Academic literature on the topic 'Gas vacuum oil'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gas vacuum oil.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gas vacuum oil"

1

Tomina, N. N., P. S. Solmanov, N. M. Maksimov, et al. "Hydrotreating of a Vacuum Gas Oil-Heavy Coker Gas Oil Mixture." Russian Journal of General Chemistry 88, no. 9 (2018): 1963–69. http://dx.doi.org/10.1134/s1070363218090372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Glebov, L. S., and E. V. Glebova. "Pyrolysis of hydrotreated vacuum gas oil." Petroleum Chemistry 55, no. 3 (2015): 238–40. http://dx.doi.org/10.1134/s0965544115020103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Halmenschlager, Cibele Melo, Maganjot Brar, Ioan Tudor Apan, and Arno de Klerk. "Hydrocracking vacuum gas oil with wax." Catalysis Today 353 (August 2020): 187–96. http://dx.doi.org/10.1016/j.cattod.2019.07.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khasanov, R. G., T. V. Alushkina, and M. V. Klykov. "Catalytic Pyrolysis of Vacuum Gas Oil." Chemistry and Technology of Fuels and Oils 57, no. 3 (2021): 446–50. http://dx.doi.org/10.1007/s10553-021-01263-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Klykov, M. V., and T. V. Alushkina. "Development of Technological Schemes for Increasing the Selection of Vacuum Gas Oil." Chemistry and Technology of Fuels and Oils 625, no. 3 (2021): 17–20. http://dx.doi.org/10.32935/0023-1169-2021-625-3-17-20.

Full text
Abstract:
The analysis of the operation of the vacuum columns of the ELOU AVT units showed that in a number of cases the half-gas contains up to 30% of vacuum gas oil with a boiling point of up to 560 ° C. A comparative analysis of three options for deepening the selection of heavy vacuum gas oil during the distillation of fuel oil has been carried out. A traditional scheme with a pressure reduction at the top of the vacuum column, the rectification of a half-sludge without heating it after the main vacuum column in an additional its subsequent rectification in the second column, with the selection of h
APA, Harvard, Vancouver, ISO, and other styles
6

Doronin, V. P., O. V. Potapenko, P. V. Lipin, and T. P. Sorokina. "Catalytic cracking of vegetable oils and vacuum gas oil." Fuel 106 (April 2013): 757–65. http://dx.doi.org/10.1016/j.fuel.2012.11.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stratiev, Dicho, Ivan Chavdarov, Ekaterina Nikolaychuk, et al. "Investigation of the fluid catalytic cracking of different H-Oil vacuum gas oils and their blends with hydrotreated vacuum gas oil." Petroleum Science and Technology 34, no. 24 (2016): 1939–45. http://dx.doi.org/10.1080/10916466.2016.1230757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nilssona, P., F. E. Massoth, and J.-E. Otterstedt. "Catalytic cracking of heavy vacuum gas oil." Applied Catalysis 26 (January 1986): 175–89. http://dx.doi.org/10.1016/s0166-9834(00)82550-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alrubaye, Saleem Mohammad. "Study the Effect of Catalyst -to- Oil Ratio Parameter (COR) on Catalytic Cracking of Heavy Vacuum Gas Oil." Journal of Engineering 26, no. 7 (2020): 16–27. http://dx.doi.org/10.31026/j.eng.2020.07.02.

Full text
Abstract:
This work deals with the production of light fuel cuts of (gasoline, kerosene and gas oil) by catalytic cracking treatment of secondary product mater (heavy vacuum gas oil) which was produced from the vacuum distillation unit in any petroleum refinery. The objective of this research was to study the effect of the catalyst -to- oil ratio parameter on catalytic cracking process of heavy vacuum gas oil feed at constant temperature (450 °C). The first step of this treatment was, catalytic cracking of this material by constructed batch reactor occupied with auxiliary control devices, at selective r
APA, Harvard, Vancouver, ISO, and other styles
10

Georgiev, V., D. Stratiev, K. Kirilov, K. Petkov, and D. Minkov. "Reasons for low heavy vacuum gas oil yield in vacuum distillation of residual fuel oil." Chemistry and Technology of Fuels and Oils 45, no. 3 (2009): 164–69. http://dx.doi.org/10.1007/s10553-009-0120-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Gas vacuum oil"

1

Ertas, Alper T. "Single-event kinetic modeling of the hydrocracking of hydrogenated vacuum gas oil." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4757.

Full text
Abstract:
The primary objective of the research project was to further develop a computer program modeling the hydrocracking of partially hydrogenated vacuum gas oil (HVGO), and to use the model to compare the theoretical product distribution to experimental data describing the product distribution of an industrial pilot reactor. The hydrocracking of HVGO on acid zeolites is effectively modeled utilizing a single-event kinetic approach developed by Froment and coworkers. The hydrocracking of HVGO can be described in terms of the fundamental reaction steps involving carbenium ions. Some 45 single-event r
APA, Harvard, Vancouver, ISO, and other styles
2

Chapelliere, Yann. "Investigation of the structure-property relationships of hierarchical Y zeolites for the co-processing of bio-oil with vacuum gas oil." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSE1046.

Full text
Abstract:
Le monde fait face à des enjeux climatiques et énergétiques qui impliquent l’utilisation de biomasse, au même titre que d’autres énergies renouvelables, comme des moyens de production d’énergie. Parmi les voies envisagées, l’addition d’huile de pyrolyse au sein de procédés de raffinage déjà existants présenterait l’avantage d’une mise en place rapide et d’une modification structurelle limitée. L’unité de craquage catalytique en lit fluidisé (FCC), valorisant les fractions pétrolières les plus lourdes, est l’unité la plus à même de valoriser des charges biosourcées. Cependant, les premiers test
APA, Harvard, Vancouver, ISO, and other styles
3

Boursier, Laure. "Caractérisation et réactivité en hydrotraitement des composés hétéroatomiques présents dans les distillats sous vide du pétrole." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2014. http://tel.archives-ouvertes.fr/tel-00987560.

Full text
Abstract:
Dans le domaine pétrolier, l'exploitation de pétroles bruts de plus en plus lourds nécessite de développer des procédés de conversion de ces coupes lourdes en bases carburants valorisables. Parmi ces procédés, l'hydrocraquage permet d'obtenir à partir d'une coupe distillat sous vide (DSV) des gazoles de grande qualité. Afin d'améliorer la compréhension de ce procédé catalytique, une caractérisation détaillée des charges et effluents de ce procédé est nécessaire. Les techniques existantes n'étant pas assez performantes, ce travail de thèse s'est focalisé sur l'utilisation de la chromatographie
APA, Harvard, Vancouver, ISO, and other styles
4

Kolitcheff, Svetan. "Approche multitechnique des phénomènes de diffusion en hydrotraitement de distillats." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1033/document.

Full text
Abstract:
Dans l'industrie du raffinage, les procédés de craquage catalytique permettent la production de carburants à partir de coupes pétrolières lourdes, telles que les distillats sous vides (DSV). Pour optimiser ces procédés, un hydrotraitement préalable est nécessaire. Ces dernières années, les travaux conséquents de R&D ont considérablement amélioré l'activité des catalyseurs d'hydrotraitement. Par conséquent, le transfert de matière interne peut devenir limitant, il doit donc être quantifié.Une méthodologie utilisant la chromatographie inverse liquide a été développée afin de caractériser le
APA, Harvard, Vancouver, ISO, and other styles
5

Möller, Isabelle [Verfasser], and Jan T. [Akademischer Betreuer] Andersson. "Determination of non-thiophenic sulfur compounds in vacuum gas oils / Isabelle Möller ; Betreuer: Jan T. Andersson." Münster : Universitäts- und Landesbibliothek Münster, 2014. http://d-nb.info/1137512199/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

El, Gemayel Gemayel. "Integration and Simulation of a Bitumen Upgrading Facility and an IGCC Process with Carbon Capture." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23274.

Full text
Abstract:
Hydrocracking and hydrotreating are bitumen upgrading technologies designed to enhance fuel quality by decreasing its density, viscosity, boiling point and heteroatom content via hydrogen addition. The aim of this thesis is to model and simulate an upgrading and integrated gasification combined cycle then to evaluate the feasibility of integrating slurry hydrocracking, trickle-bed hydrotreating and residue gasification using the Aspen HYSYS® simulation software. The close-coupling of the bitumen upgrading facilities with gasification should lead to a hydrogen, steam and power self-sufficient u
APA, Harvard, Vancouver, ISO, and other styles
7

Costa, Maria Jos? Fonseca. "S?ntese e caracteriza??o de materiais nanoporosos para pir?lise catal?tica de ?leos pesados." Universidade Federal do Rio Grande do Norte, 2008. http://repositorio.ufrn.br:8080/jspui/handle/123456789/17609.

Full text
Abstract:
Made available in DSpace on 2014-12-17T15:41:45Z (GMT). No. of bitstreams: 1 MariaJFCpdf.pdf: 4931245 bytes, checksum: 45a7ea893d17f478c73adf56787579aa (MD5) Previous issue date: 2008-12-22<br>Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior<br>The present work reports the study of nanoporous structures, aiming at their use in research directed to the current demand of the petroleum industry to value heavy oil. Initially, two ways were chosen for the synthesis of porous structures from the molecular sieves of type Si-MCM-41. In the first way, the structure MCM-41 is precursory for
APA, Harvard, Vancouver, ISO, and other styles
8

Kinuthia, Wanyee. "“Accumulation by Dispossession” by the Global Extractive Industry: The Case of Canada." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/30170.

Full text
Abstract:
This thesis draws on David Harvey’s concept of “accumulation by dispossession” and an international political economy (IPE) approach centred on the institutional arrangements and power structures that privilege certain actors and values, in order to critique current capitalist practices of primitive accumulation by the global corporate extractive industry. The thesis examines how accumulation by dispossession by the global extractive industry is facilitated by the “free entry” or “free mining” principle. It does so by focusing on Canada as a leader in the global extractive industry and the spr
APA, Harvard, Vancouver, ISO, and other styles
9

Jarullah, Aysar Talib, N. A. Awad, and Iqbal M. Mujtaba. "Optimal design and operation of an industrial fluidized catalytic cracking reactor." 2017. http://hdl.handle.net/10454/12183.

Full text
Abstract:
Yes<br>Fluidized catalytic cracking (FCC) is regarded one of the most significant operations in the oil refining industries to convert feedstock (mainly vacuum gasoil) to valuable products (namely gasoline and diesel). The behavior of the fluidized catalytic cracking process is playing a main part on the overall benefits of refinery units and improving in process or control of fluidized catalytic cracking plants will result in exciting benefits economically. According to these highlights, this study is aimed to develop a new mathematical model for the FCC process taking into account the comple
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Gas vacuum oil"

1

Wells, Jan W. "Catalytic Cracking of a Wilmington Vacuum Gas Oil and Selected Hydrotreated Products." In ACS Symposium Series. American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0375.ch018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Turlier, P., M. Forissier, P. Rivault, I. Pitault, and J. R. Bernard. "Catalyst Fouling by Coke from Vacuum Gas Oil in Fluid Catalytic Cracking Reactors." In ACS Symposium Series. American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0571.ch008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dik, P. P., V. P. Doronin, E. Yu Gerasimov, et al. "NiMo/USY-Alumina Catalysts with Different Zeolite Content for Vacuum Gas Oil Hydrocracking Over Stacked Beds." In Proceedings of the Scientific-Practical Conference "Research and Development - 2016". Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62870-7_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Vacuum Gas Oil." In Encyclopedia of Lubricants and Lubrication. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-22647-2_200511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sayko, A. V., K. A. Nadeina, and O. V. Klimov. "DETERMINATION OF BASIC NITROGEN IN HYDRO-TREATED VACUUM GAS OIL." In To the 100th anniversary of I.G. Yudelevich. Works of analytical chemists. NIIC SB RAS, 2020. http://dx.doi.org/10.26902/udl2020_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gosselink, J. W., A. van de Paverd, and W. H. J. Stork. "Mild Hydrocracking: Optimization of Multiple Catalyst Systems For Increased Vacuum Gas Oil Conversion." In Catalysts in Petroleum Refining 1989, Proceedings of the Conference on Catalysts in Petroleum Refining. Elsevier, 1989. http://dx.doi.org/10.1016/s0167-2991(08)61078-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Choi, Woo-Suk, Kyong-Hwan Lee, Kyungil Choi, and Baik-Hyon Ha. "Hydrocracking of vacuum gas oil on CoMo/alumina (or silica-alumina) containing zeolite." In Studies in Surface Science and Catalysis. Elsevier, 1999. http://dx.doi.org/10.1016/s0167-2991(99)80415-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Muegge, B., and F. E. Massoth. "Comparison of Hydrotreating Catalyst Deactivation by Coking with Vacuum Gas Oil Vs. Anthracene." In Studies in Surface Science and Catalysis. Elsevier, 1991. http://dx.doi.org/10.1016/s0167-2991(08)62647-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jiménez, Favio, Manuel Núñez, and Viatcheslav Kafarov. "Study and modeling of simultaneous hydrodesulfurization, hydrodenitrogenation and hydrodearomatization on vacuum gas oil hydrotreatment." In Computer Aided Chemical Engineering. Elsevier, 2005. http://dx.doi.org/10.1016/s1570-7946(05)80225-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Melo-Banda, J. A., J. M. Domínguez, and G. Sandoval-Robles. "Hydrotreating of heavy vacuum gas oil on unsupported and supported Mo-, W-, Nb- nitrides." In Studies in Surface Science and Catalysis. Elsevier, 2000. http://dx.doi.org/10.1016/s0167-2991(00)80902-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Gas vacuum oil"

1

Svichkar, E. V., N. K. Nikulin, and K. E. Demikhov. "Calculation method of pumping characteristics of high-vacuum system with turbomolecular vacuum pump." In OIL AND GAS ENGINEERING (OGE-2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5051893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Svichkar, E. V., N. K. Nikulin, V. S. Klyucharov, and K. E. Demikhov. "Molecular-viscous vacuum pump (MVVP)." In OIL AND GAS ENGINEERING (OGE-2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4998878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Slobodina, E. N., A. G. Mikhailov, and A. V. Razuvaev. "Vacuum boiler elements temperature processes interrelation." In OIL AND GAS ENGINEERING (OGE-2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5051908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kalinkin, D. A., O. V. Belova, and R. O. Andreev. "Investigation of gas permeability of fibrous composite material in a vacuum." In OIL AND GAS ENGINEERING (OGE-2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5051895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karagusov, V. I., V. S. Serdyuk, I. S. Kolpakov, V. A. Nemykin, and I. N. Pogulyaev. "Experimental determination of rate and direction of heat flow of the radiation life – Support system with vacuum heat insulation." In OIL AND GAS ENGINEERING (OGE-2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5051876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tastet, Jacques, and Philippe Angays. "Safe Implementation of HV Vacuum Switches in Oil & Gas Installations." In 2007 4th European Conference on Electrical and Instrumentation Applications in the Petroleum & Chemical Industry. IEEE, 2007. http://dx.doi.org/10.1109/pciceurope.2007.4354008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Yigang, Baobing Shang, Huaxiao Wu, et al. "Design and Application Evaluation of Vacuum Insulated Tubing for Wax Control in Bohai Oilfield." In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/186395-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Siemers, W. T., M. G. Tisdale, L. D. Hallenbeck, J. J. Howard, and D. R. Prezbindowski. "Depositional Facies and Diagenetic History: Keys to Reservoir Porosity, Quality and Performance, East Vacuum Grayburg-San Andres Unit, Lea County, New Mexico." In Permian Basin Oil and Gas Recovery Conference. Society of Petroleum Engineers, 1996. http://dx.doi.org/10.2118/35182-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Trueba, David, Roberto Palos, Francisco J. Vela, Alazne Gutiérrez, and José M. Arandes. "Valorization of non-olefinic plastics and vacuum gas oil blends through hydrocracking." In 14th Mediterranean Congress of Chemical Engineering (MeCCE14). Grupo Pacífico, 2020. http://dx.doi.org/10.48158/mecce-14.dg.01.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lipin, P. V., E. V. Gaifullina, O. V. Potapenko, T. P. Sorokina, and V. P. Doronin. "Simultaneous conversion of vacuum gas oil and vegetable oil on cracking catalyst containing Me, Mg-Al mixed oxide." In INTERNATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF COMBUSTION AND PROCESSES IN EXTREME ENVIRONMENTS (COMPHYSCHEM’20-21) and VI INTERNATIONAL SUMMER SCHOOL “MODERN QUANTUM CHEMISTRY METHODS IN APPLICATIONS”. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0032873.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Gas vacuum oil"

1

Elliott, Douglas, M. V. Olarte, and T. R. Hart. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass and Algal Residues via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1267107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!