Journal articles on the topic 'Gaussian process classification model with multiclass'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Gaussian process classification model with multiclass.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Girolami, Mark, and Simon Rogers. "Variational Bayesian Multinomial Probit Regression with Gaussian Process Priors." Neural Computation 18, no. 8 (2006): 1790–817. http://dx.doi.org/10.1162/neco.2006.18.8.1790.
Full textChatzis, Sotirios P. "A latent variable Gaussian process model with Pitman–Yor process priors for multiclass classification." Neurocomputing 120 (November 2013): 482–89. http://dx.doi.org/10.1016/j.neucom.2013.04.029.
Full textZhao, Qibin, Liqing Zhang, and Andrzej Cichocki. "A Tensor-Variate Gaussian Process for Classification of Multidimensional Structured Data." Proceedings of the AAAI Conference on Artificial Intelligence 27, no. 1 (2013): 1041–47. http://dx.doi.org/10.1609/aaai.v27i1.8568.
Full textCho, Wanhyun, Sangkyoon Kim, and Soonyoung Park. "New Inference for a Multiclass Gaussian Process Classification Model using a Variational Bayesian EM Algorithm and Laplace Approximation." IEIE Transactions on Smart Processing and Computing 4, no. 4 (2015): 202–8. http://dx.doi.org/10.5573/ieiespc.2015.4.4.202.
Full textKamau, J. N., P. K. Hinga, and S. I. Kamau. "Support Vector Machine Kernel Model Calibration for Optimal Accuracy in Automatic Pineapple Slices Classification." International Research Journal of Innovations in Engineering and Technology 06, no. 09 (2022): 01–8. http://dx.doi.org/10.47001/irjiet/2022.609001.
Full textRekha, S. N., Aruna Jeyanthy P., and Devaraj D. "Relevance vector machine based fault classification in wind energy conversion system." International Journal of Electrical and Computer Engineering (IJECE) 9, no. 3 (2019): 1506–13. https://doi.org/10.11591/ijece.v9i3.pp1506-1513.
Full textAdi Pratama, I. Putu, Ery Setiyawan Jullev Atmadji, Dwi Amalia Purnamasar, and Edi Faizal. "Evaluating the Performance of Voting Classifier in Multiclass Classification of Dry Bean Varieties." Indonesian Journal of Data and Science 5, no. 1 (2024): 23–29. http://dx.doi.org/10.56705/ijodas.v5i1.124.
Full textN., Rekha S., P. Aruna Jeyanthy, and D. Devaraj. "Relevance vector machine based fault classification in wind energy conversion system." International Journal of Electrical and Computer Engineering (IJECE) 9, no. 3 (2019): 1506. http://dx.doi.org/10.11591/ijece.v9i3.pp1506-1513.
Full textWu, Zhiyong, Xiangqian Ding, and Guangrui Zhang. "A Novel Method for Classification of ECG Arrhythmias Using Deep Belief Networks." International Journal of Computational Intelligence and Applications 15, no. 04 (2016): 1650021. http://dx.doi.org/10.1142/s1469026816500218.
Full textHosenie, Zafiirah, Robert Lyon, Benjamin Stappers, Arrykrishna Mootoovaloo, and Vanessa McBride. "Imbalance learning for variable star classification." Monthly Notices of the Royal Astronomical Society 493, no. 4 (2020): 6050–59. http://dx.doi.org/10.1093/mnras/staa642.
Full textKim, Hyeong-Joo, Kevin Bagas Arifki Mawuntu, Tae-Woong Park, Hyeong-Soo Kim, Jun-Young Park, and Yeong-Seong Jeong. "Spatial Autocorrelation Incorporated Machine Learning Model for Geotechnical Subsurface Modeling." Applied Sciences 13, no. 7 (2023): 4497. http://dx.doi.org/10.3390/app13074497.
Full textPanchawagh, Suhrud. "NIMG-02. DEVELOPING A RADIOMIC HIERARCHICAL GAUSSIAN PROCESS BOOSTING MODEL TO PREDICT PRIMARY TUMOR ORIGIN FROM MULTICENTRIC LONGITUDINAL MRI DATA OF BRAIN METASTASES." Neuro-Oncology 26, Supplement_8 (2024): viii195. http://dx.doi.org/10.1093/neuonc/noae165.0769.
Full textHertono, Gatot Fatwanto, Ridho Kresna Wattimena, Gabriella Aileen Mendrofa, and Bevina Desjwiandra Handari. "Classifying Coal Mine Pillar Stability Areas with Multiclass SVM on Ensemble Learning Models." Journal of Engineering and Technological Sciences 56, no. 1 (2024): 95–109. http://dx.doi.org/10.5614/j.eng.technol.sci.2024.56.1.8.
Full textClottey, Richard Nunoo, Winfred Yaokumah, and Justice Kwame Appati. "Modelling and Evaluation of Network Intrusion Detection Systems Using Machine Learning Techniques." International Journal of Intelligent Information Technologies 17, no. 4 (2021): 1–19. http://dx.doi.org/10.4018/ijiit.289971.
Full textSegera, Davies, Mwangi Mbuthia, and Abraham Nyete. "Particle Swarm Optimized Hybrid Kernel-Based Multiclass Support Vector Machine for Microarray Cancer Data Analysis." BioMed Research International 2019 (December 16, 2019): 1–11. http://dx.doi.org/10.1155/2019/4085725.
Full textYang, Xiaofeng. "Transmit Antenna Selection for Sum-Rate Maximization with Multiclass Scalable Gaussian Process Classification." International Journal of Antennas and Propagation 2023 (July 29, 2023): 1–7. http://dx.doi.org/10.1155/2023/3547030.
Full textSagar, K. Manoj. "MultiClass Text Classification Using Support Vector Machine." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 07, no. 12 (2023): 1–10. http://dx.doi.org/10.55041/ijsrem27465.
Full textA. Tamilmani, Et al. "An Ensemble Framework Approach to Crop Type Prediction Using Feature Selection and Multiclass Classification." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 9 (2023): 1179–89. http://dx.doi.org/10.17762/ijritcc.v11i9.9027.
Full textTufail, Ahsan Bin, Inam Ullah, Wali Ullah Khan, et al. "Diagnosis of Diabetic Retinopathy through Retinal Fundus Images and 3D Convolutional Neural Networks with Limited Number of Samples." Wireless Communications and Mobile Computing 2021 (November 17, 2021): 1–15. http://dx.doi.org/10.1155/2021/6013448.
Full textUddin, Jia, Myeongsu Kang, Dinh V. Nguyen, and Jong-Myon Kim. "Reliable Fault Classification of Induction Motors Using Texture Feature Extraction and a Multiclass Support Vector Machine." Mathematical Problems in Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/814593.
Full textKhemlapure, Venkatesh, Ashwini Patil, Nikita Chavan, and Nisha Mali. "Product Defect Detection Using Deep Learning." International Journal of Intelligent Systems and Applications 16, no. 4 (2024): 39–54. http://dx.doi.org/10.5815/ijisa.2024.04.03.
Full textNurrahman, Fathu, Hari Wijayanto, Aji Hamim Wigena, and Nunung Nurjanah. "PRE-PROCESSING DATA ON MULTICLASS CLASSIFICATION OF ANEMIA AND IRON DEFICIENCY WITH THE XGBOOST METHOD." BAREKENG: Jurnal Ilmu Matematika dan Terapan 17, no. 2 (2023): 0767–74. http://dx.doi.org/10.30598/barekengvol17iss2pp0767-0774.
Full textHe, Yu, Xiaofan Dong, Theodore E. Simos, et al. "A bio-inspired weights and structure determination neural network for multiclass classification: Applications in occupational classification systems." AIMS Mathematics 9, no. 1 (2023): 2411–34. http://dx.doi.org/10.3934/math.2024119.
Full textZhao, Lijun, Qingsheng Li, and Bingbing Li. "SAR Target Recognition via Monogenic Signal and Gaussian Process Model." Mathematical Problems in Engineering 2022 (September 13, 2022): 1–7. http://dx.doi.org/10.1155/2022/3086486.
Full textDiethe, Tom, and Mark Girolami. "Online Learning with (Multiple) Kernels: A Review." Neural Computation 25, no. 3 (2013): 567–625. http://dx.doi.org/10.1162/neco_a_00406.
Full textPavel, Marius Sorin, Simona Moldovanu, and Dorel Aiordachioaie. "On Classification of the Human Emotions from Facial Thermal Images: A Case Study Based on Machine Learning." Machine Learning and Knowledge Extraction 7, no. 2 (2025): 27. https://doi.org/10.3390/make7020027.
Full textDas, Abhijit, and Pramod . "An Approach for Identifying Network Intrusion in an Automated Process Control Computer System." International Journal of Electrical and Electronics Research 10, no. 4 (2022): 1219–24. http://dx.doi.org/10.37391/ijeer.100472.
Full textYang, Na, and Yongtao Zhang. "A Gaussian Process Classification and Target Recognition Algorithm for SAR Images." Scientific Programming 2022 (January 20, 2022): 1–10. http://dx.doi.org/10.1155/2022/9212856.
Full textAbisoye, Opeyemi Aderiike, Rasheed Gbenga Jimoh, and Muhammed Uthman Mubashir Babatunde Uthman. "Ensemble Feed-Forward Neural Network and Support Vector Machine for Prediction of Multiclass Malaria Infection." Journal of Information and Communication Technology 21, No.1 (2021): 117–48. http://dx.doi.org/10.32890/jict2022.21.1.6.
Full textAy, Fahrettin, Gökhan İnce, Mustafa E. Kamaşak, and K. Yavuz Ekşi. "Classification of pulsars with Dirichlet process Gaussian mixture model." Monthly Notices of the Royal Astronomical Society 493, no. 1 (2020): 713–22. http://dx.doi.org/10.1093/mnras/staa154.
Full textKhabti, Joharah, Saad AlAhmadi, and Adel Soudani. "Optimal Channel Selection of Multiclass Motor Imagery Classification Based on Fusion Convolutional Neural Network with Attention Blocks." Sensors 24, no. 10 (2024): 3168. http://dx.doi.org/10.3390/s24103168.
Full textLestari, Wulan Sri, Yuni Marlina Saragih, and Caroline Caroline. "MULTICLASS CLASSIFICATION FOR STUNTING PREDICTION USING DEEP NEURAL NETWORKS." JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) 10, no. 2 (2024): 386–93. http://dx.doi.org/10.33480/jitk.v10i2.5636.
Full textFebriantono, M. Aldiki, Sholeh Hadi Pramono, Rahmadwati Rahmadwati, and Golshah Naghdy. "Classification of multiclass imbalanced data using cost-sensitive decision tree C5.0." IAES International Journal of Artificial Intelligence (IJ-AI) 9, no. 1 (2020): 65. http://dx.doi.org/10.11591/ijai.v9.i1.pp65-72.
Full textM., Aldiki Febriantono, Hadi Pramono Sholeh, Rahmadwati, and Naghdy Golshah. "Classification of multiclass imbalanced data using cost-sensitive decision tree C5.0." International Journal of Artificial Intelligence (IJ-AI) 9, no. 1 (2020): 65–72. https://doi.org/10.11591/ijai.v9.i1.pp65-72.
Full textSanchez-Gomez, Daniel, Carlos P. Odriozola Lloret, Ana Catarina Sousa, et al. "A supervised multiclass framework for mineral classification of Iberian beads." PLOS ONE 19, no. 7 (2024): e0302563. http://dx.doi.org/10.1371/journal.pone.0302563.
Full textBuchanan, James J., Michael D. Schneider, Robert E. Armstrong, Amanda L. Muyskens, Benjamin W. Priest, and Ryan J. Dana. "Gaussian Process Classification for Galaxy Blend Identification in LSST." Astrophysical Journal 924, no. 2 (2022): 94. http://dx.doi.org/10.3847/1538-4357/ac35ca.
Full textSeo, Sambu, and Klaus Obermayer. "Soft Learning Vector Quantization." Neural Computation 15, no. 7 (2003): 1589–604. http://dx.doi.org/10.1162/089976603321891819.
Full textJiang, Xinwei, Xiaoping Fang, Zhikun Chen, Junbin Gao, Junjun Jiang, and Zhihua Cai. "Supervised Gaussian Process Latent Variable Model for Hyperspectral Image Classification." IEEE Geoscience and Remote Sensing Letters 14, no. 10 (2017): 1760–64. http://dx.doi.org/10.1109/lgrs.2017.2734680.
Full textLi, Jinxing, Bob Zhang, and David Zhang. "Shared Autoencoder Gaussian Process Latent Variable Model for Visual Classification." IEEE Transactions on Neural Networks and Learning Systems 29, no. 9 (2018): 4272–86. http://dx.doi.org/10.1109/tnnls.2017.2761401.
Full textLi, Jinxing, Bob Zhang, Guangming Lu, Hu Ren, and David Zhang. "Visual Classification With Multikernel Shared Gaussian Process Latent Variable Model." IEEE Transactions on Cybernetics 49, no. 8 (2019): 2886–99. http://dx.doi.org/10.1109/tcyb.2018.2831457.
Full textOyama, H., M. Yamakita, K. Sata, and A. Ohata. "Identification of Static Boundary Model Based on Gaussian Process Classification." IFAC-PapersOnLine 49, no. 11 (2016): 787–92. http://dx.doi.org/10.1016/j.ifacol.2016.08.115.
Full textSovia, Nabila Ayunda, and Ni Wayan Surya Wardhani. "ENSEMBLE CNN WITH ADASYN FOR MULTICLASS CLASSIFICATION ON CABBAGE PESTS." BAREKENG: Jurnal Ilmu Matematika dan Terapan 18, no. 2 (2024): 1237–48. http://dx.doi.org/10.30598/barekengvol18iss2pp1237-1248.
Full textMandjes, Michel, and Jaap Storm. "A Diffusion-Based Analysis of a Multiclass Road Traffic Network." Stochastic Systems 11, no. 1 (2021): 60–81. http://dx.doi.org/10.1287/stsy.2019.0065.
Full textZerrouki, Khadidja, Nadjia Benblidia, and Omar Boussaid. "Preprocessing multilingual text for the detection of extremism and radicalization in social networks using deep learning." STUDIES IN ENGINEERING AND EXACT SCIENCES 5, no. 2 (2024): e11286. https://doi.org/10.54021/seesv5n2-594.
Full textAkbar, Muhamad, Siti Nurmaini, and Radiyati Umi Partan. "The deep convolutional networks for the classification of multi-class arrhythmia." Bulletin of Electrical Engineering and Informatics 13, no. 2 (2024): 1325–33. http://dx.doi.org/10.11591/eei.v13i2.6102.
Full textRen, Ming, Chi Cheung, and Gao Xiao. "Gaussian Process Based Bayesian Inference System for Intelligent Surface Measurement." Sensors 18, no. 11 (2018): 4069. http://dx.doi.org/10.3390/s18114069.
Full textAlsolai, Hadeel, Shahnawaz Qureshi, Syed Muhammad Zeeshan Iqbal, et al. "Employing a Long-Short-Term Memory Neural Network to Improve Automatic Sleep Stage Classification of Pharmaco-EEG Profiles." Applied Sciences 12, no. 10 (2022): 5248. http://dx.doi.org/10.3390/app12105248.
Full textKukkar, Ashima, Rajni Mohana, Anand Nayyar, Jeamin Kim, Byeong-Gwon Kang, and Naveen Chilamkurti. "A Novel Deep-Learning-Based Bug Severity Classification Technique Using Convolutional Neural Networks and Random Forest with Boosting." Sensors 19, no. 13 (2019): 2964. http://dx.doi.org/10.3390/s19132964.
Full textXie, Yurong, Di Wu, and Zhe Qiang. "An Improved Mixture Model of Gaussian Processes and Its Classification Expectation–Maximization Algorithm." Mathematics 11, no. 10 (2023): 2251. http://dx.doi.org/10.3390/math11102251.
Full textOblitas, Jimy, and Jorge Ruiz. "Multivariate Analysis for the Classification of Chocolate According to its Percentage of Cocoa by Using Terahertz Time-Domain Spectroscopy (THz-TDS)." Proceedings 70, no. 1 (2020): 109. http://dx.doi.org/10.3390/foods_2020-08029.
Full text