Academic literature on the topic 'Gauge theories'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gauge theories.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gauge theories"

1

Wess, Julius. "Gauge Theories beyond Gauge Theories." Fortschritte der Physik 49, no. 4-6 (May 2001): 377–85. http://dx.doi.org/10.1002/1521-3978(200105)49:4/6<377::aid-prop377>3.0.co;2-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wess, Julius. "Gauge Theories beyond Gauge Theories." Fortschritte der Physik 49, no. 4-6 (May 2001): 377. http://dx.doi.org/10.1002/1521-3978(200105)49:4/6<377::aid-prop377>3.3.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reshetnyak, Alexander. "On gauge independence for gauge models with soft breaking of BRST symmetry." International Journal of Modern Physics A 29, no. 30 (December 8, 2014): 1450184. http://dx.doi.org/10.1142/s0217751x1450184x.

Full text
Abstract:
A consistent quantum treatment of general gauge theories with an arbitrary gauge-fixing in the presence of soft breaking of the BRST symmetry in the field–antifield formalism is developed. It is based on a gauged (involving a field-dependent parameter) version of finite BRST transformations. The prescription allows one to restore the gauge-independence of the effective action at its extremals and therefore also that of the conventional S-matrix for a theory with BRST-breaking terms being additively introduced into a BRST-invariant action in order to achieve a consistency of the functional integral. We demonstrate the applicability of this prescription within the approach of functional renormalization group to the Yang–Mills and gravity theories. The Gribov–Zwanziger action and the refined Gribov–Zwanziger action for a many-parameter family of gauges, including the Coulomb, axial and covariant gauges, are derived perturbatively on the basis of finite gauged BRST transformations starting from Landau gauge. It is proved that gauge theories with soft breaking of BRST symmetry can be made consistent if the transformed BRST-breaking terms satisfy the same soft BRST symmetry breaking condition in the resulting gauge as the untransformed ones in the initial gauge, and also without this requirement.
APA, Harvard, Vancouver, ISO, and other styles
4

CLARK, T. E., C. H. LEE, and S. T. LOVE. "SUPERSYMMETRIC TENSOR GAUGE THEORIES." Modern Physics Letters A 04, no. 14 (July 20, 1989): 1343–53. http://dx.doi.org/10.1142/s0217732389001532.

Full text
Abstract:
The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.
APA, Harvard, Vancouver, ISO, and other styles
5

Yi, Piljin. "Index Theorems for Gauge Theories." Journal of the Korean Physical Society 73, no. 4 (August 2018): 436–48. http://dx.doi.org/10.3938/jkps.73.436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kenyon, I. R. "Gauge theories." European Journal of Physics 7, no. 2 (April 1, 1986): 115–23. http://dx.doi.org/10.1088/0143-0807/7/2/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hooft, Gerard. "Gauge theories." Scholarpedia 3, no. 12 (2008): 7443. http://dx.doi.org/10.4249/scholarpedia.7443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Taubes, Clifford Henry. "Unique continuation theorems in gauge theories." Communications in Analysis and Geometry 2, no. 1 (1994): 35–52. http://dx.doi.org/10.4310/cag.1994.v2.n1.a2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kogan, Ian I., Alex Lewis, and Oleg A. Soloviev. "Gauge Dressing of 2D Field Theories." International Journal of Modern Physics A 12, no. 13 (May 20, 1997): 2425–36. http://dx.doi.org/10.1142/s0217751x97001419.

Full text
Abstract:
By using the gauge Ward identities, we study correlation functions of gauged WZNW models. We show that the gauge dressing of the correlation functions can be taken into account as a solution of the Knizhnik–Zamolodchikov equation. Our method is analogous to the analysis of the gravitational dressing of 2D field theories.
APA, Harvard, Vancouver, ISO, and other styles
10

Wohlgenannt, M. "Noncommutative Gauge Theories." Ukrainian Journal of Physics 57, no. 4 (April 30, 2012): 389. http://dx.doi.org/10.15407/ujpe57.4.389.

Full text
Abstract:
We review two different noncommutative gauge models generalizing the approaches which lead to renormalizable scalar quantum field theories. One of them implements the crucial IR damping of the gauge field propagator in the so-called "soft breaking" part. We discuss one-loop renormalizability.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Gauge theories"

1

Lowe, A. P. "Lattice gauge-Higgs theories." Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Torres, Gomez Alexander. "Diffeomorphism invariant gauge theories." Thesis, University of Nottingham, 2012. http://eprints.nottingham.ac.uk/12815/.

Full text
Abstract:
A class of diffeomorphism invariant gauge theories is studied. The action for this class of theories can be formulated as a generalisation of the well known topological BF-theories with a potential for the B-field or in a pure connection formulation. When the gauge group is chosen to be SU(2) the theory describes gravity. For a larger gauge group G one gets a unified model of gravity and Yang-Mills fields. A background for the theory is chosen which breaks the gauge group G by selecting in it a preferred SU(2) subgroup which describes the gravitational sector. The Yang-Mills sector is described by the part of the gauge group that commutes with this SU(2). Thus, when the action is expanded around this background the spectrum of the linearised theory consists of the usual gravitons plus Yang-Mills fields. In addition, there is a set of massive scalar fields that are charged both under the gravitational and Yang-Mills subgroups. The latter sector is described by the part of the gauge group that does not commute with SU(2). A fermionic Lagrangian is also proposed which can be coupled to the BF plus potential formulation.
APA, Harvard, Vancouver, ISO, and other styles
3

Coloretti, Guglielmo. "On Noether's theorems and gauge theories in hamiltonian formulation." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18723/.

Full text
Abstract:
Nella tesi presente si propone una trattazione esaustiva sui teoremi di Noether, cardine delle più moderne ed avanzate teorie di gauge. In particolare si tenta di fornirne una misura matematica rigorosa senza allontanarsi dalla cruciale intuizione fisica che celano: la ricerca di simmetrie nella natura e la volontà di descrivere le interazioni conosciute con un singolo modello. Più avanti, trovando i caratteri dominanti e l'ispirazione nelle pubblicazioni di Noether, si affrontano i tratti generali della formulazione hamiltoniana delle teorie di gauge, presentando la struttura dell'azione per una particella relativistica, la teoria elettromagnetica e la teoria della relatività generale; si pongono infine alcuni interrogativi sui valori di contorno che emergono dal formalismo adottato. Inoltre, per ottenere un'esposizione più efficace e meno oscura, si accompagna ogni risultato con esempi opportuni.
APA, Harvard, Vancouver, ISO, and other styles
4

Wright, Jason Daniel. "Topics in supersymmetric gauge theories." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3259360.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2007.
Title from first page of PDF file (viewed June 26, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 154-160).
APA, Harvard, Vancouver, ISO, and other styles
5

Shaban, Neil Tamim. "Dimensional regularisation and gauge theories." Thesis, Durham University, 1994. http://etheses.dur.ac.uk/5103/.

Full text
Abstract:
Dimensional regularisation is formulated without using the assumption that f d(^D)k(k(^2))(^n) = 0. Alternative definitions of ϵ(_kλµv) and γ(^5) are also considered. In the reformulated scheme, quadratic divergences are present, in general, in the scalar and gauge boson self-energies, and remain unregularised. The possible cancellation of such divergences is investigated. Phenomenological aspects of unified gauge theories are studied.
APA, Harvard, Vancouver, ISO, and other styles
6

Kotcheff, A. W. C. "Aspects of supersymmetric gauge theories." Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lepora, Nathan Francis. "Vortex solutions of gauge theories." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Peng. "Integrability in supersymmetric gauge theories." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

La, Cock Pierre. "Introduction to lattice gauge theories." Master's thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/17085.

Full text
Abstract:
Includes bibliographical references.
The thesis is organized as follows. Part I is a general introduction to LGT. The theory is discussed from first principles, so that for the interested reader no previous knowledge is required, although it is assumed that he/she will be familiar with the rudiments of relativistic quantum mechanics. Part II is a review of QCD on the lattice at finite temperature and density. Monte Carlo results and analytical methods are discussed. An attempt has been made to include most relevant data up to the end of 1987, and to update some earlier reviews existing on the subject. To facilitate an understanding of the techniques used in LGT, provision has been made in the form of a separate Chapter on Group Theory and Integration, as well as four Appendices, one of which deals with Grassmann variables and integration.
APA, Harvard, Vancouver, ISO, and other styles
10

Antonov, Dmitri. "String Representation of Gauge Theories." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 1999. http://dx.doi.org/10.18452/14472.

Full text
Abstract:
Die vorliegende Dissertationarbeit ist dem Problem der analytischen Beschreibung des Confinement-Mechanismus in der QCD und in anderen Eichtheorien gewidment. Als Leitprinzip der Arbeit wurde das sogenannte Wilsonsche-Confinement-Kriterium gewählt, gemäss welchem diese Erscheinung durch eine effektive Stringtheorie beschrieben werden kann. Die entstehenden Strings des Eichfeldes verbinden farbige-Objekte (Quarks, Gluonen) miteinander und hindern ihr Auseinandergehen auf makroskopische Abstände. Es werden verschiedene Verfahren der Ableitung dieser Stringstheorien aus unterschiedlichen Eichtheorien, einschliesslich der QCD, vorgestellt. Kapitel 2 enthält die Untersuchung der nichtlokalen effektiven Stringwirkung, die im Rahmen des sogenannten stochastischen Vakuum-Modells der QCD entsteht, wobei die Wechselwirkung zwischen den Elementen der String-Weltfläche durch den phänomenologischen Background-Gluon-Propagator vermittelt wird. Durch Entwicklung dieser Wirkung nach Ableitungen wurden die ersten Terme niedrigster Ordnung bestimmt. Die ersten beiden Terme dieser Entwicklung sind die Nambu-Goto- und Rigidity-Terme mit Kopplungskonstanten, die sich durch das Gluon-Kondensat und die Korrelationlänge des QCD-Vakuums ausdrücken lassen. Die Vorzeichen dieser Konstanten zeigen, dass die durch dieses Verfahren erhaltenen Strings stabil sind. Danach wurde eine mögliche Lösung des ``Crumpling'' Problems auf der Basis eines zusätzlichen topologischen Stringtermes im Instantongas-Modell des QCD-Vakuums vorgestellt. Mittels Störungstheorie im nicht-störungstheoretischen QCD-Background berechneten wir zusätzliche-Korrekturen zur ursprünglichen nicht-störungstheoretischen Stringwirkung. Diese Korrekturen führen zu neuen Formen der nichtlokalen effektiven Stringwirkung, die den störungstheoretischen Gluon-Propagator im Backgroundfeld zwischen den Elementen der Weltfläche enthalten. Durch Ableitungsentwicklung dieser Wirkung bekommen wir eine Korrektur zur Kopplungskonstante des Rigidity-Terms; die Stringsspannung des Nambu-Goto-Terms jedoch bleibt unverändert. Am Ende dieses Kapitels wurde der Hamilton-Operator des QCD-Strings mit spinlosen Quarks hergeleitet, der der effektiven Stringwirkung mit Rigidity-Term entspricht. Dieser Hamilton-Operator liefert einen Korrekturterm zur Wechselwirkung im relativistischen Quarkmodell-Operator. Im Kapitel 3 untersuchten wir das Problem der Stringdarstellung von Abelsch-projezierten Eichtheorien. Als erstes wurde die Herleitung der Stringdarstellung der erzeugenden Funktion für das einfachste Modell dieser Art, d.h. die Abelsch-projezierte SU(2)-QCD gegeben, die einem dualen Abelschen Higgs-Modell mit äusseren elektrisch geladendenen Teilchen äquivalent ist. Der Vorteil dieses Stringszuganges im Vergleich zum Zugang des stochastischen Vakuum-Modells der QCD besteht in der Berücksichtigung der Integration über String-Weltflächen, die auf Grund der Integration über den Singulärteil der Higgsfeld-Phase entsteht. Zusätzlich zur Stringdarstellung der erzeugenden Funktion wurde im London-Limes die Stringdarstellung für die erzeugenden Funktionale der Feldstärke- und Monopolstromkorrelatoren hergeleitet. Dies gab uns die Möglichkeit, die entsprechenden bilokalen Kumulanten zu finden und zu zeigen, dass die bilokalen Kumulanten der Feldstärke für grosse Abstände das gleiche Verhalten wie die entsprechenden eichinvarianten Kumulanten der QCD zeigen. Das Letztere wurde durch das stochastische Vakuum-Modell vorhergesagt und durch Gitterexperimente berechnet. Dieses Ergebnis unterstützt einerseits die Methode der Abelschen Projektion und gibt anderseits dem stochastischen Vakuum-Modell der QCD einen neuen feldtheoretischen Status. Danach erweiterten wir unsere Analyse über den Rahmen des London-Limes hinaus untersuchten den Zusammenhang von quartischen Kumulanten und bilokalen Kumulanten. Anschliessend wurde die Stringdarstellung der SU(3)-Gluodynamik hergeleitet. Dabei wurde die Stringdarstellung für ein entsprechendes duales Modell formuliert, das drei Arten des magnetischen Higgs-Feldes enthält. Infolgedessen liefert das Modell drei Strings, von denen nur zwei wirklich unabhängig sind. Alle diese Strings wechselwirken untereinander durch Austausch zweier massiver dualer Eichbosonen. Ausserdem erhielten wir die bilokalen Kumulanten des effektiven dualen Modells der SU(3)-Gluodynamik. Die entsprechenden bilokalen Kumulanten zeigen für grosse Abstände ein Verhalten wie es durch das stochastische Vakuum-Modell vorhergesagt wurde. Zum Schluss dieses Kapitels geben wir eine nützliche Darstellung für erzeugende Funktionen von Abelsch-projezierten Theorien in Form von Integralen über Monopolströme an. Im Kapitel 4 wurde ein weiteres Modell untersucht, das eine analytische Beschreibung des Confinement-Mechanismus zulässt, nämlich die 3D kompakte QED. Für den Wilson-Loop der entsprechenden Theorie mit Monopoldichten wurde die Äquivalenz zur sogenannten Confining-Stringtheorie demonstriert. Ausserdem wurde das Verhalten der bilokalen Kumulante der Feldstärke im Limes schwacher Felder untersucht. Dieses Verhalten befindet sich ebenfalls in Übereinstimmung mit den Voraussagen des stochastischen Vakuum-Modells. Erwartungsgemäss sind die Stringdarstellungen der erzeugenden Funktionen der 3D kompakten QED im Limes schwacher Felder und der dualen Abelschen Higgs-Modelle sehr ähnlich. Wir zeigten ausserdem, dass diese Entsprechung nicht zufällig ist. Die 3D kompakte QED ergibt sich nämlich im Limes verschwindender Eichbosonmasse aus dem 3D Abelschen Higgs-Modell mit äusseren Monopolen. Zum Schluss wurde ein allgemeines Verfahren der Beschreibung der Anregungen der Stringweltfläche in Abelsch-projezierten Theorien (kompakte QED und QCD) ausgearbeitet. Es ist auf der Methode der nicht-linearen Sigma-Modelle gegründet und gibt eine Möglichkeit, die in diesen Fluktuationen quadratische Effektive Wirkung zu erhalten. In der Dissertation wurden analytische nicht-störungstheoretische Verfahren ausgearbeitet, die neue Informationen über den Confinement-Mechanismus in der QCD und anderen Eichtheorien liefern und zum besseren Verständnis der Vakuumstruktur dieser Theorien beitragen können. Sie sind insbesondere relevant für die Herleitung effektiver Stringtheorien aus Eichtheorien.
The main problem addressed in the present Dissertation was an attempt of an analytical description of confinement in QCD and other gauge theories. As a guiding principle for our investigations served the so-called Wilson's picture of confinement, according to which this phenomenon can be described in terms of some effective theory of strings, joining coloured objects to each other and preventing them from moving apart to macroscopic distances. In this Dissertation, we have proceeded with a derivation of such string theories corresponding to various gauge ones, including QCD, i.e. with the solution of the problem of string representation of gauge theories. We have started our analysis with the nonlocal string effective action, arising within the so-called Stochastic Vacuum Model of QCD, where the interaction between the string world-sheet elements is mediated by the phenomenological background gluon propagator. By performing the derivative expansion of this action, we have derived the first few terms of a string Lagrangian. The first two nontrivial of them turned out to be the Nambu-Goto and rigidity terms with the coupling constants expressed completely via the gluonic condensate and correlation length of the QCD vacuum. The signs of these constants ensure the stability of strings in the so-obtained effective string theory. After that, we have investigated the problem of crumpling for the string world-sheets by derivation of the topological string term in the instanton gas model of the gluodynamics vacuum. Next, by making use of perturbation theory in the nonperturbative QCD vacuum, we have calculated perturbative corrections to the obtained string effective action. Those lead to a new form of the nonlocal string effective action with the propagator between the elements of the world-sheet being the one of a perturbative gluon in the confining background. By the derivative expansion of this action, we got a correction to the rigidity term coupling constant, whereas the string tension of the Nambu-Goto term occurs to get no corrections due to perturbative gluonic exchanges. Finally, we have derived the Hamiltonian of QCD string with spinless quarks at the ends, associated with the obtained string effective action including the rigidity term. In the particular case of vanishing orbital momentum of the system, this Hamiltonian reduces to that of the so-called relativistic quark model, albeit with some modifications due to the rigidity term, which might have some influence on the dynamics of the QCD string with quarks. All these topics have been elaborated on in Section 2, and form the essence of the string representation of QCD within the Stochastic Vacuum Model. In Section 3, we have addressed the problem of string representation of Abelian-projected theories. In this way, we have started with the string representation for the partition function of the simplest model of this kind, namely the Abelian-projected SU(2)-QCD, which is argued to be the dual Abelian Higgs Model with external electrically charged particles. The advantage of this approach to the string representation of QCD w.r.t. the one based on the Stochastic Vacuum Model is a possibility to get an integration over the string world-sheets, resulting from the integration over the singular part of the phase of the Higgs field. After the string representation of the partition function in the London limit, we have proceeded with the string representation for the generating functionals of the field strength and monopole current correlators. Those enabled us to find the corresponding bilocal cumulants and demonstrate that the large-distance asymptotic behaviour of the bilocal field strength cumulant matches the one of the corresponding gauge-invariant cumulant in QCD, predicted by the Stochastic Vacuum Model and measured in the lattice experiments. This result supports the method of Abelian projection on the one hand and gives a new field-theoretical status to the Stochastic Vacuum Model on the other hand. After that, we have extended our analysis beyond the London limit, and studied the relation of the quartic cumulant, which appears there, with the bilocal one in the London limit. Next, by making use of the Abelian projection method, we have addressed the problem of string representation of the SU(3)-gluodynamics. Namely, we have casted the related dual model, containing three types of magnetic Higgs fields, into the string form. Consequently, the latter one turned out to contain three types of strings, among which only two ones were actually independent. As a result, we have found, that both the ensemble of strings as a whole and individual strings display confining properties in a sense that all types of strings (self)interact via the exchanges of the massive dual gauge bosons. We have also derived bilocal cumulants in the effective dual model of confinement, corresponding to the SU(3)-gluodynamics, and they turned out to be also in line with the ones predicted by the Stochastic Vacuum Model. In conclusion of this topic, we have obtained another useful representation for the partition functions of the Abelian-projected theories in the form of an integral over the monopole currents. In Section 4, we have studied another model, allowing for an analytical description of confinement, which is 3D compact QED. In this way, by virtue of the integral over the monopole densities, we have derived string representation for the Wilson loop in this theory and demonstrated the correspondence of this representation to another recently found one, the so-called confining string theory. After that, we have calculated the bilocal cumulant of the field strength tensors in the weak-field limit of the model under study. It also turned out to be in line with the general concepts of the Stochastic Vacuum Model and therefore matches the corresponding results known from the lattice measurements in QCD and found analytically for the effective Abelian-projected theories in the previous Section. Besides that, string representations of the partition functions of the weak-field limit of 3D compact QED and of the dual Abelian Higgs Model turned out to be also quite similar. We have illustrated later on that this correspondence is not accidental. Namely, we have shown that 3D compact QED is nothing else, but the limiting case of 3D Abelian Higgs Model with external monopoles, corresponding to the vanishing gauge boson mass. Finally, we have elaborated on a unified method of description of the string world-sheet excitations in the Abelian-projected theories, compact QED, and QCD, based on the techniques of nonlinear sigma-models, and obtained the effective action, quadratic in the world-sheet fluctuations. In conclusion, the proposed nonperturbative techniques provide us with some new information on the mechanisms of confinement in QCD and other gauge theories and shed some light on the vacuum structure of these theories. They also show the relevance of string theory to the description of this phenomenon and yield several prescriptions for the construction of the adequate string theories from the corresponding gauge ones.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Gauge theories"

1

Pokorski, Stefan. Gauge field theories. Cambridge: Cambridge University Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Frampton, Paul H. Gauge field theories. Menlo Park, Calif: Benjamin/Cummings, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pokorski, Stefan. Gauge field theories. Cambridge: Cambridge University Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gauge field theories. 2nd ed. New York: Wiley, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gauge field theories. 2nd ed. Cambridge, U.K: Cambridge University Press, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gauge field theories. 3rd ed. Weinheim: Wiley-VCH, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

A, Shifman Mikhail, ed. Instantons in gauge theories. Singapore: World Scientific, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lattice gauge theories: An introduction. Singapore: World Scientific, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lattice gauge theories: An introduction. 2nd ed. Singapore: World Scientific, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

O'Raifeartaigh, Lochlann. Group structure of gauge theories. Cambridge: Cambridge University Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Gauge theories"

1

Rejzner, Kasia. "Gauge Theories." In Perturbative Algebraic Quantum Field Theory, 137–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25901-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gaeta, Giuseppe. "Gauge theories." In Nonlinear Symmetries and Nonlinear Equations, 123–54. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1018-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hassani, Sadri. "Gauge Theories." In Mathematical Physics, 1099–115. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01195-0_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Teh, Nicholas J. "Gauge Theories." In The Routledge Companion to Philosophy of Physics, 595–604. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781315623818-55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wess, Julius. "Gauge Theories Beyond Gauge Theory." In Noncommutative Structures in Mathematics and Physics, 1–11. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0836-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Petronzio, R. "Lattice Gauge Theories." In XXIV International Conference on High Energy Physics, 136–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74136-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wipf, Andreas. "Lattice Gauge Theories." In Statistical Approach to Quantum Field Theory, 295–331. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33105-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cline, James M. "Nonabelian Gauge Theories." In SpringerBriefs in Physics, 107–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56168-0_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fatibene, Lorenzo, and Mauro Francaviglia. "Gauge Natural Theories." In Natural and Gauge Natural Formalism for Classical Field Theorie, 269–91. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2384-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Connes, Alain, Bernard de Wit, Antoine Van Proeyen, Sergey Gukov, Rafael Hernandez, Pablo Mora, Anatoli Klimyk, et al. "Constraint Gauge Theories." In Concise Encyclopedia of Supersymmetry, 110–12. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_133.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Gauge theories"

1

NEKRASOV, NIKITA A. "Localizing gauge theories." In XIVth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812704016_0066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Petronzio, Roberto. "Lattice gauge theories." In Proceedings of the XXVI international conference on high energy physics. AIP, 1992. http://dx.doi.org/10.1063/1.43496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maas, Axel, and Björn Hendrik Wellegehausen. "G2 gauge theories." In The 30th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.164.0080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jurčo, B. "Noncommutative gauge theories and Kontsevich’s formality theorem." In NEW DEVELOPMENTS IN FUNDAMENTAL INTERACTION THEORIES: 37th Karpacz Winter School of Theoretical Physics. AIP, 2001. http://dx.doi.org/10.1063/1.1419331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

GOLTERMAN, MAARTEN, and YIGAL SHAMIR. "LATTICE CHIRAL GAUGE THEORIES THROUGH GAUGE FIXING." In Proceedings of the 2002 International Workshop. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812795120_0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lüscher, Martin. "Chiral gauge theories revisited." In Proceedings of the International School of Subnuclear Physics. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778253_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sobreiro, Rodrigo Ferreira. "Gauge theories and gravity." In 7th International Conference on Mathematical Methods in Physics. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.175.0019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bonora, Loriano. "New noncommutative gauge theories." In Non-perturbative Quantum Effects 2000. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.006.0029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Catren, Gabriel, and Jorge A. Devoto. "Extended Gauge Principle and Quantization of Gauge Theories." In ALBERT EINSTEIN CENTURY INTERNATIONAL CONFERENCE. AIP, 2006. http://dx.doi.org/10.1063/1.2399588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Masson, Thierry. "Gauge theories in noncommutative geometry." In FRONTIERS OF FUNDAMENTAL PHYSICS: The Eleventh International Symposium. AIP, 2012. http://dx.doi.org/10.1063/1.4727990.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Gauge theories"

1

Parke, Stephen J. Amplitudes in Gauge Theories. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1568838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aspinwall, Paul S., and Lukasz M. Fidkowski. Superpotentials for Quiver Gauge Theories. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/890443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parke, S. J. Hard amplitudes in gauge theories. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/6094053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schmaltz, Martin. New Constraints on Chiral Gauge Theories. Office of Scientific and Technical Information (OSTI), April 1999. http://dx.doi.org/10.2172/10074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brodsky, Stanley J. Gauge Theories on the Light-Front. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/812634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hellerman, Simeon. Lattice Gauge Theories Have Gravitational Duals. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/801802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brodsky, Stanley J. Light-Front Quantization of Gauge Theories. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/812973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tolksdorf, Jurgen. Gauge Theories with Spontaneously Broken Gauge Symmetry, Connections and Dirac Operators. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-141-162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aharony, Ofer, Justin R. David, Rajesh Gopakumar, Zohar Komargodski, and Shlomo S. Razamat. Comments on Worldsheet Theories Dual to Free Large N Gauge Theories. Office of Scientific and Technical Information (OSTI), March 2007. http://dx.doi.org/10.2172/901255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Craig, Nathaniel, Rouven Essig, Anson Hook, and Gonzalo Torroba. New Dualities in Supersymmetric Chiral Gauge Theories. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1022538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography