Academic literature on the topic 'GD2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GD2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "GD2"
Rai, Seema, Gurmeet Kaur Sethi, Rama Kumari, and Varun Kaul. "Gaucher disease: masquerading as chronic malaria." International Journal of Contemporary Pediatrics 5, no. 4 (June 22, 2018): 1688. http://dx.doi.org/10.18203/2349-3291.ijcp20182588.
Full textAwasthi, Sita, Gregory G. Mahairas, Carolyn E. Shaw, Meei-Li Huang, David M. Koelle, Christine Posavad, Lawrence Corey, and Harvey M. Friedman. "A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens." Journal of Virology 89, no. 16 (June 3, 2015): 8497–509. http://dx.doi.org/10.1128/jvi.01089-15.
Full textVladimirova, Liubov Yu, Natalya A. Abramova, and Oleg Ivanovich Kit. "Treatment for RAS wild-type (wt) metastatic colorectal cancer (mCRC): Continuation of anti-EGFR therapy while switching chemotherapy regimen." Journal of Clinical Oncology 34, no. 4_suppl (February 1, 2016): 744. http://dx.doi.org/10.1200/jco.2016.34.4_suppl.744.
Full textAnya, D. K., and K. I. Eghianruwa. "Concurrent administration of methanolic extract of Zingiber officinale Roscoe (Zingiberales: Zingiberaceae) and diminazene aceturate enhanced survival rate and reduced parasitaemia in experimental murine Trypanosoma brucei Plimmer & Bradford, 1899 (Kinetoplastea: Trypanosomatida) infection." Brazilian Journal of Biological Sciences 5, no. 9 (2018): 95–104. http://dx.doi.org/10.21472/bjbs.050910.
Full textKasprowicz, Angelina, Groux-Degroote Sophie, Chann Lagadec, and Philippe Delannoy. "Role of GD3 Synthase ST8Sia I in Cancers." Cancers 14, no. 5 (March 3, 2022): 1299. http://dx.doi.org/10.3390/cancers14051299.
Full textCheresh, D. A., M. D. Pierschbacher, M. A. Herzig, and K. Mujoo. "Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins." Journal of Cell Biology 102, no. 3 (March 1, 1986): 688–96. http://dx.doi.org/10.1083/jcb.102.3.688.
Full textZhao, X. J., and N. K. Cheung. "GD2 oligosaccharide: target for cytotoxic T lymphocytes." Journal of Experimental Medicine 182, no. 1 (July 1, 1995): 67–74. http://dx.doi.org/10.1084/jem.182.1.67.
Full textChan, Godfrey Chi-Fung, and Carol Matias Chan. "Anti-GD2 Directed Immunotherapy for High-Risk and Metastatic Neuroblastoma." Biomolecules 12, no. 3 (February 24, 2022): 358. http://dx.doi.org/10.3390/biom12030358.
Full textWei, Jianshe, Yoshiki Takamatsu, Ryoko Wada, Masayo Fujita, Gilbert Ho, Eliezer Masliah, and Makoto Hashimoto. "Therapeutic Potential of αS Evolvability for Neuropathic Gaucher Disease." Biomolecules 11, no. 2 (February 15, 2021): 289. http://dx.doi.org/10.3390/biom11020289.
Full textLi, Yuexi, Sumei Li, Yong Qi, Tingting Xu, Jiameng Li, Ying Pan, and Suqin Li. "Eucaryotic expression of HSV glycoproteins gC2, gD1, gD2 and immunogenicity analysis." New Biotechnology 33 (July 2016): S75. http://dx.doi.org/10.1016/j.nbt.2016.06.977.
Full textDissertations / Theses on the topic "GD2"
Cerato, Evelyne. "Repertoire d'anticorps murins diriges contre les gangliosides gd2 et gd3 : production et caracterisation d'un fragment d'anticorps recombinant colorimetrique anti-gd2." Nantes, 1997. http://www.theses.fr/1997NANT02VS.
Full textFaraj, Sébastien. "Immunochimiothérapie du neuroblastome : nouvelle thérapeutique améliorée ciblant le ganglioside GD2 O-acétylé pour le traitement des neuroblastomes chez l'enfant." Thesis, Nantes, 2018. http://www.theses.fr/2018NANT1037.
Full textDespite recent advances in high-risk neuroblastoma therapy, the prognosis for patients remains poor. In addition, many patients suffer from complications related to available therapies that are highly detrimental to their quality of life. New treatment modalities are, thus, urgently needed to further improve the efficacy and reduce the toxicity of existing therapies. Since antibodies specific for Oacetyl GD2 ganglioside display pro-apoptotic activity against neuroblastoma cells, we hypothesized that combination of immunotherapy could enhance tumor efficacy of neuroblastoma chemotherapy. We demonstrate here that combination of anti-Oacetyl GD2 monoclonal antibody 8B6 with topotecan synergistically inhibited neuroblastoma cell proliferation, as shown by the combination index values. Mechanistically, we evidence that mAb 8B6 induced plasma cell membrane lesions, consistent with oncosis. Neuroblastoma tumour cells treated with mAb 8B6 indeed showed an increased uptake of topotecan by the tumor cells and a more profound tumor cell death evidenced by increased caspase-3 activation. We also found that the combination with topotecan plus monoclonal antibody 8B6 showed a more potent anti-tumor efficacy in vivo than either agent alone. Importantly, we used low-doses of topotecan with no noticeable side effect. Our data suggest that chemoimmunotherapy combinations may improve the clinical efficacy and safety profile of current chemotherapeutic modalities of neuroblastoma
Tong, Wenyong. "Chemistry and biology of tumor-associated ganglioside GD2." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107647.
Full textTypiquement, les thérapies efficaces agissent sur les tissus malades sans toutefois nuire considérablement aux tissus en santé. Un glycosphingolipide (GSL) associé à une tumeur, tel que le ganglioside GD2, peut reconnaître selectivement les tumeurs neuroectodermes malignes et est ainsi validé comme une cible tumorale. Sur le plan clinique, on utilise le GD2 à des fins de diagnostic et d'immunothérapie. D'une part, le GD2 joue un rôle fonctionnel important dans la progression tumorale et la chimiorésistance. D'autre part, le GD2 joue un rôle fonctionnel important dans la douleur, mais les mécanismes qui expliqueraient l'importance du GD2 lors de tels phénomènes demeurent encore inconnus. C'est pourquoi il serait utile de mieux comprendre la relation structure-activité du GD2, un GSL constitué de 2 acides sialiques. Toutefois, entreprendre de telles études sur les glycolipides représente un défi de taille. Nous avons alors utilisé une approche basée sur la biologie chimique pour élucider la structure et la fonction des GD2 et pour mieux concevoir rationnellement des ligands GD2 et des vaccins pour le traitement contre le cancer lié au GD2. En combinant l'utilisation de la spectroscopie RMN DTS, des expériences NOE transférées et des modèles moléculaires, il est possible d'obtenir plus de détails sur la reconnaissance moléculaire du ganglioside GD2 au moyen du 3F8, un anticorps monoclonal anti-GD2 utilisé médicalement et qui peut induire l'apoptose de cellues cancereuses exprimant GD2. Comme point de départ pour le développement rationnel des ligands GD2 et des vaccins, nous avons établi un modèle contraignant. En nous appuyant sur l'information structurelle des interactions GD2-3F8, nous avons développé des petits ligands monomériques peptidiques liés au GD2. Des expériences RMN et ELISA ont démontré que les peptides se lient sélectivement au GD2 via un mécanisme d'ajustement induit. Par ailleurs, les ligands peptidiques GD2, dont le 3F8, deviennent médiateurs de fonctions biologiques similaires dans les essais cellulaires de l'activation des récepteurs NMDA via les kinases de la famille Src, les flux de calcium et cAMP. Ces derniers peuvent au moins expliquer certains des mécanismes associés avec la progression tumorale et la douleur, dans lesquels le GD2 jour un rôle prépondérant. Cependant, les ligands peptidiques GD2 actuels n'ont pas démontré les effets désirés au cours des traitements in vivo. C'est pourquoi nous nous sommes tournés vers le développement de nouveaux vaccins GD2 comme une approche thérapeutique. La nature rigide des oligosaccharides GD2, que nous avons découverte par le biais de notre étude structurale, devient une caractéristique parfaitement adaptée pour favoriser une réponse immunitaire structurellement convergente. Un nouveau dendrimère tetra-GD2 homogène a été conçu de manière à reproduire un radeau lipidique GD2 regroupé. L'immunisation des souris par le dendrimère tetra-GD2 a engendré une puissante réponse humorale anti-GD2. En l'absence d'un complément, les anticorps (sera ou mAbs) ainsi générés peuvent tuer les cellules exprimant le GD2 en culture. La croissance tumorale a été considérablement retardée in vivo dans les paradigmes thérapeutiques et prophylactiques. Notre stratégie de recherche pourrait ainsi être élargie pour inclure d'autres glycolipides pertinents sur le plan clinique.
Leprieur, Truet Stéphanie Birkle Stéphane. "Production et évaluation chez l'animal d'anticorps thérapeutiques anti-ganglioside GD2." [S.l.] : [s.n.], 2007. http://castore.univ-nantes.fr/castore/GetOAIRef?idDoc=16881.
Full textMARQUES, Maria Danielle Rodrigues. "Caracterização estrutural, microestrutural e magnética de amostras tipo Gd2-xHoxRu2O7." Universidade Federal de Pernambuco, 2010. https://repositorio.ufpe.br/handle/123456789/1439.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Materiais que apresentam estrutura tipo pirocloro tem sido objeto de estudos intensivos nos anos recentes. Estes materiais possuem fórmula geral A2B2O6O, onde A é uma terra rara e B é geralmente um metal de transição. Estudos anteriores mostraram que estes compostos têm muitas propriedades interessantes tais como condução iônica, condução elétrica, fluorescência, supercondutividade e atividade catalítica. O presente trabalho descreve os estudos realizados para a síntese e caracterização dos pirocloros Gd2−xHoxRu2O7, com x = 0,0 , 0,1 , 0,2 , 1,0 e 2,0 . As amostras foram preparadas pelo método de reação de estado sólido, onde quantidades dos óxidos Gd2O3, RuO2 e Ho2O3 foram pesados nas proporções estequiométricas, misturados, homogeneizados em ácido nítrico concentrado e submetidas a tratamento térmico. Em seguida, foram caracterizadas estruturalmente por difração de raios X e morfologicamente por microscopia eletrônica de varredura. Os difratogramas de raios X foram analisados pelo método de Rietveld, que possibilitou a identificação da estrutura e a determinação do parâmetro de rede. O refinamento indicou que as amostras cristalizam em uma rede cúbica de face centrada, onde o parâmetro de rede sofre uma contração com o aumento da dopagem, de acordo com a lei de Vegard. As micrografias obtidas por microscopia eletrônica de varredura revelaram uma morfologia com tamanhos de grãos mais uniformes e homogêneos. Esse resultado foi atribuído ao fato de se ter diluído os grãos em ácido nítrico antes de submetê-los ao tratamento térmico. Um estudo das propriedades magnéticas dos compostos foi realizado mediante medidas de susceptibilidade dc, onde o momento magnético foi obtido. A dependência da susceptibilidade com a temperatura apresentou um comportamento em acordo com a lei de Curie-Weiss no intervalo de 35 K a 300 K, para todas as amostras estudadas, Entretanto, dependendo da quantidade do dopante, foram observados desvios desse comportamento. Os resultados das diferentes caracterizações são discutidos em detalhes
Cavdarli, Sumeyye. "Deciphering biosynthesis mechanisms of O-acetylated GD2 in breast cancer." Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1S100.
Full textO-Acetylated GD2 (OAcGD2) ganglioside is neo-expressed in neuroectodermal derived tumors as neuroblastoma and breast cancer. This oncofetal marker is an essential target for immunotherapy. Dinutuximab (Unitixin TM), a therapeutic antibody targeting GD2 has recently obtained Food Drug Administration and European Medicines Agency approval for neuroblastoma treatment. Nevertheless, Dinutuximab causes toxicity due to the expression of GD2 on peripheral nerve fibers. In that way, targeting OAcGD2 seems more beneficial because of absence of this antigen in normal tissues. The activities of OGD2 Pharma Company, partner of this project, are focused on therapeutic antibody development against OAcGD2. OGD2 Pharma developed an antibody specifically targeting OAcGD2 with no cross reaction with GD2. Absent from the normal mammary gland, complex gangliosides especially GD2 and its O-acetylated form have been detected in breast cancer. This expression is correlated with poor patient outcome. The aim of this thesis project was to decipher the molecular mechanisms of OAcGD2 biosynthesis, expression and its role in breast cancer, in order to highlight the therapeutic and diagnostic value of targeting OAcGD2 in breast cancer
Fleurence, Julien. "Ciblage du GD2-O-acétylé par un anticorps monoclonal dans le glioblastome multiforme." Thesis, Nantes, 2017. http://www.theses.fr/2017NANT1007.
Full textGlioblastoma multiforme (GBM) is the most common and agressive primary brain tumors in adults. Despite the concomitant use of surgery with radiotherapy and chemotherapy, the prognosis of patients remains extremely low. The presence of cancer stem cells (CSC) promotes the maintenance of the tumor and then the tumor escape responsible for the relapse of the patients. Therefore it is necessary to identify new therapeutic targets to improve the management of these patients. In the past few decades, immunotherapy represents an important part of treating certain type of cancer. It uses the immune system to treat cancer. Here, we found that O-acetyl GD2 (OAcGD2) is expressed in surgically resected human glioblastoma tissue. In addition, we demonstrated that 8B6 monoclonal antibody specific for OAcGD2 could effectively inhibit glioblastoma cell proliferation in vitro and in vivo. Mostly, we found that OAcGD2 was expressed on the GBM stem cells. We also observed that mAb 8B6 promoted the elimination of GBM via a oncosis-like mechanism. Moreover, this mechanism of programmed cell death induced by anti-OAcGD2 mAbs, sensitizes GBM cells and CSCs to chemotherapy agents such as temolozomide (TMZ). Taken together, these results indicate that O-acetylated GD2 represents a novel antigen for immunotherapeutic-based treatment of high-grade gliomas, and that anti-OAcGD2 mAbs combined with TMZ could enhance therapeutic response in GBM
Seidel, Diana. "Mechanism and efficacy of a GD2-specific immunotherapy using NK cells." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17151.
Full textNeuroblastoma (NB) is a solid extracranial childhood malignancy of neuroectodermal origin. The Disialoganglioside GD2 is an established antigen for passive immunotherapy of NB. Cellular therapy of NB with natural killer (NK) cells is especially appealing because MHC class I expression is absent or low in most NB, rendering this tumor sensitive to NK cell recognition. Additionally, natural cytotoxicity of NK cells, mediated by interaction of activating NK cell receptors and their respective ligands on tumor cells, has been shown to play a role in lysis of NB cells. It is therefore tempting to assume that a combination of passive immunotherapy with GD2-specific antibodies and adoptive transfer of NK effector cells would result in an improved NB therapy. To achieve this goal an NK cell line expressing a GD2-specific chimeric antigen receptor (CAR) was engineered: NK-92-scFv(ch14.18)-zeta. This CAR consists of a GD2-specific scFv-fragment, which was generated from ch14.18, and the CD3ζ-chain as intracellular signal-transducing domain. Within this thesis, GD2-specificity of NK-92-scFv(ch14.18)-zeta as well as efficacy towards GD2-expressing NB cell lines, including relapse cell lines that exhibit partial or multidrug resistance were demonstrated. Blocking the interaction between the CAR and GD2 resulted in almost complete abrogation of NK-92-scFv(ch14.18)-zeta-mediated lysis of GD2-positive NB cell lines in vitro, indicating that this interaction is the main mechanism of activation of NK-92-scFv(ch14.18)-zeta. Importantly, repeated application of NK-92-scFv(ch14.18)-zeta in combination with IL-2 significantly decreased tumor growth and prolonged survival of mice in an aggressively growing drug-resistant xenograft NB mouse model. These findings suggest that GD2-specific NK-92 has potential for a future clinical application as NB-specific effector cells that would be ready on demand in a standardized quality.
Bahri, Meriem. "Anticorps thérapeutiques du marqueur gangliosidique tumoral GD2 O-acétylé : nouvelles stratégies d'optimisation." Thesis, Nantes, 2020. http://www.theses.fr/2020NANT1009.
Full textTherapeutic antibodies specific for tumor antigens improve the prognosis of cancer patients. Tumor cells, however, develop various escape mechanisms. The identification of these mechanisms allows different optimization strategies based on therapeutic combinations to achieve long term response in patients with cancer. We studied here some of these aspects in the context neuroblastoma and glioblastoma using O-acetylated GD2- specific monoclonal antibodies. We show that the pro-apoptotic activity of O-acetylated GD2- specific antibodies sensitizes tumor cells to chemotherapeutic agents, allowing thereby a more potent tumor control. Mostly, this mechanism also applies to glioma cancer stem cells, a tumor cell subset particularly resistant to cytotoxic agents which is involved in therapeutic failures and relapses. However, this therapeutic combination might not be able to provide long-term benefits because we show that it further induces the CD47 phagocytic checkpoint in tumor cells. This innate immune checkpoint inhibits the phagocytic activity induced by O-acetylated-specific antibodies against opsonized tumor cells. Yet, this tumor escape mechanism can be controlled by immunological checkpoint inhibitors. Together, we provided the proof of concept of tri-therapy approach to achieve long lasting response in patient with neuroblastoma
Vogel, Anna [Verfasser]. "Herstellung chimärer Antikörper gegen das Tumorantigen GD2 unter Verwendung einer transgenen Mauslinie / Anna Vogel." Köln : Deutsche Zentralbibliothek für Medizin, 2013. http://d-nb.info/1042336393/34.
Full textBooks on the topic "GD2"
Dick, Claésson, ed. GDH. Göteborg: Litterär gestaltning, Göteborgs universitet, 2010.
Find full textProceedings, of the Third International Symposium on the Gerasimov-Drell-Hearn Sum Rule and Its Extensions (. GDH 2004. Singapore: World Scientific Publishing, 2005.
Find full textHeun, Matthew Kuperus, Michael Carbajales-Dale, and Becky Roselius Haney. Beyond GDP. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12820-7.
Full textorner, Thomas K. Das Grab des Novalis: Dramatisierter Essay. Fragment von der Weltanschauung. Frankfurt a. M., Germany: Edition Büchergilde GmbH, 2007.
Find full textBook chapters on the topic "GD2"
Suski, W., and T. Palewski. "Gd2/3Cr2S4." In Pnictides and Chalcogenides II, 205–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/10713485_52.
Full textHolze, Rudolf. "Ionic conductance of Gd2(SO4)3." In Electrochemistry, 895. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_842.
Full textHartard, C., M. Jakisch, and K. Kunze. "Immunhistochemische Darstellung der Ganglioside GM1, GD2 und GD1b im peripheren Nerv." In Verhandlungen der Deutschen Gesellschaft für Neurologie, 949–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83771-5_221.
Full textMoon, P. K., and H. L. Tuller. "Fast ion conduction in the Gd2(ZrxTi1−x) 2O7 pyrochlore system." In NATO ASI Series, 307–12. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0509-5_14.
Full textDevanathan, R., and W. J. Weber. "Computational and Experimental Studies of the Radiation Response of Gd2 Ti2 O7 Pyrochlore." In Ceramic Transactions Series, 41–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118407950.ch5.
Full textReid, D. P., M. C. Stennett, and N. C. Hyatt. "Synthesis and Structures of Gd2(Zr2-xCex)O7: A Model Ceramic System for Plutonium Disposition." In Ceramic Transactions Series, 11–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470930991.ch2.
Full textGalik, Elizabeth, Shin Fukudo, Yukari Tanaka, Yori Gidron, Tavis S. Campbell, Jillian A. Johnson, Kristin A. Zernicke, et al. "GDS." In Encyclopedia of Behavioral Medicine, 835. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_100680.
Full textTimson, David J., Richard J. Reece, James B. Thoden, Hazel M. Holden, Andrea L. Utz, Beverly M. K. Biller, Eugen-Matthias Strehle, et al. "GDM." In Encyclopedia of Molecular Mechanisms of Disease, 692. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_8580.
Full textCharles, Steindel. "GDP." In Economic Indicators for Professionals, 11–50. 1 Edition. | New York : Routledge, 2018.: Routledge, 2018. http://dx.doi.org/10.4324/9780203712955-2.
Full textDavis, Adam L. "GDK." In Learning Groovy, 17–22. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-2117-4_4.
Full textConference papers on the topic "GD2"
Battula, Venkata Lokesh, Yuexi Shi, Kurt Evans, Rui-Yu Wang, Erika L. Speath, Rodrigo Jacamo, Rudy Guerra, et al. "Abstract LB-193: Ganglioside GD2 identifies cancer stem cells and inhibition of GD2 biosynthesis by targeting GD3 synthase exerts antitumor effects." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-lb-193.
Full textSpreckelmeyer, S., J. Rogasch, K. Schönbeck, N. Beindorff, HN Lode, J. Schulte, P. Hundsdörfer, and H. Amthauer. "A Novel Tracer for GD2-Positive Neuroblastoma." In NuklearMedizin 2019. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1683563.
Full textSAID, M. R., I. ABU-ALJARAYESH, and A. AL-SHARIF. "MAGNETIC AND STRUCTURAL PROPERTIES OF Gd2−xYxNi17." In Proceedings of the First Regional Conference. World Scientific Publishing Company, 2000. http://dx.doi.org/10.1142/9789812793676_0099.
Full textYaglioglu, Gul, Robinson Pino, Roger Dorsinville, J. Z. Liu, and Ming Yan. "Nonlinear optical response of Gd2@C80 thin films." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Manfred Eich and Mark G. Kuzyk. SPIE, 1999. http://dx.doi.org/10.1117/12.368294.
Full textLiang, X. F., Q. Y. Zhang, D. D. Chen, X. H. Ji, and J. W. Zhai. "Cooperative energy transfer in Gd2(MoO4)3:Tb,Yb nanophosphors." In 2008 2nd IEEE International Nanoelectronics Conference. IEEE, 2008. http://dx.doi.org/10.1109/inec.2008.4585447.
Full textErber, R., S. Kailayangiri, H. Hübner, M. Rübner, A. Hartmann, L. Häberle, J. Meyer, et al. "Disialogangliosids GD2 beim Mammakarzinom und dessen Einfluss auf die Prognose." In 94. Kongress der Bayerischen Gesellschaft für Geburtshilfe und Frauenheilkunde e. V. (BGGF). Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1713987.
Full textTarim, John, Rebecca S. Sowers, Sajida Piperdi, Chand Khanna, and Richard G. Gorlick. "Abstract 5332: Evaluation of GD2 expression in patients with osteosarcoma." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-5332.
Full textGaß, P., S. Kailayangiri, H. Huebner, M. Ruebner, A. Hartmann, L. Häberle, J. Meyer, et al. "Expression of disialoganglioside GD2 and prognosis in breast cancer subtypes." In Wissenschaftliche Abstracts zur 40. Jahrestagung der Deutschen Gesellschaft für Senologie e.V. (DGS) Interdisziplinär. Kommunikativ. Digital. Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1730159.
Full textNouso, Hiroshi, Hiroshi Tazawa, Terutaka Tanimoto, Morimichi Tani, Takanori Oyama, Hiroaki Sato, Kazuhiro Noma, et al. "Abstract 3831: Development of near-infrared photoimmunotherapy targeting GD2-positive neuroblastoma." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-3831.
Full textSujjitjoon, Jatuporn, La-ong Sri Atchaneeyasakul, Shih-Ting Tsao, Elias Sayour, Pa-thai Yenchitsomanus, and Lung-Ji Chang. "Abstract 3150: GD2-specific chimeric antigen receptor T cells targeting retinoblastoma." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3150.
Full textReports on the topic "GD2"
Cheung, Nai-Kong. Single Chain FV Constructs of Anti-Ganglioside GD2 Antibodies for Radioimaging and Radioimmunotherapy. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/900755.
Full textCheung, N. K. V., and S. M. Larson. Single chain FV constructs of anti-ganglioside GD2 antibodies for radioimaging and radioimmumotheraphy. Progress report. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10105853.
Full textArchambault, Mark, Douglas Talley, and Oshin Peroomian. Computational Analysis of a Single-Element, Shear-Coaxial, GH2/GO2 Engine. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada410952.
Full textArchambault, Mark, Richard Cohn, Doug Talley, and Oshin Peroomian. Computational Analysis of a Single-Element, Shear-Coaxial, GH2/GO2 Engine. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada412802.
Full textBobkov, Konstantin. Scanning the Fluxless G_2 Landscape. Office of Scientific and Technical Information (OSTI), July 2009. http://dx.doi.org/10.2172/958575.
Full textClark, Hunter, Maxim Pinkovskiy, and Xavier Sala-i-Martin. China's GDP Growth May be Understated. Cambridge, MA: National Bureau of Economic Research, April 2017. http://dx.doi.org/10.3386/w23323.
Full textHerman, D., W. Summers, and E. Danko. FINAL REPORT ON GDE GAP CELL. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/964999.
Full textTalbot, C. Conover, Jr. GDB - Human Genome Database final report. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/771354.
Full textBhandari, Pranjul, and Jeffrey Frankel. Nominal GDP Targeting for Developing Countries. Cambridge, MA: National Bureau of Economic Research, January 2015. http://dx.doi.org/10.3386/w20898.
Full textSusnjak, Teo, and Christoph Schumacher. Nowcasting: Towards Real-time GDP Prediction. Knowledge Exchange Hub, December 2018. http://dx.doi.org/10.33217/keh/gdplive/001/12.2018.
Full text