To see the other types of publications on this topic, follow the link: Gaston Co., N.C.

Journal articles on the topic 'Gaston Co., N.C'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Gaston Co., N.C.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Brunner, Henri, Josef Breu, and Peter Faustmann. "Bond Lengths Co–C(CO), Co–N(NO) and Angles L–Co–C(CO), L–Co–N(NO) in Tetrahedral Complexes⋆." European Journal of Inorganic Chemistry 1998, no. 12 (December 1998): 1871–76. http://dx.doi.org/10.1002/(sici)1099-0682(199812)1998:12<1871::aid-ejic1871>3.0.co;2-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bartel, Christoph, Peter Botschwina, Hans Bürger, Antonio Guarnieri, Änne Heyl, Aiko Huckauf, Dieter Lentz, Tatjana Merzliak, and El Bachir Mkadmi. "Cyanoisocyanoacetylene, N≡C−C≡C−N≡C." Angewandte Chemie International Edition 37, no. 20 (November 2, 1998): 2879–82. http://dx.doi.org/10.1002/(sici)1521-3773(19981102)37:20<2879::aid-anie2879>3.0.co;2-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bartel, Christoph, Peter Botschwina, Hans Bürger, Antonio Guarnieri, Änne Heyl, Aiko Huckauf, Dieter Lentz, Tatjana Merzliak, and El Bachir Mkadmi. "Cyanisocyanacetylen, N≡C−C≡C−N≡C." Angewandte Chemie 110, no. 20 (October 16, 1998): 3036–40. http://dx.doi.org/10.1002/(sici)1521-3757(19981016)110:20<3036::aid-ange3036>3.0.co;2-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eftaiha, Ala'a F., Abdussalam K. Qaroush, Ibrahim K. Okashah, Fatima Alsoubani, Jonas Futter, Carsten Troll, Bernhard Rieger, and Khaleel I. Assaf. "CO2 activation through C–N, C–O and C–C bond formation." Physical Chemistry Chemical Physics 22, no. 3 (2020): 1306–12. http://dx.doi.org/10.1039/c9cp05961j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Akita, Munetaka, Aizoh Sakurai, and Yoshihiko Moro-oka. "Facile CC bond cleavage of polyynediyldiiron complexes, Fp*–(CC)n–Fp* [Fp* = Fe(η5-C5Me5)(CO)2; n = 3, 4], with Fe2(CO)9 leading to bis(μ3-alkylidyne) complexes, Fp*–CC-μ3-C–Fe3(CO)9–μ3-C–(CC)n−2–Fp*." Chemical Communications, no. 1 (1999): 101–2. http://dx.doi.org/10.1039/a808712a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wei, Zhihong, Kathrin Junge, Matthias Beller, and Haijun Jiao. "Hydrogenation of phenyl-substituted CN, CN,CC, CC and CO functional groups by Cr, Mo and W PNP pincer complexes – a DFT study." Catalysis Science & Technology 7, no. 11 (2017): 2298–307. http://dx.doi.org/10.1039/c7cy00629b.

Full text
Abstract:
The hydrogenation of phenyl-substituted CN, CN, CC, CC and CO functional groups catalyzed by PNP pincer amido M(NO)(CO)(PNP) and amino HM(NO)(CO)(PNHP) complexes [M = Cr, Mo and W; PNP = N(CH2CH2P(isopropyl)2)2] has been computed.
APA, Harvard, Vancouver, ISO, and other styles
7

Ryu, Ilhyong, Akihiro Tani, Takahide Fukuyama, Davide Ravelli, Sara Montanaro, and Maurizio Fagnoni. "Efficient C–H/C–N and C–H/C–CO–N Conversion via Decatungstate-Photoinduced Alkylation of Diisopropyl Azodicarboxylate." Organic Letters 15, no. 10 (May 7, 2013): 2554–57. http://dx.doi.org/10.1021/ol401061v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ziegler, Manfred L., Hannelore Weber, Bernhard Nuber, and Orhan Serhadle. "Darstellung und Charakterisierung des Zwitterions S2C—C(NMe2)2; eine übergangsmetallinduzierte C—C-Kopplung. Komplexchemie der Zwitterionen S2C—C(NR2)2 / Synthesis and Characterization of the Zwitter Ion S2C —C(NMe2)2; a Transition Metal Induced C —C Coupling. Complex Chemistry of the Zwitter Ions S2C —C(NR2)2." Zeitschrift für Naturforschung B 42, no. 11 (November 1, 1987): 1411–18. http://dx.doi.org/10.1515/znb-1987-1108.

Full text
Abstract:
A transition metal induced C-C coupling by the reaction of W2(N(CH3)2)6, (4) and CS2 yielded the zwitter ion S2C-C(N(CH3)2)2 (1d) besides W2(N(CH3)2)2(CS2)2S4 (5). The com- plex chemistry of the zwitter ions 1d and S2CC(N(CH2)4X)2 (X = CH2, O) has been investigated by their reaction with (η5-C5H5)2Mo2(CO)4 (2) and (η5-C5H5)Mo(CO)3Cl (3). Reaction of the former led to complexes (η5-C5H5)Mo(CO)2(S2CR) (R = N(CH3)2, N(CH2)4X) and the new compounds [(η5-C5H5)Mo(CO)2(S2C-CR2)]+. X-ray structure analyses of 1d and ((η5-C5H5)Mo(CO)2(S2C-C(N(CH2)5)2)]⊕PF6⊖ (10b) are described.
APA, Harvard, Vancouver, ISO, and other styles
9

Petz, Wolfgang, and Frank Weller. "Reaktion von Ph3P=C=PPh3 mit Fe(CO)5; Molekülstrukturen von (CO)4Fe=C=C=PPh3 und Fe3(CO)9 (μ3 -η2-C≡C-PPh3) / Reaction of Ph3P=C=PPh3 with Fe(CO)5; Molecular Structures of (CO)4Fe=C=C=PPh3 and Fe3(CO)9(μ3 -η2-C≡C-PPh3)." Zeitschrift für Naturforschung B 51, no. 11 (November 1, 1996): 1598–604. http://dx.doi.org/10.1515/znb-1996-1112.

Full text
Abstract:
The ylide Ph3P=C=PPh3 reacts with Fe(CO)5 in toluene to give the metallacumulene (CO)4Fe=C=C=PPh3 (1) and O=PPh3. A mixture of the ylide with its hydrolysis product Ph2P(O)-CH=PPh3 produces the trinuclear cluster Fe3(CO)9(μ3-η2-C≡CPPh3) (2) in low yields which can also be obtained from 1 and Fe2(CO)9. Both compounds contain the same ligand bonded in a terminal (1) and in a bridging (2) manner. 1 and 2 crystallize in the monoclinic space groups P2(1)/n and P2(1)/c, respectively, with the unit cell parameters a = 1008.35(10), b = 1167.89(10), c = 1875.10(10) pm, β = 99.824(10)° for 1 and a = 853.6(2), b = 1966.6(4), c = 1770.2(4) pm; β = 99.05(3)° for 2. The compounds are further characterized by IR and NMR (13C ,31P) spectroscopy and elemental analyses.
APA, Harvard, Vancouver, ISO, and other styles
10

Lang, Heinrich, and Laszlo Zsolnai. "Zur Umsetzung von Tri(phenylethinyl)arsan und -stiban mit Octacarbonyldicobalt; Kristallstruktur von (Ph– C≡ C)As[(η2-C≡ C – Ph)Co2(CO)6]2 / Reaction of Tri(phenylethynyl)arsane and -stibane with Octacarbonyldicobalt; Crystal Structure of (Ph–C≡C)As[η2-C≡C–Ph)Co2(CO)6]2." Zeitschrift für Naturforschung B 45, no. 11 (November 1, 1990): 1529–36. http://dx.doi.org/10.1515/znb-1990-1112.

Full text
Abstract:
The synthesis of tri(phenylethynyl)arsane (1) and -stibane (7) is discussed. Octacarbonyldicobalt reacts selectively with 1 or 7 to yield the η2-side-on co-ordinated phenylethynyl complexes (Ph–C=C)nE[(η2-C≡C–Ph)Co2(CO)6]3-n (E = As: n = 2: 3, n = 1: 4, n = 0: 5; E = Sb: n = 2: 8; n = 1: 9; n = 0: 10), which contain sterically hindered carbon-cobalt tetrahedrane cluster units. 3 gives upon heating {(Ph–C≡C)2As[(η2-C=C–Ph)Co2(CO)5]}2 (6) a compound containing a six-membered Co2As2C2 ring.All new compounds have been characterized by analytical and spectroscopic data (IR, 1H, 13C NMR), and (Ph –C≡C)As[(η2-C≡C–Ph)Co2(CO)6]2 (4) by X-ray analysis.
APA, Harvard, Vancouver, ISO, and other styles
11

Bezerra, Cicero W. B., Lei Zhang, Kunchan Lee, Hansan Liu, Aldaléa L. B. Marques, Edmar P. Marques, Haijiang Wang, and Jiujun Zhang. "A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction." Electrochimica Acta 53, no. 15 (June 2008): 4937–51. http://dx.doi.org/10.1016/j.electacta.2008.02.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Oberholzer, Miriam, Benjamin Probst, Dominik Bernasconi, Bernhard Spingler, and Roger Alberto. "Photosensitizing Properties of Alkynylrhenium(I) Complexes [Re(-C≡C-R)­(CO)3(N∩N)] (N∩N = 2,2′-bipy, phen) for H2Production." European Journal of Inorganic Chemistry 2014, no. 19 (June 4, 2014): 3002–9. http://dx.doi.org/10.1002/ejic.201402142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Oberholzer, Miriam, Benjamin Probst, Dominik Bernasconi, Bernhard Spingler, and Roger Alberto. "Photosensitizing Properties of Alkynylrhenium(I) Complexes [Re(-C≡C-R)(CO)3(N∩N)] (N∩N = 2,2′-bipy, phen) for H2Production." European Journal of Inorganic Chemistry 2014, no. 19 (June 30, 2014): 2984. http://dx.doi.org/10.1002/ejic.201402502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Janisch, D. S., W. Lengauer, A. Eder, K. Dreyer, K. Rödiger, H. W. Daub, D. Kassel, and H. van den Berg. "Nitridation sintering of WC–Ti(C,N)–(Ta,Nb)C–Co hardmetals." International Journal of Refractory Metals and Hard Materials 36 (January 2013): 22–30. http://dx.doi.org/10.1016/j.ijrmhm.2011.12.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ryu, Ilhyong, Akihiro Tani, Takahide Fukuyama, Davide Ravelli, Sara Montanaro, and Maurizio Fagnoni. "ChemInform Abstract: Efficient C-H/C-N and C-H/C-CO-N Conversion via Decatungstate-Photoinduced Alkylation of Diisopropyl Azodicarboxylate." ChemInform 44, no. 36 (August 15, 2013): no. http://dx.doi.org/10.1002/chin.201336071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sen, Rahul, B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, Gargi Raina, Jin-Ping Zhang, A. K. Cheetham, and C. N. R. Rao. "B–C–N, C–N and B–N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts." Chemical Physics Letters 287, no. 5-6 (May 1998): 671–76. http://dx.doi.org/10.1016/s0009-2614(98)00220-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Liu, K. T., Y. K. Su, R. W. Chuang, S. J. Chang, and Y. Horikoshi. "C and N co-implantation in Be-doped GaN." Semiconductor Science and Technology 20, no. 8 (June 6, 2005): 740–44. http://dx.doi.org/10.1088/0268-1242/20/8/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Liu, Weiqi, Zhichao Miao, Zhenbin Li, Xiaozhong Wu, Pengfei Zhou, Jinping Zhao, Huahua Zhao, Weijiang Si, Jin Zhou, and Shuping Zhuo. "Electroreduction of CO2 catalyzed by Co@N-C materials." Journal of CO2 Utilization 32 (July 2019): 241–50. http://dx.doi.org/10.1016/j.jcou.2019.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sanchez Ballester, Noelia M., Mark R. J. Elsegood, Martin B. Smith, and Gavin M. Brown. "{N,N-Bis[(diphenylphosphino)methyl]aniline}tetracarbonylmolybdenum(0)." Acta Crystallographica Section E Structure Reports Online 63, no. 3 (February 14, 2007): m719—m721. http://dx.doi.org/10.1107/s1600536807006101.

Full text
Abstract:
The title compound, [Mo(CO)4{Ph2PCH2N(Ph)CH2PPh2}] or [Mo(C32H29NP2)(CO)4], is a tetracarbonylmolybdenum(0) complex of a chelating ditertiary phosphine with a P—C—N—C—P backbone. The geometry at the Mo centre is octahedral, while both diphenylphosphino centres coordinate in a cis fashion.
APA, Harvard, Vancouver, ISO, and other styles
20

Bürger, Hans, Dieter Lentz, Britta Meisner, Natascha Nickelt, Dagmar Preugschat, and Michael Senzlober. "Syntheses and1H-,13C- and15N-NMR Spectra of Ethynyl Isocyanide, H−C≡C−N≡C, D−C≡C−N≡C and Prop-1-ynyl Isocyanide, H3C−C≡C−N≡C, D3C−C≡C−N≡C: High Resolution Infrared Spectrum of Prop-1-ynyl Isocyanide." Chemistry - A European Journal 6, no. 18 (September 15, 2000): 3377–85. http://dx.doi.org/10.1002/1521-3765(20000915)6:18<3377::aid-chem3377>3.0.co;2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Östberg, Gustaf, Katharina Buss, Mikael Christensen, Susanne Norgren, Hans-Olof Andrén, Daniele Mari, Göran Wahnström, and Ingrid Reineck. "Mechanisms of plastic deformation of WC–Co and Ti(C, N)–WC–Co." International Journal of Refractory Metals and Hard Materials 24, no. 1-2 (January 2006): 135–44. http://dx.doi.org/10.1016/j.ijrmhm.2005.04.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zdanovich, V. I., V. Yu Lagunova, F. M. Dolgushin, A. I. Yanovsky, M. G. Ezernitskaya, P. V. Petrovskii, and A. A. Koridze. "Formation and structure of diruthenium complexes Ru2(CO)6−n (PPh3) n {μ-C(CH=CHPh)C(Ph)C(CH=CHPh)C(Ph)} (n=1, 2)." Russian Chemical Bulletin 47, no. 9 (September 1998): 1789–96. http://dx.doi.org/10.1007/bf02495707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wang, Jie, Shanke Zha, Kehao Chen, and Jin Zhu. "Cp*Co(iii)-catalyzed, N–N bond-based redox-neutral synthesis of isoquinolines." Organic Chemistry Frontiers 3, no. 10 (2016): 1281–85. http://dx.doi.org/10.1039/c6qo00367b.

Full text
Abstract:
We report herein a redox-neutral Cp*Co(iii)-catalyzed cyclization of acetophenone N-Boc hydrazones with alkynes for streamlined synthesis of isoquinolines, accomplished via formation of a C–C and a C–N bond along with N–N bond cleavage.
APA, Harvard, Vancouver, ISO, and other styles
24

Canal, John P., Michael C. Jennings, Glenn PA Yap, and Roland K. Pomeroy. "The series Os4(µx-η2-C2Ph2)(CO)14–n (n = 0, 1, 2; x = n + 2) — Models for site-specific surface catalysts." Canadian Journal of Chemistry 84, no. 2 (February 1, 2006): 176–86. http://dx.doi.org/10.1139/v05-239.

Full text
Abstract:
The cluster Os4(µ-η2-C2Ph2)(CO)14 (1) has been prepared from the reaction of Os4(CO)14 and C2Ph2 in CH2Cl2 at 25 °C. Other minor products include the known clusters Os3(µ3-η2-C2Ph2)(CO)10 and Os3(µ-η4-C4Ph4)(CO)9. The structure of 1 reveals an approximately planar C2Os4 skeleton with a dimetallacyclobutene ring (C—C = 1.32(4) Å) and a flat butterfly Os4 unit (Os—Os range = 2.859(2)–2.916(2) Å). The 13C{1H} NMR spectrum of 1 indicates the carbonyl ligands are rigid at room temperature. Stirring 1 in CH2Cl2 for 2 days (ambient temperature) afforded Os4(µ3-η2-C2Ph2)(CO)13 (2). The Os atoms in 2 also have an almost flat butterfly arrangement (Os—Os range = 2.7392(7)–2.8947(6) Å) with the alkyne ligand located over one of the Os3 triangles. The 13C NMR data for 2 are consistent with rapid rotation on the NMR timescale of the hinge Os(CO)3 units at 21 °C, but slow rotation at –50 °C. Heating 2 at 40 °C gave Os4(µ4-η2-C2Ph2)(CO)12 (3) after 2 days. Cluster 3 has the common butterfly arrangement of Os atoms with the C2Ph2 bound to all four metal atoms (Os—Os range = 2.7457(5)–2.8742(5) Å). The 13C{1H} NMR spectra of 3 at 21 and 90 °C indicate there is rapid CO exchange of the carbonyls of the two types of Os(CO)3 units, but not between the units. The spectrum at –90 °C indicates one of the rotations (presumed to be that involving the carbonyls of the wingtip Os(CO)3 units) is slowed on the NMR timescale. Compounds 1–3 form a unique series of clusters that have an alkyne ligand bound to two, three, and four metal atoms. Compound 1 is a model for a corner, compound 2 for a planar surface, and compound 3 a step site, in site-specific surface catalysts.Key words: osmium cluster, diphenylacetylene, dimetallacyclobutene, carbonyl exchange, surface catalysis.
APA, Harvard, Vancouver, ISO, and other styles
25

Zhu, Zhaoqi, Jie Cui, Jingxin Han, Shujuan Wu, Hanxue Sun, Weidong Liang, and An Li. "N‐rich mesoporous carbon supported CoNC and FeNC catalysts derived from o‐phenylenediamine for oxygen reduction reaction." International Journal of Energy Research 45, no. 9 (March 29, 2021): 13531–44. http://dx.doi.org/10.1002/er.6682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ahmad, Khalil, Chun-Ran Chang, and Jun Li. "Mechanistic investigations of Co(II)-Catalyzed C-N coupling reactions." Journal of Organometallic Chemistry 868 (August 2018): 144–53. http://dx.doi.org/10.1016/j.jorganchem.2018.05.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, P., X. F. Chen, J. S. Lian, and Q. Jiang. "Structural Selectivity of CO Oxidation on Fe/N/C Catalysts." Journal of Physical Chemistry C 116, no. 33 (August 13, 2012): 17572–79. http://dx.doi.org/10.1021/jp304097m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Vandezande, Jonathon E., and Henry F. Schaefer. "CO2 Reduction Pathways on MnBr(N-C)(CO)3 Electrocatalysts." Organometallics 37, no. 3 (January 31, 2018): 337–42. http://dx.doi.org/10.1021/acs.organomet.7b00743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Li, Can. "Single Co atom catalyst stabilized in C/N containing matrix." Chinese Journal of Catalysis 37, no. 9 (September 2016): 1443–45. http://dx.doi.org/10.1016/s1872-2067(16)62520-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ren, Rong-Kang, Ming-Ju Zhang, Jian Peng, Meng Niu, Jian-Ning Li, and Shu-Kai Zheng. "First-principles investigation on N/C co-doped CeO 2." Chinese Physics B 26, no. 3 (March 2017): 036102. http://dx.doi.org/10.1088/1674-1056/26/3/036102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Satheesh, Vanaparthi, Sundaravel Vivek Kumar, and Tharmalingam Punniyamurthy. "Expedient stereospecific Co-catalyzed tandem C–N and C–O bond formation of N-methylanilines with styrene oxides." Chemical Communications 54, no. 83 (2018): 11813–16. http://dx.doi.org/10.1039/c8cc06223d.

Full text
Abstract:
The Co(ii)-catalyzed stereospecific sequential C–N and C–O bond formation of styrene oxides with N-methylanilines has been developed. Optically active epoxides can be coupled with high enantiomeric purity.
APA, Harvard, Vancouver, ISO, and other styles
32

Li, Liang, Binghan Wu, Gengnan Li, and Yongsheng Li. "C, N co-doping promoted mesoporous Au/TiO2 catalyst for low temperature CO oxidation." RSC Advances 6, no. 34 (2016): 28904–11. http://dx.doi.org/10.1039/c6ra02428a.

Full text
Abstract:
The doping of C and N into meso-structured TiO2 increases the number of surface defects which could improve the absorption of oxygen, tune the metal-support interaction and promote the catalytic activities for CO oxidation.
APA, Harvard, Vancouver, ISO, and other styles
33

Digwal, Chander Singh, Upasana Yadav, P. V. Sri Ramya, Baijayantimala Swain, and Ahmed Kamal. "Vanadium‐Catalyzed N‐Benzoylation of 2‐Aminopyridines via Oxidative C(CO)−C(CO) Bond Cleavage of 1,2‐Diketones, N→N′ Aroyl Migration and Hydrolysis of 2‐(Diaroylamino)pyridines." Asian Journal of Organic Chemistry 7, no. 5 (March 7, 2018): 865–69. http://dx.doi.org/10.1002/ajoc.201800012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ahmad, Mustaffa, Sarath D. Perera, Bernard L. Shaw, and Mark Thornton-Pett. "Novel chemistry of rhodium induced by a new type of ligand, a phosphino-N-benzoylhydrazone: crystal structure of [Rh (CO){C(CO2Me)CHCO2 Me}{P PPh2CH[C(CO 2Me)C (CO2 Me)]C -(But)N –N C(Ph)O }]." Journal of the Chemical Society, Dalton Transactions, no. 15 (1997): 2607–12. http://dx.doi.org/10.1039/a702196h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mukherjee, Aparajita, David A. Hrovat, Michael G. Richmond, and Samaresh Bhattacharya. "A new diphosphine-carbonyl complex of ruthenium: an efficient precursor for C–C and C–N bond coupling catalysis." Dalton Transactions 47, no. 30 (2018): 10264–72. http://dx.doi.org/10.1039/c8dt01085d.

Full text
Abstract:
Reaction of 1,2-bis(diphenylphosphino)benzene (dppbz) with [{Ru(CO)2Cl2}n] affords [Ru(dppbz)(CO)2Cl2], which serves as an excellent pre-catalyst for Suzuki-type C–C coupling and Buchwald-type C–N coupling reactions.
APA, Harvard, Vancouver, ISO, and other styles
36

Zhang, Leilei, Aiqin Wang, Wentao Wang, Yanqiang Huang, Xiaoyan Liu, Shu Miao, Jingyue Liu, and Tao Zhang. "Co–N–C Catalyst for C–C Coupling Reactions: On the Catalytic Performance and Active Sites." ACS Catalysis 5, no. 11 (October 5, 2015): 6563–72. http://dx.doi.org/10.1021/acscatal.5b01223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Daran, Jean-Claude, Bernd Heim, and Yves Jeannin. "Fragmentation reactions ofN-sulfinylaniline PhNSO by the dinuclear complex [Fe2(CO)7{?-C(R)C(NEt2)}]: Nitrene and sulfur insertions into iron carbene bonds. Synthesis and x-ray structures of [Fe2(CO)6{?-N(Ph)C(NEt2)C(Me)S}] [Fe2(CO)6{?-N(Ph)C(NEt2)C(Ph)S}] � 0.5C6H14 and [Fe2(CO)6{?-C(C3H5)C(NEt2)N(Ph)SO}] � 0.5CH2Cl2." Journal of Cluster Science 4, no. 4 (December 1993): 403–22. http://dx.doi.org/10.1007/bf00703734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Roesky, Herbert W., Michael Zimmer, Regine Herbst, and George M. Sheldrick. "N,N′-Bis(diphenyIphosphino)-S,S-dimethylsulfodiimin – ein Ligand für cyclische Übergangsmetallkomplexe/ N,N′-Bis(diphenylphosphino)-S,S-dimethylsulfodiimine – a Ligand for Cyclic Transition Metal Complexes." Zeitschrift für Naturforschung B 43, no. 8 (August 1, 1988): 933–36. http://dx.doi.org/10.1515/znb-1988-0802.

Full text
Abstract:
AbstractMe2SN2P2Ph4M(CO)4 complexes (1) (M: 1 a Cr, 1 b Mo, 1 c W) have been synthesized from Me2S(NPPh2)2 and C7H8M(CO)4 . 1a-1c are stable at room temperature, 1 b crystallizes in the space group P21212 with cell constants a = 2486.3(2); b = 1488.8(1); c = 882.0(1) pm.
APA, Harvard, Vancouver, ISO, and other styles
39

Bulsink, Philip, Ahlam Al-Ghamdi, Prajesh Joshi, Ilia Korobkov, Tom Woo, and Darrin Richeson. "Capturing Re(i) in an neutral N,N,N pincer Scaffold and resulting enhanced absorption of visible light." Dalton Transactions 45, no. 21 (2016): 8885–96. http://dx.doi.org/10.1039/c6dt00661b.

Full text
Abstract:
A family of Re(i) pincer complexes [κ3-2,6-{ArNCMe}2(NC5H3)]Re(CO)2X (ArC6H5, Me2C6H3, iPr2C6H3; X = Cl, Br) and (κ3-terpy)Re(CO)2X (X = Cl, Br) is accessed via an unconventional thermal transformation of bidentate complexes by heating in the solid state to 200–240 °C under nitrogen.
APA, Harvard, Vancouver, ISO, and other styles
40

Barbadillo, L., M. Cervera, M. J. Hernández, P. Rodríguez, J. Piqueras, S. I. Molina, A. Ponce, and F. M. Morales. "N+BF 2 and N+C+BF 2 high-dose co-implantation in silicon." Applied Physics A: Materials Science & Processing 76, no. 5 (March 1, 2003): 791–800. http://dx.doi.org/10.1007/s00339-002-1503-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Schwarz, Viktoria, Fabio Scagnetto, and Walter Lengauer. "Sintering of Ti(C,N)-WC/Mo2C-(Ta,Nb)C-Co/Ni Cermets Investigated by CO and N2 Outgassing." Metals 9, no. 4 (April 10, 2019): 427. http://dx.doi.org/10.3390/met9040427.

Full text
Abstract:
Cermets of the type Ti(C,N)-WC/Mo2C-(Ta,Nb)C-Co/Ni with changing [Mo]/([Mo] + [W]) ratio were subjected to an investigation of outgassing of CO and N2 upon sintering. Quantification of CO and N2 was performed by gas calibration, measurement of masses 12 (12C), 14 (14N) and 28 (28CO and 28N2), as well as C, N, O analysis of the samples before and after sintering. The formation of CO occurs at lower temperatures than that of N2, both gases being completely evolved already at solid-state sintering conditions. If pre-alloyed powders are employed in the starting formulation, the amount of evolved gases is substantially reduced, because part of the formation of mixed hard phases is anticipated. Changing binder composition from Co:Ni = 1:1 to 2:1 and 3:1 does not change the outgassing characteristics, while different batches of nominally the same Ti(C,N) powder can have significant influence. Mass spectrometry is a most valuable in situ tool for getting insight into the metallurgical reactions occurring upon sintering. These reactions result in the typical microstructure and influence the properties of cermets.
APA, Harvard, Vancouver, ISO, and other styles
42

Glühmann, J., M. Schneeweiß, H. van den Berg, D. Kassel, K. Rödiger, K. Dreyer, and W. Lengauer. "Functionally graded WC–Ti(C,N)–(Ta,Nb)C–Co hardmetals: Metallurgy and performance." International Journal of Refractory Metals and Hard Materials 36 (January 2013): 38–45. http://dx.doi.org/10.1016/j.ijrmhm.2011.12.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Klein‐Heßling, Christian, and Karlheinz Sünkel. "Synthesis and Characterization of the Complete Series [(C 5 H 5‐n Cl n )Co(C 4 Ph 4 )] (n=1–5)." ChemistrySelect 6, no. 28 (July 26, 2021): 7183–87. http://dx.doi.org/10.1002/slct.202102199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kolb, Torsten, Atta M. Arif, and Richard D. Ernst. "Synthesis and Structural Study of the (N,N,N′,N′-Tetraethylethylenediamine)CdFe(CO)4 Dimer." Journal of Crystallography 2014 (April 7, 2014): 1–5. http://dx.doi.org/10.1155/2014/168320.

Full text
Abstract:
The new [(teeda)CdFe(CO)4]2 complex has been isolated from the reaction of [(NH3)2CdFe(CO)4]n with tetraethylethylenediamine. Unlike previous structural reports of ligand adducts of [L2CdFe(CO)4]x complexes, which have all been trimeric species composed of six-membered Cd3Fe3 rings, the teeda complex crystallized as a dimer, analogous to [(2,2-bpy)ZnFe(CO)4]2. As in the zinc dimer, significant distortion arises from steric interactions between the axial carbonyl ligands on opposing iron centers. The complex sits on an inversion center, leading to two independent Cd–Fe distances, 2.7244(6) and 2.7433(6) Å, and crystallizes in the monoclinic space group P21/a with a = 14.8546(2) Å, b = 15.1647(3) Å, c = 15.5252(3) Å, β = 90.9517(12)°, and Dcalc = 1.719 g/cm3 at 150(1) K.
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, Zhong-Li, Xian-Feng Hao, Zheng Jiang, Xue-Ping Sun, Dan Xu, Jun Wang, Hai-Xia Zhong, Fan-Lu Meng, and Xin-Bo Zhang. "C and N Hybrid Coordination Derived Co–C–N Complex as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction." Journal of the American Chemical Society 137, no. 48 (November 24, 2015): 15070–73. http://dx.doi.org/10.1021/jacs.5b09021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lo Vecchio, Carmelo, Antonino Salvatore Aricò, Giuseppe Monforte, and Vincenzo Baglio. "EDTA-derived Co N C and Fe N C electro-catalysts for the oxygen reduction reaction in acid environment." Renewable Energy 120 (May 2018): 342–49. http://dx.doi.org/10.1016/j.renene.2017.12.084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jaouen, Frédéric, and Jean-Pol Dodelet. "Average turn-over frequency of O2 electro-reduction for Fe/N/C and Co/N/C catalysts in PEFCs." Electrochimica Acta 52, no. 19 (May 2007): 5975–84. http://dx.doi.org/10.1016/j.electacta.2007.03.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Garsuch, Arnd, Ruizhi Yang, Arman Bonakdarpour, and J. R. Dahn. "The effect of boron doping into Co-C-N and Fe-C-N electrocatalysts on the oxygen reduction reaction." Electrochimica Acta 53, no. 5 (January 2008): 2423–29. http://dx.doi.org/10.1016/j.electacta.2007.10.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Huanxin, Yongliang Wen, Min Jiang, Yong Yao, Haihui Zhou, Zhongyuan Huang, Jiawen Li, Shuqiang Jiao, Yafei Kuang, and Shenglian Luo. "Understanding of Neighboring Fe‐N 4 ‐C and Co‐N 4 ‐C Dual Active Centers for Oxygen Reduction Reaction." Advanced Functional Materials 31, no. 22 (March 26, 2021): 2011289. http://dx.doi.org/10.1002/adfm.202011289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Khalegh Bordbar, A., Manuchehr Davari, Elham Safaei, and Valiollah Mirkhani. "Aggregation and DNA binding characteristics of tetrakis(N,N',N″,N‴-tetramethyltetra-3,4-pridino)porphyrazine cobalt(II)." Journal of Porphyrins and Phthalocyanines 11, no. 02 (February 2007): 139–47. http://dx.doi.org/10.1142/s1088424607000187.

Full text
Abstract:
The association behavior of tetrakis( N , N ', N ″, N ‴-tetramethyltetra-3,4-pridino)porphyrazine cobalt(II) ([ Co (II)3,4- TMTPPA ]4+) was investigated in aqueous solution at 25°C and various ionic strengths using optical absorption and resonance light scattering spectroscopies. The results show that [ Co (II)3,4- TMTPPA ]4+ does not have any affinity for aggregation due to increasing salt concentration and exists as the monomer form even in homogeneous aqueous solutions at high ionic strengths (more than 1 M concentration of NaCl ). The interaction of [ Co (II)3,4- TMTPPA ]4+ with calf thymus DNA in aqueous solution has also been studied in 5 mM phosphate buffer pH 7.2, by optical absorption and resonance light scattering spectroscopies, and thermal denaturation experiments. The appearance of hypochromicity of less than 10% and a bathochromic shift of Δλ ≤ 8 nm in the UV-vis spectra of [ Co (II)3,4- TMTPPA ]4+, an increase in the thermal melting point of DNA, and no enhancement in resonance light scattering spectra of porphyrazine due to interaction with DNA, indicates the minor outside-groove binding mode without any stack aggregate formation. The thermodynamics of the binding of [ Co (II)3,4- TMTPPA ]4+-DNA has also been studied. The binding constant (K) was obtained by analysis of optical absorption spectra of the above-mentioned complex at various DNA concentrations using SQUAD software. The value of K was estimated as 1.31 × 106 ± 1.174 M-1 at 25°C. The thermodynamic parameters were calculated by van't Hoff equation. The enthalpy and entropy changes were 48.77 ± 2.50 kJ . mol -1 and 280.77 ± 9.62 J . mol -1. K -1 at 25°C, respectively. The results indicate that the process is entropy driven suggesting that hydrophobic interactions are the main driving forces for complex formation. The increase of ionic strength due to the addition of NaCl , destabilized porphyrazine-DNA complexes, which indicates the competition of Na + ions with porphyrazine complexes for occupation of minor groove binding sites.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography