To see the other types of publications on this topic, follow the link: Gauss.

Journal articles on the topic 'Gauss'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Gauss.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Breslaw, Jon A. "GAUSSX: An integrated environment for GAUSS." Computer Science in Economics and Management 4, no. 1 (February 1991): 65–74. http://dx.doi.org/10.1007/bf00426856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Podivinsky, Jan M. "GAUSS 2.0, GAUSS 386 AND GAUSS VM." Economic Journal 101, no. 408 (September 1991): 1319. http://dx.doi.org/10.2307/2234461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gautschi, Walter. "Generalized Gauss?Radau and Gauss?Lobatto Formulae." BIT Numerical Mathematics 44, no. 4 (December 2004): 711–20. http://dx.doi.org/10.1007/s10543-004-3812-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Reichel, Lothar, Miodrag Spalevic, and Jelena Tomanovic. "Rational averaged gauss quadrature rules." Filomat 34, no. 2 (2020): 379–89. http://dx.doi.org/10.2298/fil2002379r.

Full text
Abstract:
It is important to be able to estimate the quadrature error in Gauss rules. Several approaches have been developed, including the evaluation of associated Gauss-Kronrod rules (if they exist), or the associated averaged Gauss and generalized averaged Gauss rules. Integrals with certain integrands can be approximated more accurately by rational Gauss rules than by Gauss rules. This paper introduces associated rational averaged Gauss rules and rational generalized averaged Gauss rules, which can be used to estimate the error in rational Gauss rules. Also rational Gauss-Kronrod rules are discussed. Computed examples illustrate the accuracy of the error estimates determined by these quadrature rules.
APA, Harvard, Vancouver, ISO, and other styles
5

Saunders, Judith. "Picturing Gauss." Mathematical Intelligencer 34, no. 1 (December 17, 2011): 5. http://dx.doi.org/10.1007/s00283-011-9263-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhelobenko, D. P. "Gauss Algebras." Acta Applicandae Mathematicae 81, no. 1 (March 2004): 347–54. http://dx.doi.org/10.1023/b:acap.0000024210.97996.63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Calvetti, Daniela, and Lothar Reichel. "Symmetric Gauss–Lobatto and Modified Anti-Gauss Rules." BIT Numerical Mathematics 43, no. 3 (September 2003): 541–54. http://dx.doi.org/10.1023/b:bitn.0000007053.03860.c0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bandres, Miguel A., and Julio C. Gutiérrez-Vega. "Vector Helmholtz–Gauss and vector Laplace–Gauss beams." Optics Letters 30, no. 16 (August 15, 2005): 2155. http://dx.doi.org/10.1364/ol.30.002155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Darmawan, Randhi N. "Perbandingan Metode Gauss- Legendre, Gauss-Lobatto, dan Gauss-Kronrod pada Integrasi Numerik Fungsi Eksponensial." JMPM: Jurnal Matematika dan Pendidikan Matematika 1, no. 2 (September 1, 2016): 99. http://dx.doi.org/10.26594/jmpm.v1i2.596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Herman, R. M., and T. A. Wiggins. "Propagation and focusing of Bessel–Gauss, generalized Bessel–Gauss, and modified Bessel–Gauss beams." Journal of the Optical Society of America A 18, no. 1 (January 1, 2001): 170. http://dx.doi.org/10.1364/josaa.18.000170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sheppard, Colin J. R., and Miguel A. Porras. "Comparison between the Propagation Properties of Bessel–Gauss and Generalized Laguerre–Gauss Beams." Photonics 10, no. 9 (September 4, 2023): 1011. http://dx.doi.org/10.3390/photonics10091011.

Full text
Abstract:
The connections between Laguerre–Gauss and Bessel–Gauss beams, and between Hermite–Gauss and cosine-Gauss beams are investigated. We review different asymptotic expressions for generalized Laguerre and Hermite polynomials of large radial/transverse order. The amplitude variations of generalized Laguerre–Gauss beams, including standard and elegant Laguerre–Gauss beams as special cases, are compared with Bessel–Gauss beams. Bessel–Gauss beams can be well-approximated by elegant Laguerre–Gauss beams. For non-integral values of the Laguerre function radial order, a generalized Laguerre–Gauss beam with integer order matches the width of the central lobe well, even for low radial orders. Previous approximations are found to be inaccurate for large azimuthal mode number (topolgical charge), and an improved approximation for this case is also introduced.
APA, Harvard, Vancouver, ISO, and other styles
12

Kaya, Ahmet, and Hayrullah Özimamoğlu. "On a new class of the generalized Gauss k-Pell numbers and their polynomials." Notes on Number Theory and Discrete Mathematics 28, no. 4 (September 12, 2022): 593–602. http://dx.doi.org/10.7546/nntdm.2022.28.4.593-602.

Full text
Abstract:
In this article, we generalize the well-known Gauss Pell numbers and refer to them as generalized Gauss k-Pell numbers. There are relationships discovered between the class of generalized Gauss k-Pell numbers and the typical Gauss Pell numbers. Also, we generalize the known Gauss Pell polynomials, and call such polynomials as the generalized Gauss k-Pell polynomials. We obtain relations between the class of the generalized Gauss k-Pell polynomials and the typical Gauss Pell polynomials. Furthermore, we provide matrices for the novel generalizations of these numbers and polynomials. After that, we obtain Cassini’s identities for these numbers and polynomials.
APA, Harvard, Vancouver, ISO, and other styles
13

ÖZKAN, ENGİN, and MERVE TAŞTAN. "A NEW FAMILIES OF GAUSS k-JACOBSTHAL NUMBERS AND GAUSS k-JACOBSTHAL-LUCAS NUMBERS AND THEIR POLYNOMIALS." Journal of Science and Arts 20, no. 4 (December 30, 2020): 893–908. http://dx.doi.org/10.46939/j.sci.arts-20.4-a10.

Full text
Abstract:
In this paper, we define the new families of Gauss k-Jacobsthal numbers and Gauss k-Jacobsthal-Lucas numbers. We obtain some exciting properties of the families. We give the relationships between the family of the Gauss k-Jacobsthal numbers and the known Gauss Jacobsthal numbers, the family of the Gauss k-Jacobsthal-Lucas numbers and the known Gauss Jacobsthal-Lucas numbers. We also define the generalized polynomials for these numbers. Further, we obtain some interesting properties of the polynomials. In addition, we give the relationships between the generalized Gauss k-Jacobsthal polynomials and the known Gauss Jacobsthal polynomials, the generalized Gauss k-Jacobsthal-Lucas polynomials and the known Gauss Jacobsthal-Lucas polynomials. Furthermore, we find the new generalizations of these families and the polynomials in matrix representation. Then we prove Cassini’s Identities for the families and their polynomials.
APA, Harvard, Vancouver, ISO, and other styles
14

Nadgaran, H., and R. Fallah. "Thermally-affected Cosine-Gauss and Parabolic-Gauss beams and comparisons of Helmholtz–Gauss beam families." Optics Communications 341 (April 2015): 160–72. http://dx.doi.org/10.1016/j.optcom.2014.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Porras, Miguel A., Riccardo Borghi, and Massimo Santarsiero. "Relationship between elegant Laguerre–Gauss and Bessel–Gauss beams." Journal of the Optical Society of America A 18, no. 1 (January 1, 2001): 177. http://dx.doi.org/10.1364/josaa.18.000177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Cincotti, Gabriella, Alessandro Ciattoni, and Claudio Palma. "Laguerre–Gauss and Bessel–Gauss beams in uniaxial crystals." Journal of the Optical Society of America A 19, no. 8 (August 1, 2002): 1680. http://dx.doi.org/10.1364/josaa.19.001680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Peña, J. M. "Simultaneous backward stability of Gauss and Gauss-Jordan elimination." Numerical Linear Algebra with Applications 10, no. 4 (October 30, 2002): 317–21. http://dx.doi.org/10.1002/nla.299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Matsutani, Shigeki. "Gauss Optics and Gauss Sum on an Optical Phenomena." Foundations of Physics 38, no. 8 (August 2008): 758–77. http://dx.doi.org/10.1007/s10701-008-9233-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yoon, Dae, Dong-Soo Kim, Young Kim, and Jae Lee. "Hypersurfaces with Generalized 1-Type Gauss Maps." Mathematics 6, no. 8 (July 26, 2018): 130. http://dx.doi.org/10.3390/math6080130.

Full text
Abstract:
In this paper, we study submanifolds in a Euclidean space with a generalized 1-type Gauss map. The Gauss map, G, of a submanifold in the n-dimensional Euclidean space, En, is said to be of generalized 1-type if, for the Laplace operator, Δ, on the submanifold, it satisfies ΔG=fG+gC, where C is a constant vector and f and g are some functions. The notion of a generalized 1-type Gauss map is a generalization of both a 1-type Gauss map and a pointwise 1-type Gauss map. With the new definition, first of all, we classify conical surfaces with a generalized 1-type Gauss map in E3. Second, we show that the Gauss map of any cylindrical surface in E3 is of the generalized 1-type. Third, we prove that there are no tangent developable surfaces with generalized 1-type Gauss maps in E3, except planes. Finally, we show that cylindrical hypersurfaces in En+2 always have generalized 1-type Gauss maps.
APA, Harvard, Vancouver, ISO, and other styles
20

Zhang, Yudong, Genlin Ji, Zhengchao Dong, Shuihua Wang, and Preetha Phillips. "Comment on “An Investigation into the Performance of Particle Swarm Optimization with Various Chaotic Maps”." Mathematical Problems in Engineering 2015 (2015): 1–3. http://dx.doi.org/10.1155/2015/815370.

Full text
Abstract:
This paper researched three definitions of Gauss map and found that the definition of “Gauss map” in the paper of Arasomwan and Adewumi may be incoherent with other publications. In addition, we analyzed the difference of continuous Gauss map and the floating-point Gauss map, and we pointed out that the floating-point simulation behaved significantly differently from the continuous Gauss map.
APA, Harvard, Vancouver, ISO, and other styles
21

BEKTAŞ DEMİRCİ, Burcu. "Pseudo-Riemannian Submanifolds of Minkowski Space with Generalized 1-Type Gauss Map." Afyon Kocatepe University Journal of Sciences and Engineering 22, no. 3 (June 30, 2022): 536–51. http://dx.doi.org/10.35414/akufemubid.1109995.

Full text
Abstract:
Bu makalede, genelleştirilmiş 1-tipinden Gauss tasvirine sahip Minkowski uzayındaki dönel yüzeyler ve regle alt manifoldları üzerine çalışılmıştır. İlk olarak, ikinci çeşit noktasal 1-tipinden Gauss tasviri ile genelleştirilmiş 1-tipinden Gauss tasviri kavramları arasındaki ilişki verilmiştir. Daha sonra, 3-boyutlu Minkowski uzayında sabit ortalama eğriliğe sahip tümden jeodezik olmayan herhangi bir yüzeyin genelleştirilmiş 1-tipinden Gauss tasvirine sahip olamayacağı ispatlanmıştır. Diğer bölümde, E_1^3 uzayındaki bütün dönel yüzeylerin genelleştirilmiş 1-tipinden Gauss tasvirine sahip olduğu gösterilmiştir. Ayrıca, genelleştirilmiş 1-tipinden Gauss tasvirine sahip dönel yüzeylerle ilgili bir örnek verilmiştir. Son bölümde ise, E_1^(m )Minkowski uzayındaki regle alt manifoldları üzerine çalışılmıştır ve genelleştirilmiş 1-tipinden Gauss tasvirine sahip silindirik regle alt manifoldları incelenmiştir.
APA, Harvard, Vancouver, ISO, and other styles
22

Mai, Heng. "Convergence for the optimal control problems using collocation at Legendre-Gauss points." Transactions of the Institute of Measurement and Control 44, no. 6 (October 18, 2021): 1263–74. http://dx.doi.org/10.1177/01423312211043335.

Full text
Abstract:
The convergence of the novel Legendre-Gauss method is established for solving a continuous optimal control problem using collocation at Legendre-Gauss points. The method allows for changes in the number of Legendre-Gauss points to meet the error tolerance. The continuous optimal control problem is first discretized into a nonlinear programming problem at Gauss collocations by the Legendre-Gauss method. Subsequently, we prove the convergence of the Legendre-Gauss algorithm under the assumption that the continuous optimal control problem has a smooth solution. Compared with those of the shooting method, the single step method, and the general pseudospectral method, the numerical example shows that the Legendre-Gauss method has higher computational efficiency and accuracy in solving the optimal control problem.
APA, Harvard, Vancouver, ISO, and other styles
23

BÜYÜKKÜTÜK, Sezgin, and Günay ÖZTÜRK. "A new characterization of Aminov surface with regards to its Gauss map in E^4." Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 12, no. 1 (March 22, 2023): 25–32. http://dx.doi.org/10.17798/bitlisfen.1170647.

Full text
Abstract:
In this work, we focus on Aminov surface with regard to its Gauss map in E^4. Firstly, we write the covariant derivatives according to linear combinations of orthonormal vectors and separate the equalities using Gauss and Weingarten formulas. Then, we get the laplace of the Gauss map. After giving some conditions, we yield as main results: Aminov surfaces can not have harmonic Gauss map and can not have pointwise one-type Gauss map of I. kind in E^4. Further, we give an example of helical cylinder which is also congruent to an Aminov surface. Lastly, we obtain the conditions of having pointwise one-type Gauss map of II. kind.
APA, Harvard, Vancouver, ISO, and other styles
24

Tuljaram Meghwar, Sher khan Awan, Muhammad Tariq, Muhammad Suleman, and Asif Ali Shaikh. "Substitutional Based Gauss-Seidel Method For Solving System of Linear Algebraic Equations." Babylonian Journal of Mathematics 2024 (January 10, 2024): 1–12. http://dx.doi.org/10.58496/bjm/2024/001.

Full text
Abstract:
In this research paper a new modification of Gauss-Seidel method has been presented for solving the system of linear algebraic equations. The systems of linear algebraic equations have an important role in the field of science and engineering. This modification has been developed by using the procedure of Gauss-Seidel method and the concept of substitution techniques. Developed modification of Gauss-Seidel method is a fast convergent as compared to Gauss Jacobi’s method, Gauss-Seidel method and successive over-relaxation (SOR) method. It works on the diagonally dominant as well as positive definite symmetric systems of linear algebraic equations. Its solution has been compared with the Gauss Jacobi’s method, Gauss-Seidel method and Successive over-Relaxation method by taking different systems of linear algebraic equations and found that, it was reducing to the number of iterations and errors in each problem.
APA, Harvard, Vancouver, ISO, and other styles
25

Ota, Shuhei, and Mitsuhiro Kimura. "A Study on Regression Analysis by Expanded RBF Network Based on Copula with Linear Correlation and Rank Correlation." International Journal of Reliability, Quality and Safety Engineering 22, no. 05 (October 2015): 1550022. http://dx.doi.org/10.1142/s0218539315500229.

Full text
Abstract:
We extend the traditional RBF network to be a more powerful tool in terms of considering dependence among explanatory variables. For this purpose, we propose two kernel functions of RBF network, i.e., FGM-Gauss kernel and ρ-Gauss kernel based on a copula. A copula is another expression of a joint probability distribution function. After proposing the new models, we compare the regression performances between RBF network with the traditional Gauss kernel, FGM-Gauss kernel, ρ-Gauss kernel, and the multiple linear regression analysis by numerical experimentations. We show that new models have better regression performances than RBF network with Gauss kernel and multiple regression analysis if the explanatory variables depend on each other.
APA, Harvard, Vancouver, ISO, and other styles
26

Liu, Hongqiang, Haiyan Yang, Tao Zhang, and Bo Pan. "Gauss process state-space model optimization algorithm with expectation maximization." International Journal of Distributed Sensor Networks 15, no. 7 (July 2019): 155014771986221. http://dx.doi.org/10.1177/1550147719862217.

Full text
Abstract:
A Gauss process state-space model trained in a laboratory cannot accurately simulate a nonlinear system in a non-laboratory environment. To solve this problem, a novel Gauss process state-space model optimization algorithm is proposed by combining the expectation–maximization algorithm with the Gauss process Rauch–Tung–Striebel smoother algorithm, that is, the EM-GP-RTSS algorithm. First, a theoretical formulation of the Gauss process state-space model is proposed, which is not found in previous references. Second, a Gauss process state-space model optimization framework with the expectation–maximization algorithm is proposed. In the expectation–maximization algorithm, the unknown system state is considered as the lost data, and the maximization of measurement likelihood function is transformed into that of a conditional expectation function. Then, the Gauss process–assumed density filter algorithm and the Gauss process Rauch–Tung–Striebel smoother algorithm are proposed with the Gauss process state-space model defined in this article, in order to calculate the smoothed distribution in the conditional expectation function. Finally, the Monte Carlo numerical integral method is used to obtain the approximate expression of the conditional expectation function. The simulation results demonstrate that the Gauss process state-space model optimized by the EM-GP-RTSS can simulate the system in the non-laboratory environment better than the Gauss process state-space model trained in the laboratory, and can reach or exceed the estimation accuracy of the traditional state-space model.
APA, Harvard, Vancouver, ISO, and other styles
27

Teixeira, Julio Carlos, Pâmella Gonçalves Martins, Amanda Schwartzmann, and Jeroen Schoenmaker. "The Gauss pendulum." Emergent Scientist 5 (2021): 3. http://dx.doi.org/10.1051/emsci/2021002.

Full text
Abstract:
Recently, the Gauss rifle has gained attention as an interesting problem for physics and engineering education. In this manuscript we propose and analyze a novel problem that, while being related to the Gauss rifle, is rather simpler: the Gauss pendulum, which yields more consistent results and allows further agreement between model, simulation and experimental data. The Gauss pendulum, unlike the rifle, does not involve rotational movement of balls and the difference between the initial and final energy state of the system can be easily accessed by measuring the final height of the swinging projected ball. An extensive assessment of a Gauss pendulum has been developed using free software and accessible laboratory equipment. Focusing on the validation of the magnetic potential well model to understand the gain in kinetic energy, it was possible to obtain a remarkable agreement between the experimental and theoretically simulated data.
APA, Harvard, Vancouver, ISO, and other styles
28

Gardiner, Tony. "76.24 Gauss' Names." Mathematical Gazette 76, no. 477 (November 1992): 402. http://dx.doi.org/10.2307/3618395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Oliveira, Rannyelly Rodrigues de, and Maria Helena de Andrade. "CARL FRIEDRICH GAUSS." Boletim Cearense de Educação e História da Matemática 7, no. 20 (July 12, 2020): 427–39. http://dx.doi.org/10.30938/bocehm.v7i20.2844.

Full text
Abstract:
O presente trabalho tem o objetivo de relatar as principais contribuições matemáticas desenvolvidas pelo matemático e astrônomo alemão Carl Friedrich Gauss. Para isso, foi realizada uma descrição biográfica de Gauss baseada no dicionário de biografias científicas (2007) e na obra A Source Book in Mathematics (1929). Em complementaridade, foi feita uma revisão bibliográfica nos trabalhos de Giovanni e Bonjorno (2001), Hamilton (1844), Roque (2012), Souza e Garcia (2016). Destarte, a pesquisa bibliográfica foi adotada como metodologia de pesquisa assumindo um caráter descritivo. A priori, foi descrito o contexto histórico que influenciou a formação das concepções filosóficas, políticas e religiosas de Gauss que, de certa maneira, refletiram no seu padrão heurístico de pesquisador. O matemático vivenciou um período histórico marcado por movimentos revolucionários emergentes da Revolução Francesa, da Era Napoleônica e das revoluções democráticas na Alemanha. Todavia, ele manteve o conservadorismo observado, principalmente, em suas práticas de pesquisa, tal que não gostava de expor seus pensamentos e resultados obtidos que contrariavam a Matemática que, até então, era considerada como verdade absoluta, como é o caso da Geometria não-euclidiana. Posteriormente, foram relatadas as principais pesquisas matemáticas que Gauss desenvolveu relacionadas a cálculos de distâncias planetárias, à discussão algébrica do Teorema Binomial com expoentes racionais, da Média Aritmético-Geométrica, Teoria dos Números, Probabilidade e Teoria dos Erros. Foi destacado, também, a sua dedicação às investigações geodésicas referentes à triangulação de Hanôver, o que teve muita relevância para o desenvolvimento da ciência matemática. E, ficou reservada uma seção para abordar a Matemática Abstrata no que diz respeito à complexificação do conceito de número, onde foi apresentada a noção de números imaginários e negativos e sua compreensão como uma relação de quantidade. Nesse sentido, foram apresentados os conceitos de números complexos e hipercomplexos. Este último demarca os estudos de Gauss sobre a Álgebra não-comutativa através de seus cálculos quaterniônicos. Por fim, pode-se concluir que a História da Matemática pode ser escrita sob diferentes perspectivas teóricas geradas a partir dos diversos contextos históricos (épocas e culturas) designando, assim, a História da Matemática como inacabada. Nesse viés, conjectura-se que este trabalho sirva de fundamentação epistemológica para o desenvolvimento de uma historiografia em que evidencia o contexto de aplicabilidade matemática na ciência, como por exemplo, a algebrização de conceitos físicos. Ademais, espera-se oportunizar ao leitor o entendimento de que as ideologias políticas e filosóficas podem influenciar na formação do perfil de um pesquisador, assim como as diferentes concepções dos conceitos matemáticos podem contribuir para elaboração de outras matemáticas, como a Geometria não-euclidiana e Álgebra não-comutativa. Essas diferentes perspectivas são fundamentais para a constituição da Matemática Pura e Aplicada como um corpo teórico que proporciona o desenvolvimento de outras áreas da ciência, além de ter implicações significativas nas vivências sociais.
APA, Harvard, Vancouver, ISO, and other styles
30

Jensen, Gary, and Marco Rigoli. "Harmonic Gauss maps." Pacific Journal of Mathematics 136, no. 2 (February 1, 1989): 261–82. http://dx.doi.org/10.2140/pjm.1989.136.261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

AGAOKA, Yoshio. "Generalized Gauss equations." Hokkaido Mathematical Journal 20, no. 1 (February 1991): 1–44. http://dx.doi.org/10.14492/hokmj/1381413800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gruntz, D., and M. Monagan. "Introduction to Gauss." ACM SIGSAM Bulletin 28, no. 2 (August 1994): 3–19. http://dx.doi.org/10.1145/190694.190695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Cohen, Stephen D., Michael Dewar, John B. Friedlander, Daniel Panario, and Igor E. Shparlinski. "Polynomial Gauss sums." Proceedings of the American Mathematical Society 133, no. 8 (March 17, 2005): 2225–31. http://dx.doi.org/10.1090/s0002-9939-05-08004-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hannan, Peter J., and David M. Murray. "Gauss or Bernoulli?" Evaluation Review 20, no. 3 (June 1996): 338–52. http://dx.doi.org/10.1177/0193841x9602000306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Moore, Thomas E. "Was Gauss Smart?" Math Horizons 7, no. 2 (November 1, 1999): 24. http://dx.doi.org/10.1080/10724117.1999.12088465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Fee, Greg. "Gauss-Legendre quadrature." ACM SIGSAM Bulletin 33, no. 3 (September 1999): 26. http://dx.doi.org/10.1145/347127.347443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gutiérrez-Vega, Julio C., and Miguel A. Bandres. "Helmholtz–Gauss waves." Journal of the Optical Society of America A 22, no. 2 (February 1, 2005): 289. http://dx.doi.org/10.1364/josaa.22.000289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Pranić, Miroslav S., and Lothar Reichel. "Rational Gauss Quadrature." SIAM Journal on Numerical Analysis 52, no. 2 (January 2014): 832–51. http://dx.doi.org/10.1137/120902161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ahn, Young-Ho. "Generalized Gauss transformations." Applied Mathematics and Computation 142, no. 1 (September 2003): 113–22. http://dx.doi.org/10.1016/s0096-3003(02)00287-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pierret, Frédéric. "Stochastic Gauss equations." Celestial Mechanics and Dynamical Astronomy 124, no. 2 (October 1, 2015): 109–26. http://dx.doi.org/10.1007/s10569-015-9652-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Vallée, Brigitte. "Gauss' algorithm revisited." Journal of Algorithms 12, no. 4 (December 1991): 556–72. http://dx.doi.org/10.1016/0196-6774(91)90033-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Overfelt, P. L. "Bessel-Gauss pulses." Physical Review A 44, no. 6 (September 1, 1991): 3941–47. http://dx.doi.org/10.1103/physreva.44.3941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gori, F., G. Guattari, and C. Padovani. "Bessel-Gauss beams." Optics Communications 64, no. 6 (December 1987): 491–95. http://dx.doi.org/10.1016/0030-4018(87)90276-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mbodj, Oumar D. "Quadratic Gauss Sums." Finite Fields and Their Applications 4, no. 4 (October 1998): 347–61. http://dx.doi.org/10.1006/ffta.1998.0218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Pieper, Wilhelm M. "Recursive Gauss integration." Communications in Numerical Methods in Engineering 15, no. 2 (February 1999): 77–90. http://dx.doi.org/10.1002/(sici)1099-0887(199902)15:2<77::aid-cnm223>3.0.co;2-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ratnana, D. Surya. "Carl Friedrich Gauss." Resonance 2, no. 6 (June 1997): 60–67. http://dx.doi.org/10.1007/bf02836038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Madrid de la Vega, Humberto. "Gauss Vs. Cramer." El cálculo y su enseñanza 19, no. 2 (December 29, 2023): 1–14. http://dx.doi.org/10.61174/recacym.v19i2.212.

Full text
Abstract:
El método de eliminación de Gauss proporciona la solución numérica de un sistema Ax=b. La Regla de Cramer, proporciona una fórmula para encontrar la solución del sistema cuando A es nxn y la solución es única. Además, la Regla de Cramer se usa para derivar una forma para la inversa de una matriz. A su vez el método de eliminación de Gauss se puede usar para calcular la inversa de una matriz. ¿Qué tan efectiva es la Regla de Cramer comparada con la eliminación Gaussiana?
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Yong. "Gauss-Newton method." Wiley Interdisciplinary Reviews: Computational Statistics 4, no. 4 (February 24, 2012): 415–20. http://dx.doi.org/10.1002/wics.1202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wittmann, Axel D. "Carl Friedrich Gauss and the Gauss Society: a brief overview." History of Geo- and Space Sciences 11, no. 2 (September 8, 2020): 199–205. http://dx.doi.org/10.5194/hgss-11-199-2020.

Full text
Abstract:
Abstract. Carl Friedrich Gauss (1777–1855) was one of the most eminent scientists of all time. He was born in Brunswick, studied in Göttingen, passed his doctoral examination in Helmstedt, and from 1807 until his death, was the director of the Göttingen Astronomical Observatory. As a professor of astronomy, he worked in the fields of astronomy, mathematics, geodesy, and physics, where he made world-famous and lasting contributions. In his honour, and to preserve his memory, the Gauss Society was founded in Göttingen in 1962. The present paper aims to give nonspecialists a brief introduction into the life of Gauss and an introduction into the Gauss Society and its history.
APA, Harvard, Vancouver, ISO, and other styles
50

Fenu, C., D. Martin, L. Reichel, and G. Rodriguez. "Block Gauss and Anti-Gauss Quadrature with Application to Networks." SIAM Journal on Matrix Analysis and Applications 34, no. 4 (January 2013): 1655–84. http://dx.doi.org/10.1137/120886261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography