115/1.2906210.

Full text
Abstract:
In a hot summer climate, as in Kuwait and other Arabian Gulf countries, the performance of a gas turbine deteriorates drastically during the high-temperature hours (up to 60°C in Kuwait). Power demand is the highest at these times. This necessitates an increase in installed gas turbine capacities to balance this deterioration. Gas turbines users are becoming aware of this problem as they depend more on gas turbines to satisfy their power needs and process heat for desalination due to the recent technical and economical development of gas turbines. This paper is devoted to studying the impact of atmospheric conditions, such as ambient temperature, pressure, and relative humidity on gas turbine performance. The reason for considering air pressures different from standard atmospheric pressure at the compressor inlet is the variation of this pressure with altitude. The results of this study can be generalized to include the cases of flights at high altitudes. A fully interactive computer program based on the derived governing equations is developed. The effects of typical variations of atmospheric conditions on power output and efficiency are considered. These include ambient temperature (range from −20 to 60°C), altitude (range from zero to 2000 m above sea level), and relative humidity (range from zero to 100 percent). The thermal efficiency and specific net work of a gas turbine were calculated at different values of maximum turbine inlet temperature (TIT) and variable environmental conditions. The value of TIT is a design factor that depends on the material specifications and the fuel/air ratio. Typical operating values of TIT in modern gas turbines were chosen for this study: 1000, 1200, 1400, and 1600 K. Both partial and full loads were considered in the analysis. Finally the calculated results were compared with actual gas turbine data supplied by manufacturers.
APA, Harvard, Vancouver, ISO, and other styles
42

SAWYER, JOHN W. "MARINE GAS TURBINE, FREE PISTON GAS TURBINE BIBLIOGRAPHY." Journal of the American Society for Naval Engineers 70, no. 1 (March 18, 2009): 159–69. http://dx.doi.org/10.1111/j.1559-3584.1958.tb03285.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Jafari, Soheil, Seyed Miran Fashandi, and Theoklis Nikolaidis. "Modeling and Control of the Starter Motor and Start-Up Phase for Gas Turbines." Electronics 8, no. 3 (March 25, 2019): 363. http://dx.doi.org/10.3390/electronics8030363.

Full text
Abstract:
Improving the performance of industrial gas turbines has always been at the focus of attention of researchers and manufacturers. Nowadays, the operating environment of gas turbines has been transformed significantly respect to the very fast growth of renewable electricity generation where gas turbines should provide a safe, reliable, fast, and flexible transient operation to support their renewable partners. So, having a reliable tools to predict the transient behavior of the gas turbine is becoming more and more important. Regarding the response time and flexibility, improving the turbine performance during the start-up phase is an important issue that should be taken into account by the turbine manufacturers. To analyze the turbine performance during the start-up phase and to implement novel ideas so as to improve its performance, modeling, and simulation of an industrial gas turbine during cold start-up phase is investigated this article using an integrated modular approach. During this phase, a complex mechatronic system comprised of an asynchronous AC motor (electric starter), static frequency converter drive, and gas turbine exists. The start-up phase happens in this manner: first, the clutch transfers the torque generated by the electric starter to the gas turbine so that the turbine reaches a specific speed (cranking stage). Next, the turbine spends some time at this speed (purging stage), after which the turbine speed decreases, sparking stage begins, and the turbine enters the warm start-up phase. It is, however, possible that the start-up process fails at an intermediate stage. Such unsuccessful start-ups can be caused by turbine vibrations, the increase in the gradients of exhaust gases, or issues with fuel spray nozzles. If, for any reason, the turbine cannot reach the self-sustained speed and the speed falls below a certain threshold, the clutch engages once again with the turbine shaft and the start-up process is repeated. Consequently, when modeling the start-up phase, we face discontinuities in performance and a system with variable structure owing to the existence of clutch. Modeling the start-up phase, which happens to exist in many different fields including electric and mechanical application, brings about problems in numerical solutions (such as algebraic loop). Accordingly, this study attempts to benefit from the bond graph approach (as a powerful physical modeling approach) to model such a mechatronic system. The results confirm the effectiveness of the proposed approach in detailed performance prediction of the gas turbine in start-up phase.
APA, Harvard, Vancouver, ISO, and other styles
44

Langston, Lee S. "Electric Power and Natural Gas Synergism." Mechanical Engineering 139, no. 03 (March 1, 2017): 76–77. http://dx.doi.org/10.1115/1.2017-mar-8.

Full text
Abstract:
This article explains research and development in the field of gas turbine power plants. Natural gas fueled gas turbines driving generators are proving to be the most versatile and effective energy converter in the engineer's arsenal of prime movers. Continued research and development are making these gas turbine power plants even more effective, flexible, and efficient. Gas turbine plants can operate under either base load operations or in quick start/fast shutdown modes. The reliable and dispatchable backup capacity of fast-reacting fossil technology to hedge against variability of electrical supply was a key to successful renewable use in the 26 countries studied. The article concludes that the use of versatile electric power gas turbines fueled by natural gas will continue to grow in the world. In the United States, with recent shale discoveries and fracking of natural gas, such use should increase, with or without the emphasis on renewables.
APA, Harvard, Vancouver, ISO, and other styles
45

QI, Haiying, Gang XIE, Yuhong LI, Chong FENG, and Xiaoli CHEN. "A107 PERFORMANCE TEST OF DLN COMBUSTOR FOR 110 MW HEAVY-DUTY GAS TURBINE(Gas Turbine-2)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–59_—_1–64_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-59_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

TSURUTA, Kazutaka, Hiroyasu OHTAKE, and Yasuo KOIZUMI. "A208 FUNDAMENTAL STUDY ON FILM COOLING OF GAS TURBINE BLADE BY MIST FLOW(Gas Turbine-6)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.2 (2009): _2–43_—_2–47_. http://dx.doi.org/10.1299/jsmeicope.2009.2._2-43_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

KAWATA, Yutaka, Toshihiro TERAO, Kenji FUJII, and Kunihiro HIGASHIURA. "A212 RESEARCH ON SECONDARY FLOW LOSS OF HIGH LOADED CASCADE FOR GAS TURBINE(Gas Turbine-7)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.2 (2009): _2–67_—_2–72_. http://dx.doi.org/10.1299/jsmeicope.2009.2._2-67_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Langston, Lee S. "Running in Place." Mechanical Engineering 139, no. 06 (June 1, 2017): 32–37. http://dx.doi.org/10.1115/1.2017-jun-1.

Full text
Abstract:
This article highlights technological performance improvements in the gas turbine industry and its likely future course. While the outlook for commercial aviation gas turbines is bright, the non-aviation segment is decidedly clouded. While analysts have focused on the growing demand for electricity worldwide, the average output of each individual gas turbine unit is also increasing, and at a rate that is faster than that of electricity demand. Gas turbine power plants also have the advantage of dispatchability, which wind, hydroelectric, and solar often do not. A recent econometric study of renewable electric power implementation shows that the use of fast-reacting fossil technologies such as gas turbines to hedge against variability of electrical supply made it more likely to result in the successful investment and use of renewables. The article suggests that gas turbine power plants are cost-effective and can provide a necessary backup to the variability of renewable power plants. Gas turbines combine low cost and fast reaction time in a way that will enable the grid to handle winds dying down unexpectedly or unpredicted heavy clouds diminishing solar power output.
APA, Harvard, Vancouver, ISO, and other styles
49

Maunsbach, K., A. Isaksson, J. Yan, G. Svedberg, and L. Eidensten. "Integration of Advanced Gas Turbines in Pulp and Paper Mills for Increased Power Generation." Journal of Engineering for Gas Turbines and Power 123, no. 4 (January 1, 2001): 734–40. http://dx.doi.org/10.1115/1.1359773.

Full text
Abstract:
The pulp and paper industry handles large amounts of energy and today produces the steam needed for the process and some of the required electricity. Several studies have shown that black liquor gasification and combined cycles increase the power production significantly compared to the traditional processes used today. It is of interest to investigate the performance when advanced gas turbines are integrated with next-generation pulp and paper mills. The present study focused on comparing the combined cycle with the integration of advanced gas turbines such as steam injected gas turbine (STIG) and evaporative gas turbine (EvGT) in pulp and paper mills. Two categories of simulations have been performed: (1) comparison of gasification of both black liquor and biomass connected to either a combined cycle or steam injected gas turbine with a heat recovery steam generator; (2) externally fired gas turbine in combination with the traditional recovery boiler. The energy demand of the pulp and paper mills is satisfied in all cases and the possibility to deliver a power surplus for external use is verified. The study investigates new system combinations of applications for advanced gas turbines.
APA, Harvard, Vancouver, ISO, and other styles
50

Langston, Lee S. "The Decarboniztion of Gas Turbine Power." Mechanical Engineering 142, no. 06 (June 1, 2020): 52–53. http://dx.doi.org/10.1115/1.2020-jun4.

Full text
Abstract:
Abstract The gas turbine industry is facing the prospects of meeting proposed national and international targets for reducing carbon dioxide emissions and for the promotion of sustainable energy. The evolving role of gas turbines to decarbonize the world’s energy conversion systems has been the theme of articles in the Global Gas Turbine News (GGTN) in the last three issues, of September 2019, December 2019 and March 2020. The articles are reviewed here
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography