Academic literature on the topic 'Gaussian measures Kalman filtering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gaussian measures Kalman filtering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gaussian measures Kalman filtering"
Gou, Linfeng, Ruiqian Sun, and Xiaobao Han. "FDIA System for Sensors of the Aero-Engine Control System Based on the Immune Fusion Kalman Filter." Mathematical Problems in Engineering 2021 (March 18, 2021): 1–17. http://dx.doi.org/10.1155/2021/6662425.
Full textAli, Wasiq, Yaan Li, Zhe Chen, Muhammad Asif Zahoor Raja, Nauman Ahmed, and Xiao Chen. "Application of Spherical-Radial Cubature Bayesian Filtering and Smoothing in Bearings Only Passive Target Tracking." Entropy 21, no. 11 (November 7, 2019): 1088. http://dx.doi.org/10.3390/e21111088.
Full textAli, Wasiq, Yaan Li, Muhammad Asif Zahoor Raja, Wasim Ullah Khan, and Yigang He. "State Estimation of an Underwater Markov Chain Maneuvering Target Using Intelligent Computing." Entropy 23, no. 9 (August 29, 2021): 1124. http://dx.doi.org/10.3390/e23091124.
Full textMulimani, neshwari, and Aziz Makandar. "Sports Video Annotation and Multi- Target Tracking using Extended Gaussian Mixture model." International Journal of Recent Technology and Engineering 10, no. 1 (May 30, 2021): 1–6. http://dx.doi.org/10.35940/ijrte.a5589.0510121.
Full textGuardeño, Rafael, Manuel J. López, and Víctor M. Sánchez. "MIMO PID Controller Tuning Method for Quadrotor Based on LQR/LQG Theory." Robotics 8, no. 2 (May 1, 2019): 36. http://dx.doi.org/10.3390/robotics8020036.
Full textTavakoli, Reza, Sanjay Srinivasan, and Mary F. Wheeler. "Rapid Updating of Stochastic Models by Use of an Ensemble-Filter Approach." SPE Journal 19, no. 03 (December 31, 2013): 500–513. http://dx.doi.org/10.2118/163673-pa.
Full textKüper, Armin, and Steffen Waldherr. "Numerical Gaussian process Kalman filtering." IFAC-PapersOnLine 53, no. 2 (2020): 11416–21. http://dx.doi.org/10.1016/j.ifacol.2020.12.577.
Full textGarcia-Fernandez, Angel F., and Lennart Svensson. "Gaussian MAP Filtering Using Kalman Optimization." IEEE Transactions on Automatic Control 60, no. 5 (May 2015): 1336–49. http://dx.doi.org/10.1109/tac.2014.2372909.
Full textNiehsen, W. "Robust Kalman filtering with generalized Gaussian measurement noise." IEEE Transactions on Aerospace and Electronic Systems 38, no. 4 (October 2002): 1409–12. http://dx.doi.org/10.1109/taes.2002.1145765.
Full textTodescato, Marco, Andrea Carron, Ruggero Carli, Gianluigi Pillonetto, and Luca Schenato. "Efficient spatio-temporal Gaussian regression via Kalman filtering." Automatica 118 (August 2020): 109032. http://dx.doi.org/10.1016/j.automatica.2020.109032.
Full textDissertations / Theses on the topic "Gaussian measures Kalman filtering"
Caputi, Mauro J. "NonGaussian estimation using a modified Gaussian sum adaptive filter." Diss., This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-07282008-135232/.
Full textZhao, Yong. "Ensemble Kalman filter method for Gaussian and non-Gaussian priors /." Access abstract and link to full text, 2008. http://0-wwwlib.umi.com.library.utulsa.edu/dissertations/fullcit/3305718.
Full textSchnatter, Sylvia. "Integration-based Kalman-filtering for a Dynamic Generalized Linear Trend Model." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 1991. http://epub.wu.ac.at/424/1/document.pdf.
Full textSeries: Forschungsberichte / Institut für Statistik
Frühwirth-Schnatter, Sylvia. "Applied State Space Modelling of Non-Gaussian Time Series using Integration-based Kalman-filtering." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 1993. http://epub.wu.ac.at/1558/1/document.pdf.
Full textSeries: Forschungsberichte / Institut für Statistik
Xu, Teng. "Ensemble Kalman filtering for hydraulic conductivity characterization: Parallelization and non-Gaussianity." Doctoral thesis, Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/43769.
Full textXu, T. (2014). Ensemble Kalman filtering for hydraulic conductivity characterization: Parallelization and non-Gaussianity [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/43769
TESIS
Sederlin, Michael. "Traffic State Estimation for Signalized Intersections : A Combined Gaussian Process Bayesian Filter Approach." Thesis, KTH, Transportplanering, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284198.
Full textMackenzie, Mark. "Correlation with the hermite series using artificial neural network technology." Access electronically, 2004. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20050202.122218/index.html.
Full textFreitas, Greice Martins de. "Rastreamento de objetos em vídeos e separação em classes." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/258882.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-16T06:32:57Z (GMT). No. of bitstreams: 1 Freitas_GreiceMartinsde_M.pdf: 16453422 bytes, checksum: fa0ae64561fd346237c57310fb0d0073 (MD5) Previous issue date: 2010
Resumo: A crescente utilização de câmeras de vídeo para o monitoramento de ambientes, auxiliando no controle de entrada, saída e trânsito de indivíduos ou veículos tem aumentado a busca por sistemas visando a automatização do processo de monitoramento por vídeos. Como requisitos para estes sistemas identificam-se o tratamento da entrada e saída de objetos na cena, variações na forma e movimentação dos alvos seguidos, interações entre os alvos como encontros e separações, variações na iluminação da cena e o tratamento de ruídos presentes no vídeo. O presente trabalho analisa e avalia as principais etapas de um sistema de rastreamento de múltiplos objetos através de uma câmera de vídeo fixa e propõe um sistema de rastreamento baseado em sistemas encontrados na literatura. O sistema proposto é composto de três fases: identificação do foreground através de técnicas de subtração de fundo; associação de objetos quadro a quadro através de métricas de cor, área e posição do centróide - com o auxílio da aplicação do filtro de Kalman - e, finalmente, classificação dos objetos a cada quadro segundo um sistema de gerenciamento de objetos. Com o objetivo de verificar a eficiência do sistema de rastreamento proposto, testes foram realizados utilizando vídeos das bases de dados PETS e CAVIAR. A etapa de subtração de fundo foi avaliada através da comparação do modelo Eigenbackground, utilizado no presente sistema, com o modelo Mistura de Gaussianas, modelo de subtração de fundo mais utilizado em sistemas de rastreamento. O sistema de gerenciamento de objeto foi avaliado por meio da classificação e contagem manual dos objetos a cada quadro do vídeo. Estes resultados foram comparados à saída do sistema de gerenciamento de objetos. Os resultados obtidos mostraram que o sistema de rastreamento proposto foi capaz de reconhecer e rastrear objetos em movimento em sequências de vídeos, lidando com oclusões e separações, mostrando adequabilidade para aplicação em sistemas de segurança em tempo real
Abstract: There are immediate needs for the use of video cameras in environment monitoring, which can be verified by the task of assisting the entrance, exit and transit registering of people or vehicles in a area. In this context, automated surveillance systems based on video images are increasingly gaining interest. As requisites for these systems, it can be identified the treatment of entrances and exits of objects on a scene, shape variation and movement of followed targets, interactions between targets (such as meetings and splits), lighting variations and video noises. This work analyses and evaluates the main steps of a multiple target tracking system through a fixed video camera and proposes a tracking system based on approaches found in the literature. The proposed system is composed of three steps: foreground identification through background subtraction techniques; object association through color, area and centroid position matching, by using the Kalman filter to estimate the object's position in the next frame, and, lastly, object classification according an object management system. In order to assess the efficiency of the proposed tracking system, tests were performed by using videos from PETS and CAVIAR datasets. The background subtraction step was evaluated by means of a comparison between the Eigenbackground model, used in the proposed tracking system, and the Mixture of Gaussians model, one of the most used background subtraction models. The object management system was evaluated through manual classification and counting of objects on each video frame. These results were compared with the output of the object management system. The obtained results showed that the proposed tracking system was able to recognize and track objects in movement on videos, as well as dealing with occlusions and separations, and, at the same time, encouraging future studies in order for its application on real time security systems
Mestrado
Engenharia de Computação
Mestre em Engenharia Elétrica
Abbassi, Noufel. "Chaînes de Markov triplets et filtrage optimal dans les systemes à sauts." Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00873630.
Full text"Applied State Space Modelling of Non-Gaussian Time Series using Integration-based Kalman-filtering." Department of Statistics and Mathematics, 1993. http://epub.wu-wien.ac.at/dyn/dl/wp/epub-wu-01_a20.
Full textBooks on the topic "Gaussian measures Kalman filtering"
Kallianpur, G. White noise theory of prediction, filtering, and smoothing. New York: Gordon and Breach Science Publishers, 1988.
Find full textBook chapters on the topic "Gaussian measures Kalman filtering"
Gawarecki, L., and V. Mandrekar. "Non-linear filtering with Gaussian martingale noise: Kalman filter with fBm noise." In Institute of Mathematical Statistics Lecture Notes - Monograph Series, 92–97. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2004. http://dx.doi.org/10.1214/lnms/1196285382.
Full textPunithakumar, Kumaradevan, Ismail Ben Ayed, Ali Islam, Ian G. Ross, and Shuo Li. "Regional Heart Motion Abnormality Detection via Information Measures and Unscented Kalman Filtering." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010, 409–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15705-9_50.
Full textWu, Huaiyi, and Guanrong Chen. "Suboptimal Kalman Filtering for Linear Systems with Non-Gaussian Noise." In Approximate Kalman Filtering, 113–36. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814317399_0008.
Full textHong, Lang. "Distributed Filtering Using Set Models for Systems with Non-Gaussian Noise." In Approximate Kalman Filtering, 161–76. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814317399_0010.
Full text"Dynamic Gaussian Force Field Controlled Kalman Filtering For Pointing Interaction." In Mensch & Computer 2013 – Tagungsband, 261–70. Oldenbourg Wissenschaftsverlag, 2013. http://dx.doi.org/10.1524/9783486781229.261.
Full textBilik, I., and J. Tabriki. "MMSE-Based Filtering for Linear and Nonlinear Systems in the Presence of Non-Gaussian System and Measurement Noise." In Kalman Filter Recent Advances and Applications. InTech, 2009. http://dx.doi.org/10.5772/6800.
Full textAytun, Alper, and Serol Bulkan. "Bearing-Only Target Motion Analysis." In Operations Research for Military Organizations, 330–46. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-5513-1.ch014.
Full textConference papers on the topic "Gaussian measures Kalman filtering"
Abbassi, Noufel, Dalila Benboudjema, and Wojciech Pieczynski. "Kalman filtering approximations in triplet Markov Gaussian switching models." In 2011 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2011. http://dx.doi.org/10.1109/ssp.2011.5967820.
Full textGal, Janos, Andrei Caimpeanu, and Ioan Nafornita. "Estimation of Chirp Signals in Gaussian Noise by Kalman Filtering." In International Symposium on Signals, Circuits and Systems. IEEE, 2007. http://dx.doi.org/10.1109/isscs.2007.4292711.
Full textAit-El-Fquih, Boujemaa, Thomas Rodet, and Ibrahim Hoteit. "Unsupervised Variational Bayesian Kalman Filtering For Large-Dimensional Gaussian Systems." In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9053698.
Full textFasano, Antonio, Alfredo Germani, and Andrea Monteriu. "Reduced-order quadratic Kalman-like filtering for non-Gaussian systems." In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426690.
Full textKuzin, Danil, Le Yang, Olga Isupova, and Lyudmila Mihaylova. "Ensemble Kalman Filtering for Online Gaussian Process Regression and Learning." In 2018 International Conference on Information Fusion (FUSION). IEEE, 2018. http://dx.doi.org/10.23919/icif.2018.8455785.
Full textHartikainen, Jouni, and Simo Sarkka. "Kalman filtering and smoothing solutions to temporal Gaussian process regression models." In 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2010. http://dx.doi.org/10.1109/mlsp.2010.5589113.
Full textNsour, Ahmad, Alhaj-Saleh Abdallah, and Mohammed Zohdy. "GFSK phase estimation using Extended Kalman filtering for Non-Gaussian noise." In 2013 Wireless Telecommunications Symposium (WTS 2013). IEEE, 2013. http://dx.doi.org/10.1109/wts.2013.6566237.
Full textKaibi Zhang, Yangchuan Zhang, and Subo Wan. "Research of RSSI indoor ranging algorithm based on Gaussian - Kalman linear filtering." In 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 2016. http://dx.doi.org/10.1109/imcec.2016.7867493.
Full textHostettler, Roland, Ossi Kaltiokallio, Huseyin Yigitler, Simo Sarkka, and Riku Jantti. "RSS-based respiratory rate monitoring using periodic Gaussian processes and Kalman filtering." In 2017 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017. http://dx.doi.org/10.23919/eusipco.2017.8081208.
Full textNagi, Imre, Darren Yin, Ali Yousafzai, Dimitrios Tzannetos, Ole J. Mengshoel, Rodney Martin, and Chetan S. Kulkarni. "Exploring Gaussian Process Regression and Unscented Kalman Filtering for Lithium-ion Battery Prognostics." In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-0685.
Full text