Academic literature on the topic 'Gauss Curvature'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gauss Curvature.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gauss Curvature"
Defever, Filip. "Conformally flat hypersurfaces with constant Gauss-Kronecker curvature." Bulletin of the Australian Mathematical Society 61, no. 2 (April 2000): 207–16. http://dx.doi.org/10.1017/s0004972700022218.
Full textWANG, DAN, YAJUN YIN, JIYE WU, and ZHENG ZHONG. "THE INTERACTION POTENTIAL BETWEEN MICRO/NANO CURVED SURFACE BODY WITH NEGATIVE GAUSS CURVATURE AND AN OUTSIDE PARTICLE." Journal of Mechanics in Medicine and Biology 15, no. 06 (December 2015): 1540055. http://dx.doi.org/10.1142/s0219519415400552.
Full textInoguchi, Jun-ichi, Rushan Ziatdinov, and Kenjiro T. Miura. "A Note on Superspirals of Confluent Type." Mathematics 8, no. 5 (May 11, 2020): 762. http://dx.doi.org/10.3390/math8050762.
Full textMorgan, Frank. "WHAT IS... Gauss Curvature?" Notices of the American Mathematical Society 63, no. 02 (February 1, 2016): 144–45. http://dx.doi.org/10.1090/noti1333.
Full textChow, Bennett, and Dong-Ho Tsai. "Nonhomogeneous Gauss Curvature Flows." Indiana University Mathematics Journal 47, no. 3 (1998): 0. http://dx.doi.org/10.1512/iumj.1998.47.1546.
Full textCheng, Qing-Ming. "Curvatures of complete hypersurfaces in space forms." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 134, no. 1 (February 2004): 55–68. http://dx.doi.org/10.1017/s0308210500003073.
Full textXu, Xingwang, and Paul C. Yang. "Remarks on prescribing Gauss curvature." Transactions of the American Mathematical Society 336, no. 2 (February 1, 1993): 831–40. http://dx.doi.org/10.1090/s0002-9947-1993-1087058-5.
Full textChou, Kai-Seng, and Weifeng Wo. "On hyperbolic Gauss curvature flows." Journal of Differential Geometry 89, no. 3 (November 2011): 455–85. http://dx.doi.org/10.4310/jdg/1335207375.
Full textKiessling, Michael, and Sagun Chanillo. "Surfaces with prescribed Gauss curvature." Duke Mathematical Journal 105, no. 2 (November 2000): 309–53. http://dx.doi.org/10.1215/s0012-7094-00-10525-x.
Full textDursun, Uğur, and Rüya Yeğin. "Hyperbolic submanifolds with finite type hyperbolic Gauss map." International Journal of Mathematics 26, no. 02 (February 2015): 1550014. http://dx.doi.org/10.1142/s0129167x15500147.
Full textDissertations / Theses on the topic "Gauss Curvature"
Pereira, José Ilhano da Silva. "Hipersuperfícies mínimas de R4 com curvatura de Gauss-Kronecker nula." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/27052.
Full textSubmitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-10-02T15:01:31Z No. of bitstreams: 1 2017_dis_jispereira.pdf: 596580 bytes, checksum: 3c2c1a16d4ce273bfb7c246f7926c01a (MD5)
Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde, Estou devolvendo a Dissertação de JOSÉ ILHANO DA SILVA PEREIRA, pois há alguns erros a serem corrigidos. Os mesmos seguem listados a seguir. 1- FOLHA DE APROVAÇÃO (substitua a folha de aprovação, por outra que não contenha as assinaturas dos membros da banca examinadora) 2- NUMERAÇÃO INDEVIDA (a numeração indevida de página que aparece na folha de aprovação deve ser retirada) 3- RESUMO (retire o recuo de parágrafo presente no resumo e no abstract) 4- PALAVRAS-CHAVE (apenas o primeiro elemento de cada palavra-chave deve começar com letra maiúscula, assim reescreva as palavras-chave como no exemplo a seguir: Hipersuperfícies mínimas) 5- SUMÁRIO (Os títulos dos capítulos principais, que aparecem no sumário e no interior do trabalho, devem estar em caixa alta (letra maiúscula). Ex.: 2 PRELIMINARES 2.1 Tensores 6 – REFERÊNCIAS (retire o conjunto de “citações” à autores que aparece no final das referências bibliográficas, pois elas fogem ao padrão ABNT para a página das referências) Atenciosamente, on 2017-10-04T17:50:58Z (GMT)
Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-10-23T19:57:28Z No. of bitstreams: 1 2017_dis_jispereira.pdf: 333124 bytes, checksum: 37989a2f3787d5914a0c0553afd4e89f (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-11-01T12:35:13Z (GMT) No. of bitstreams: 1 2017_dis_jispereira.pdf: 333124 bytes, checksum: 37989a2f3787d5914a0c0553afd4e89f (MD5)
Made available in DSpace on 2017-11-01T12:35:13Z (GMT). No. of bitstreams: 1 2017_dis_jispereira.pdf: 333124 bytes, checksum: 37989a2f3787d5914a0c0553afd4e89f (MD5) Previous issue date: 2017-08-25
This work does study the complete minimal hypersurfaces in the Euclidean space R4 , with Gauss-Kronecker curvature identically zero. Our main result is to prove that if f: M3 → R4 is a complete minimal hypersurface with Gauss-Kronecker curvature identically zero, nowhere vanishing second fundamental form and scalar curvature boun-ded from below, then f(M3) splits as a Euclidean product L2 × R , where L2 is a complete minimal surface in R3 with Gaussian curvature bounded from below. Moreover, we show a result about the Gauss-Kronecker curvature of f, without any assumption on the scalar curvature.
Este trabalho tem como objetivo estudar as hipersuperfícies mínimas em R4, com curvatura de Gauss-Kronecker identicamente zero. Como resultado principal provamos que se f : M3 → R4 é uma hipersuperfície mínima com curvatura de Gauss-Kronecker identicamente zero, segunda forma fundamental não se anulando em nenhum ponto e curvatura escalar limitada inferiormente, então f(M3) se decompõe como um produto euclidiano do tipo L2 × R , onde L2 é uma superfície mínima de R3 com curvatura Gaussiana limitada inferiormente. Finalmente, apresentamos um resultado sobre a curvatura de Gauss-Kronecker de f sem nenhuma hipótese sobre a curvatura escalar.
Zapata, Juan Fernando Zapata. "Hipersuperficies completas com curvatura de Gauss-Kronecker nula em esferas." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-07112013-142031/.
Full textIn this work we show that a complete hipersurface of the unitary sphere S^4, with constant mean curvature and zero Gauss-Kronecker curvature must be minimal, if the squared norm of the second fundamental form is bounded from above. Also, we present a local description for complete minimal hipersurfaces in S^5 with zero Gauss-Kronecker curvature, and some restrictions for the symmetric functions of the principal curvatures.
Silva, Adam Oliveira da. "Sobre a aplicaÃÃo de Gauss para hipersuperfÃcies de curvatura mÃdia constante na esfera." Universidade Federal do CearÃ, 2009. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2625.
Full textThe objective of this dissertation is to show a similar result of Bernstein theorem about minimal hypersurfaces in Euclidian space, that is, to show that that result is generalized to hypersurfaces of Sn+1 with constant mean curvature, whose Gauss image is contained in a closed hemisphere of Sn+1(Theorem 3.1). However, in the case where the hypersurface is minimal, we will use in the proof of this theorem a result about the characterization of the hyperspheres of Sn+1 among all complete hypersurfaces in Sn+1 in terms of their Gauss images (Theorem 2.1)
Targino, Renato Oliveira. "A Curvatura de Gauss-Kronecker de hipersuperfÃcies mÃnimas em formas espaciais 4-dimensionais." Universidade Federal do CearÃ, 2011. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6672.
Full textNeste trabalho estudamos hipersuperfÃcies mÃnimas completas e com curvatura de Gauss-Kronecker constante em uma forma espacial Q4(c). Provamos que o Ãnfimo do valor absoluto da curvatura de Gauss-Kronecker de uma hipersuperfÃcie mÃnima completa em Q4(c); c ≤ 0; na qual a curvatura de Ricci à limitado inferiormente, à igual a zero. AlÃm disso, estudamos hipersuperfÃcies mÃnimas conexas M3 em uma forma espacial Q4(c) com curvatura de Gauss-Kronecker K constante. Para o caso c ≤ 0, provamos, por um argumento local, que se K à constante, entÃo K deve ser igual a zero. TambÃm apresentamos uma classificaÃÃo de hipersuperfÃcies completas mÃnimas em Q4 com K constante. Exemplos de hipersuperfÃcies mÃnimas que nÃo sÃo totalmente geodÃsicas no espaÃo Euclidiano e no espaÃo hiperbÃlico com curvatura de Gauss-Kronecker nula sÃo apresentados.
In this work we study complete minimal hypersurfaces with constant Gauss-Kronecker curvature in a space form Q4(c). We prove that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal hypersurface in Q4(c); c ≤ 0; whose Ricci curvature is bounded from below,is equal to zero. Futher, we study the connected minimal hypersurfaces M3 of a space form Q4(c) with constant Gauss-Kronecker curvature K. For the case c ≤ 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurface of Q4 with K constant. Examples of complete minimal hypersurfaces which are not totally geodesic in the Euclidean space R4 and the hiperbolic space H4(c) with vanishing Gauss-Kronecker curvature are also presented.
Echeverria, Gilberto. "The polyhedral Gauss map and discrete curvature measures in geometric modelling." Thesis, Sheffield Hallam University, 2007. http://shura.shu.ac.uk/19598/.
Full textFerreira, Thiago Lucas da Silva, and 92-99320-5663. "Superfícies de translação Weingarten lineares nos espaços euclidiano e Lorentz-Minkowski." Universidade Federal do Amazonas, 2016. https://tede.ufam.edu.br/handle/tede/6458.
Full textApproved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-06-19T17:01:10Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertação-Thiago Lucas-FINAL.pdf: 424556 bytes, checksum: 504bc5cad61e90dcf5cfc403f099b634 (MD5)
Made available in DSpace on 2018-06-19T17:01:10Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertação-Thiago Lucas-FINAL.pdf: 424556 bytes, checksum: 504bc5cad61e90dcf5cfc403f099b634 (MD5) Previous issue date: 2016-12-14
In this dissertation we will present a demonstration that a linear Weingarten translation surface in Euclidean space and Lorentz-Minkowski space should have constant mean curvature or constant Gaussian curvature. The work is based on the article "Translation surfaces of linear Weingarten type" Antonio Bueno and Rafael López.
Nesta dissertação apresentaremos uma demonstração de que uma superfície de translação Weingarten linear no espaço euclidiano e no espaço Lorentz- Minkowski deve ter curvatura média constante ou curvatura de Gauss constante. O trabalho é baseado no artigo "Translation surfaces of linear Weingarten type"de Antonio Bueno e Rafael López.
Román, Parra Carlos Patricio. "Large conformal metrics with prescribed sign-changing Gauss curvature and a critical Neumann problem." Tesis, Universidad de Chile, 2014. http://www.repositorio.uchile.cl/handle/2250/116845.
Full textEn esta memoria se estudian dos problemas semilineales elípticos clásicos en la literatura: el problema de la curvatura Gaussiana prescrita en dimensión 2, y el problema de Lin-Ni-Takagi con exponente crítico en dimensión 3. En ambos se encuentran soluciones con reviente cuando el valor de un parámetro involucrado se aproxima a cierto valor crítico. En el primer capítulo se estudia el siguiente problema: Dada una función escalar $\kappa(x)$, suficientemente regular, definida en una variedad Riemanniana compacta $(M,g)$ de dimensión 2, se desea saber si $\kappa$ puede corresponder a la curvatura Gaussiana de $M$ para una métrica $g_1$, que es adicionalmente conforme a la métrica inicial $g$, es decir, $g_1=e^ug$ para alguna función escalar $u$ en $M$. Sea $f$ una función regular en $M$ tal que \equ{f\geq 0,\quad f\not\equiv 0, \quad \min_M f=0.} Sean $p_1,\ldots,p_n$ una colección de puntos cualesquiera en los que $f(p_i)=0$ y $D^2f(p_i)$ es no singular. Se demuestra que para todo $\la>0$ suficientemente pequeño, existe una familia de metricas conformes de tipo burbuja $g_\la=e^{u_\la}g$ tal que su curvatura Gaussiana está dada por la función que cambia de signo $K_{g_\la}=-f+\la^2$. Más aún, la familia $u_\la$ satisface \equ{u_\la(p_j)=-4\log \la -2 \log \left(\frac{1}{\sqrt2}\log \frac{1}{\la}\right)+O(1), \quad \la^2e^{u_\la}\rightharpoonup 8\pi\sum_{i=1}^n\delta_{p_i},} donde $\delta_p$ corresponde a la masa de Dirac en el punto $p$. En el segundo capítulo se considera el problema \equ{-\Delta u+\la u-u^5=0,\quad u>0 \quad \mbox{in }\Omega,\quad \ddn{u}=0\quad \mbox{on }\partial\Omega,} donde $\Omega\subset \R^3$ es un dominio acotado con frontera regular $\partial\Omega$, $\la>0$ and $\nu$ denota la normal unitaria exterior a $\partial\Omega$. Se demuestra que cuando $\la$ se apoxima por arriba a cierto valor explícitamente caracterizado en términos de funciones de Green, una familia de soluciones con reviente en un cierto punto interior del dominio existe.
Baltazar, Halyson Irene. "Sobre a aplicaÃÃo de Gauss para hipersuperfÃcies com curvatura de ordem superior constante em esferas." Universidade Federal do CearÃ, 2009. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2623.
Full textNesse trabalho iremos considerar uma hipersuperficie conexa, completa e orientÃvel da esfera unitÃria euclidiana Sn+1 com curvatura de ordem superior constante positiva. Provaremos sob certas condiÃÃes geomÃtricas, que caso a imagem da AplicaÃÃo de Gauss de M estiver contida em um hemisfÃrio fechado,entÃo M Ã uma hipersuperfÃcie totalmente umbÃlica de Sn+1 .
In this work we will consider connected, complete and orientable hyper-surface of the unit euclidean sphere Sn+1 with constant positive high order curvature. We will prove that under certain geometric conditions, if the image of the Gauss mapping of M is contained in a closed hemisphere, then M is atotally umbilic hypersurface of Sn+1.
Daza, John Elber Gómez. "Superfícies mínimas e curvatura de gauss de conóides em espaços de finsler com (α,β) - métricas." Universidade Federal de Goiás, 2014. http://repositorio.bc.ufg.br/tede/handle/tede/3634.
Full textApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-11-18T15:40:54Z (GMT) No. of bitstreams: 2 Dissertação - John Elber Gómez Daza - 2014.pdf: 3536612 bytes, checksum: f7e71dbc62f224cd024c41999d7b2f0c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2014-11-18T15:40:54Z (GMT). No. of bitstreams: 2 Dissertação - John Elber Gómez Daza - 2014.pdf: 3536612 bytes, checksum: f7e71dbc62f224cd024c41999d7b2f0c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-03-28
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
We consider(α,β)−metric F=αφ(β α), whereα is the euclidean metric,φ is a smooth positive function on a symmetric interval I=(−b0,b0) and β is a 1-form with the norm b,0 ≤b
Batista, Ricardo Alexandre [UNESP]. "Tópicos de geometria diferencial." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/94373.
Full textO principal objetivo deste trabalho é confeccionar um texto para alunos de gradua ção na área de Ciências Exatas e da Terra concernente ao estudo da Curvatura Gaussiana e Aplicação de Gauss, Superfícies Mínimas, Teorema Egregium de Gauss e o Teorema de Gauss- Bonnet para curvas simples fechadas
The main objective from this work is to make a text for students of graduation in the area of exact sciences and of the land concerning to the study of the Gaussian Curvature and the Gauss Map, Minimal Surfaces, Gauss's Theorem Egregium and the Gauss-Bonnet Theorem for Simple Closed Curves
Books on the topic "Gauss Curvature"
Almeida, Sebastião Carneiro de. Minimal hypersurfaces of S⁴ with constant Gauss-Kroenecker curvature. Recife, Brasil: Universidade Federal de Pernambuco, Centro de Ciências Exatas e da Natureza, Departamento de Matemática, 1985.
Find full textTretkoff, Paula. Riemann Surfaces, Coverings, and Hypergeometric Functions. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691144771.003.0003.
Full textNolte, David D. Geometry on my Mind. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805847.003.0005.
Full textMann, Peter. Virtual Work & d’Alembert’s Principle. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0013.
Full textBook chapters on the topic "Gauss Curvature"
Casey, James. "Gauss (1777-1855)." In Exploring Curvature, 193–202. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-80274-3_14.
Full textHan, Qing, and Jia-Xing Hong. "Nonzero Gauss curvature." In Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, 55–70. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/surv/130/04.
Full textHan, Qing, and Jia-Xing Hong. "Nonnegative Gauss curvature." In Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, 87–108. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/surv/130/06.
Full textHan, Qing, and Jia-Xing Hong. "Nonpositive Gauss curvature." In Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, 109–41. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/surv/130/07.
Full textBerres, Anne, Hans Hagen, and Stefanie Hahmann. "Deformations Preserving Gauss Curvature." In Mathematics and Visualization, 143–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44900-4_9.
Full textHan, Qing, and Jia-Xing Hong. "Gauss curvature changing sign cleanly." In Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, 71–86. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/surv/130/05.
Full textMaurin, Krzysztof. "Gauss Inner Curvature of Surfaces." In The Riemann Legacy, 3–23. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8939-0_1.
Full textHélein, Frédéric. "The Gauss-Codazzi condition." In Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems, 41–51. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8330-6_5.
Full textPressley, Andrew. "Gaussian Curvature and the Gauss Map." In Elementary Differential Geometry, 147–69. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-3696-5_7.
Full textHopf, Heinz. "Singularities of Surfaces with Constant Negative Gauss Curvature." In Lecture Notes in Mathematics, 174–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/3-540-39482-6_14.
Full textConference papers on the topic "Gauss Curvature"
Tang, Yan, and Qingchen Zhang. "Edge-Collapse Mesh Simplification Method Based on Gauss Curvature." In 4th IEEE Int'l Conference on Cyber, Physical and Social Computing (CPSCom). IEEE, 2011. http://dx.doi.org/10.1109/ithings/cpscom.2011.93.
Full textMAEDA, KEI-ICHI, YUKINORI SASAGAWA, and NOBUYOSHI OHTA. "BLACK HOLE SOLUTIONS IN STRING THEORY WITH GAUSS–BONNET CURVATURE CORRECTION." In Proceedings of the MG12 Meeting on General Relativity. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814374552_0450.
Full textSu, Jiu-Liang, and Zhao-Xia Wang. "Gradient estimate for closed starshaped hypersurfaces with prescribed Gauss curvature measure." In 2015 International Conference on Mechanics and Mechatronics (ICMM2015). WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814699143_0089.
Full textShufang, Qiu, and Zhang Xiaoming. "An Improved Method for Image Denoising Based on Gauss Curvature and Gradient." In 2010 International Conference on Optoelectronics and Image Processing (ICOIP). IEEE, 2010. http://dx.doi.org/10.1109/icoip.2010.302.
Full textDursun, U. "On minimal hypersurfaces of hyperbolic space ℍ4 with zero Gauss-Kronecker curvature." In Proceedings of the 10th International Conference on DGA2007. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812790613_0008.
Full textQiu, Shufang, Zewen Wang, and Biqin He. "PDE-based noise removal with geometrical mean diffusion of adaptive TV and Gauss curvature-driven diffusion." In 2011 4th International Congress on Image and Signal Processing (CISP). IEEE, 2011. http://dx.doi.org/10.1109/cisp.2011.6100308.
Full textCHAVES, ROSA M. B., and CLÁUDIA CUEVA CÂNDIDO. "THE GAUSS MAP OF SPACELIKE ROTATIONAL SURFACES WITH CONSTANT MEAN CURVATURE IN THE LORENTZ-MINKOWSKI SPACE." In Proceedings of the International Conference held to honour the 60th Birthday of A M Naveira. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777751_0009.
Full textCanu, Romain, Christophe Dumouchel, Benjamin Duret, Mohamed Essadki, Marc Massot, Thibault Ménard, Stefano Puggelli, Julien Reveillon, and François-Xavier Demoulin. "Where does the drop size distribution come from?" In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.4706.
Full textOliker, Vladimir. "A variational solution of the A. D. Aleksandrov problem of existence of a convex polytope with prescribed Gauss curvature." In PDEs, Submanifolds and Affine Differential Geometry. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc69-0-4.
Full textSingh, Vijay K., and S. K. Panda. "Linear Static and Free Vibration Analyses of Laminated Composite Spherical Shells." In ASME 2013 Gas Turbine India Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gtindia2013-3712.
Full text