Academic literature on the topic 'Gene expression programming (GEP) and the artificial neural networks (ANNs)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gene expression programming (GEP) and the artificial neural networks (ANNs).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Gene expression programming (GEP) and the artificial neural networks (ANNs)"

1

Jumaa, Ghazi Bahroz, and Ali Ramadhan Yousif. "Predicting Shear Capacity of FRP-Reinforced Concrete Beams without Stirrups by Artificial Neural Networks, Gene Expression Programming, and Regression Analysis." Advances in Civil Engineering 2018 (November 15, 2018): 1–16. http://dx.doi.org/10.1155/2018/5157824.

Full text
Abstract:
The shear strength prediction of fiber-reinforced polymer- (FRP-) reinforced concrete beams is one of the most complicated issues in structural engineering applications. Developing accurate and reliable prediction models is necessary and cost saving. This paper proposes three new prediction models, utilizing artificial neural networks (ANNs) and gene expression programming (GEP), as a recently developed artificial intelligent techniques, and nonlinear regression analysis (NLR) as a conventional technique. For this purpose, a large database including 269 shear test results of FRP-reinforced concrete members was collected from the literature. The performance of the proposed models is compared with a large number of available codes and previously proposed equations. The comparative statistical analysis confirmed that the ANNs, GEP, and NLR models, in sequence, showed excellent performance, great efficiency, and high level of accuracy over all other existing models. The ANNs model, and to a lower level the GEP model, showed the superiority in accuracy and efficiency, while the NLR model showed that it is simple, rational, and yet accurate. Additionally, the parametric study indicated that the ANNs model defines accurately the interaction of all parameters on shear capacity prediction and have a great ability to predict the actual response of each parameter in spite of its complexity and fluctuation nature.
APA, Harvard, Vancouver, ISO, and other styles
2

Khan, Mujahid, H. Md Azamathulla, and M. Tufail. "Gene-expression programming to predict pier scour depth using laboratory data." Journal of Hydroinformatics 14, no. 3 (November 8, 2011): 628–45. http://dx.doi.org/10.2166/hydro.2011.008.

Full text
Abstract:
Prediction of bridge pier scour depth is essential for safe and economical bridge design. Keeping in mind the complex nature of bridge scour phenomenon, there is a need to properly address the methods and techniques used to predict bridge pier scour. Up to the present, extensive research has been carried out for pier scour depth prediction. Different modeling techniques have been applied to achieve better prediction. This paper presents a new soft computing technique called gene-expression programming (GEP) for pier scour depth prediction using laboratory data. A functional relationship has been established using GEP and its performance is compared with other artificial intelligence (AI)-based techniques such as artificial neural networks (ANNs) and conventional regression-based techniques. Laboratory data containing 529 datasets was divided into calibration and validation sets. The performance of GEP was found to be highly satisfactory and encouraging when compared to regression equations but was slightly inferior to ANN. This slightly inferior performance of GEP compared to ANN is offset by its capability to provide compact and explicit mathematical expression for bridge scour. This advantage of GEP over ANN is the main motivation for this work. The resulting GEP models will add to the existing literature of AI-based inductive models for bridge scour modeling.
APA, Harvard, Vancouver, ISO, and other styles
3

Farooq, Furqan, Muhammad Nasir Amin, Kaffayatullah Khan, Muhammad Rehan Sadiq, Muhammad Faisal Faisal Javed, Fahid Aslam, and Rayed Alyousef. "A Comparative Study of Random Forest and Genetic Engineering Programming for the Prediction of Compressive Strength of High Strength Concrete (HSC)." Applied Sciences 10, no. 20 (October 20, 2020): 7330. http://dx.doi.org/10.3390/app10207330.

Full text
Abstract:
Supervised machine learning and its algorithm is an emerging trend for the prediction of mechanical properties of concrete. This study uses an ensemble random forest (RF) and gene expression programming (GEP) algorithm for the compressive strength prediction of high strength concrete. The parameters include cement content, coarse aggregate to fine aggregate ratio, water, and superplasticizer. Moreover, statistical analyses like MAE, RSE, and RRMSE are used to evaluate the performance of models. The RF ensemble model outbursts in performance as it uses a weak base learner decision tree and gives an adamant determination of coefficient R2 = 0.96 with fewer errors. The GEP algorithm depicts a good response in between actual values and prediction values with an empirical relation. An external statistical check is also applied on RF and GEP models to validate the variables with data points. Artificial neural networks (ANNs) and decision tree (DT) are also used on a given data sample and comparison is made with the aforementioned models. Permutation features using python are done on the variables to give an influential parameter. The machine learning algorithm reveals a strong correlation between targets and predicts with less statistical measures showing the accuracy of the entire model.
APA, Harvard, Vancouver, ISO, and other styles
4

Emadi, Alireza, Sarvin Zamanzad-Ghavidel, Reza Sobhani, and Ali Rashid-Niaghi. "Multivariate modeling of groundwater quality using hybrid evolutionary soft-computing methods in various climatic condition areas of Iran." Journal of Water Supply: Research and Technology-Aqua 70, no. 3 (March 10, 2021): 328–41. http://dx.doi.org/10.2166/aqua.2021.150.

Full text
Abstract:
Abstract In the current study, several soft-computing methods including artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), gene expression programming (GEP), and hybrid wavelet theory-GEP (WGEP) are used for modeling the groundwater's electrical conductivity (EC) variable. Hence, the groundwater samples from three sources (deep well, semi-deep well, and aqueducts), located in six basins of Iran (Urmia Lake (UL), Sefid-rud (SR), Karkheh (K), Kavir-Markazi (KM), Gavkhouni (G), and Hamun-e Jaz Murian (HJM)) with various climate conditions, were collected during 2004–2018. The results of the WGEP model with data de-noising showed the best performance in estimating the EC variable, considering all types of groundwater resources with various climatic conditions. The Root Mean Squared Error (RMSE) values of the WGEP model were varied from 162.068 to 348.911, 73.802 to 171.376, 29.465 to 351.489, 118.149 to 311.798, 217.667 to 430.730, and 76.253 to 162.992 μScm−1 in the areas of UL, SR, K, KM, G, and HJM basins. The WGEP model's performance (R-values) for deep wells, semi-deep wells, and aqueducts of the areas of the KM basin associated with the arid steppe cold (Bsk) dominant climate classification was the best. Also, the WGEP's extracted mathematical equations could be used for EC estimating in other basins.
APA, Harvard, Vancouver, ISO, and other styles
5

SBAIH, Razan, Rana IMAM, Mohammad ALHIARY, and Bara’ AL-MISTAREHI. "DEVELOPING PREDICTION MODELS FOR SLOPE VARIANCE FROM THE INTERNATIONAL ROUGHNESS INDEX." Transport Problems 17, no. 2 (June 30, 2022): 93–106. http://dx.doi.org/10.20858/tp.2022.17.2.08.

Full text
Abstract:
Road roughness is considered a primary indicator of pavement condition and serviceability, and the performance of paved roads is linked to road roughness. The focus of this study is to develop a relationship between two important roughness indicators, namely the international roughness index (IRI) and slope variance (SV), based on actual road roughness data to achieve a suitable correlation between these two indices using artificial neural networks (ANNa) and gene expression programming (GEP) techniques. Different study areas were selected to develop the prediction model. The first study area is the Desert Highway in Jordan, while the three remaining study areas are located in the US. A total of 533 data sets were used in this study to develop a model to predict the IRI from the SV. The GeneXproTools 5 software package was used to build the GEP model, while MATLAB 2019 was employed to develop the ANN model. The results showed that the GEP and ANN models outperformed all other previous models. The GEP-Based model showed a better performance and more precise results than the ANN model according to the coefficient of determination (R2).
APA, Harvard, Vancouver, ISO, and other styles
6

Samadianfard, Saeed, Honeyeh Kazemi, Ozgur Kisi, and Wen-Cheng Liu. "Water temperature prediction in a subtropical subalpine lake using soft computing techniques." Earth Sciences Research Journal 20, no. 2 (July 1, 2016): 1. http://dx.doi.org/10.15446/esrj.v20n2.43199.

Full text
Abstract:
Lake water temperature is one of the key parameters in determining the ecological conditions within a lake, as it influences both chemical and biological processes. Therefore, accurate prediction of water temperature is crucially important for lake management. In this paper, the performance of soft computing techniques including gene expression programming (GEP), which is a variant of genetic programming (GP), adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANNs) to predict hourly water temperature at a buoy station in the Yuan-Yang Lake (YYL) in north-central Taiwan at various measured depths was evaluated. To evaluate the performance of the soft computing techniques, three different statistical indicators were used, including the root mean squared error (RMSE), the mean absolute error (MAE), and the coefficient of correlation (R). Results showed that the GEP had the best performances among other studied methods in the prediction of hourly water temperature at 0, 2 and 3 meter depths below water surface, but there was a different trend in the 1 meter depth below water surface. In this depth, the ANN had better accuracy than the GEP and ANFIS. Despite the error (RMSE value) is smaller in ANN than GEP, there is an upper bound in scatter plot of ANN that imposes a constant value, which is not suitable for predictive purposes. As a conclusion, results from the current study demonstrated that GEP provided moderately reasonable trends for the prediction of hourly water temperature in different depths. ResumenLa temperatura del agua es uno de los parámetros básicos para determinar las condiciones ecológicas de un lago, ya que está influenciada por procesos químicos y biológicos. Además, la exactitud en la predicción de la temperatura del agua es esencial para el manejo del lago. En este artículo se evalúa el desempeño de técnicas de soft computing como la Programación de Expresiones de Genes (PEG), que es una variante de la Programación Genética (PG), el Sistema Neuro-fuzzy de Inferencia Adaptativa (Anfis, en inglés) y las Redes Neuronales Artificiales (RNA) para predecir la temperatura del agua en diferentes niveles de una estación flotante del lago Yuan-Yang (YYL), en el centro-norte de Taiwán. Se utilizaron tres indicadores estadísticos, el Error Cuadrático Medio (ECM), el Error Absoluto Medio (MAE, en inglés) y el Coeficiente de Correlación (R) para evaluar el desempeño de las técnicas de computación. Los resultados muestran que la PEG es más exacta en la predicción de la temperatura del agua entre 0,2 y 3 metros de profundidad. Sin embargo, se evidencia una tendencia diferente a partir del metro de profundidad. A esta distancia de la superficie, las RNA son más exactas que la PEG y el Anfis. Los resultados de este estudio probaron claramente la usabilidad del PEG y las RNA en la predicción de la temperatura del agua a diferentes profundidades.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Xiao Yong. "Evaluation Compressive Strength of Cement-Limestone-Slag Ternary Blended Concrete Using Artificial Neural Networks (ANN) and Gene Expression Programming (GEP)." Key Engineering Materials 837 (April 2020): 119–24. http://dx.doi.org/10.4028/www.scientific.net/kem.837.119.

Full text
Abstract:
Limestone and slag blended concrete is an innovative concrete which belongs to the family of limestone calcined clay cement (LC3) concrete. Strength is an important property of structural concrete. This study shows artificial neural networks (ANN) and gene expression programming (GEP) models for predicting strength development of limestone and slag blended concrete. ANN model consists of an input layer, a hidden layer, and output layer. GEP model consists of the sum of three expression trees. The input parameters of ANN and GEP models are mixtures and ages. The output parameter is a strength. The correlation coefficients of ANN and GEP model are 0.99 and 0.98, respectively. Both ANN and GEP model can produce prediction results of the strength of ternary blended concrete reliably.
APA, Harvard, Vancouver, ISO, and other styles
8

Shiri, Jalal, Sungwon Kim, and Ozgur Kisi. "Estimation of daily dew point temperature using genetic programming and neural networks approaches." Hydrology Research 45, no. 2 (August 17, 2013): 165–81. http://dx.doi.org/10.2166/nh.2013.229.

Full text
Abstract:
The present study investigates the ability of two different artificial neural network (ANN) models and gene expression programming (GEP) technique for estimating daily dew point temperature by using recorded weather data. The weather data used consist of 8 years of daily records of air temperature, wind speed, relative humidity, atmospheric pressure, incoming solar radiation and dew point temperature from two weather stations (Seoul and Incheon, in the Republic of Korea). Two different data management scenarios are applied in this paper. In the first scenario, weather data obtained from each station are used to estimate Tdew at the same station (at-station approach). In the second scenario, the ANN and GEP models are used for estimating dew point temperature of each station by using the data of the other station (cross-station application), through the optimal input combinations of the first scenario. Comparison of the results reveals that the GEP model surpasses ANN in estimating daily dew point temperature values.
APA, Harvard, Vancouver, ISO, and other styles
9

Ashteyat, Ahmed, Yasmeen T. Obaidat, Yasmin Z. Murad, and Rami Haddad. "COMPRESSIVE STRENGTH PREDICTION OF LIGHTWEIGHT SHORT COLUMNS AT ELEVATED TEMPERATURE USING GENE EXPRESSION PROGRAMING AND ARTIFICIAL NEURAL NETWORK." JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 26, no. 2 (February 10, 2020): 189–99. http://dx.doi.org/10.3846/jcem.2020.11931.

Full text
Abstract:
The experimental behavior of reinforced concrete elements exposed to fire is limited in the literature. Although there are few experimental programs that investigate the behavior of lightweight short columns, there is still a lack of formulation that can accurately predict their ultimate load at elevated temperature. Thus, new equations are proposed in this study to predict the compressive strength of the lightweight short column using Gene Expression Programming (GEP) and Artificial neural networks (ANN). A total of 83 data set is used to establish GEP and ANN models where 70% of the data are used for training and 30% of the data are used for validation and testing. The predicting variables are temperature, concrete compressive strength, steel yield strength, and spacing between stirrups. The developed models are compared with the ACI equation for short columns. The results have shown that the GEP and ANN models have a strong potential to predict the compressive strength of the lightweight short column. The predicted compressive strengths of short lightweight columns using the GEP and ANN models are closer to the experimental results than that obtained using the ACI equations.
APA, Harvard, Vancouver, ISO, and other styles
10

Ilie, Iulia, Peter Dittrich, Nuno Carvalhais, Martin Jung, Andreas Heinemeyer, Mirco Migliavacca, James I. L. Morison, et al. "Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming." Geoscientific Model Development 10, no. 9 (September 25, 2017): 3519–45. http://dx.doi.org/10.5194/gmd-10-3519-2017.

Full text
Abstract:
Abstract. Accurate model representation of land–atmosphere carbon fluxes is essential for climate projections. However, the exact responses of carbon cycle processes to climatic drivers often remain uncertain. Presently, knowledge derived from experiments, complemented by a steadily evolving body of mechanistic theory, provides the main basis for developing such models. The strongly increasing availability of measurements may facilitate new ways of identifying suitable model structures using machine learning. Here, we explore the potential of gene expression programming (GEP) to derive relevant model formulations based solely on the signals present in data by automatically applying various mathematical transformations to potential predictors and repeatedly evolving the resulting model structures. In contrast to most other machine learning regression techniques, the GEP approach generates readable models that allow for prediction and possibly for interpretation. Our study is based on two cases: artificially generated data and real observations. Simulations based on artificial data show that GEP is successful in identifying prescribed functions, with the prediction capacity of the models comparable to four state-of-the-art machine learning methods (random forests, support vector machines, artificial neural networks, and kernel ridge regressions). Based on real observations we explore the responses of the different components of terrestrial respiration at an oak forest in south-eastern England. We find that the GEP-retrieved models are often better in prediction than some established respiration models. Based on their structures, we find previously unconsidered exponential dependencies of respiration on seasonal ecosystem carbon assimilation and water dynamics. We noticed that the GEP models are only partly portable across respiration components, the identification of a general terrestrial respiration model possibly prevented by equifinality issues. Overall, GEP is a promising tool for uncovering new model structures for terrestrial ecology in the data-rich era, complementing more traditional modelling approaches.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Gene expression programming (GEP) and the artificial neural networks (ANNs)"

1

Alkroosh, Iyad Salim Jabor. "Modelling pile capacity and load-settlement behaviour of piles embedded in sand & mixed soils using artificial intelligence." Thesis, Curtin University, 2011. http://hdl.handle.net/20.500.11937/351.

Full text
Abstract:
This thesis presents the development of numerical models which are intended to be used to predict the bearing capacity and the load-settlement behaviour of pile foundations embedded in sand and mixed soils. Two artificial intelligence techniques, the gene expression programming (GEP) and the artificial neural networks (ANNs), are used to develop the models. The GEP is a developed version of genetic programming (GP). Initially, the GEP is utilized to model the bearing capacity of the bored piles, concrete driven piles and steel driven piles. The use of the GEP is extended to model the load-settlement behaviour of the piles but achieved limited success. Alternatively, the ANNs have been employed to model the load-settlement behaviour of the piles.The GEP and the ANNs are numerical modelling techniques that depend on input data to determine the structure of the model and its unknown parameters. The GEP tries to mimic the natural evolution of organisms and the ANNs tries to imitate the functions of human brain and nerve system. The two techniques have been applied in the field of geotechnical engineering and found successful in solving many problems.The data used for developing the GEP and ANN models are collected from the literature and comprise a total of 50 bored pile load tests and 58 driven pile load tests (28 concrete pile load tests and 30 steel pile load tests) as well as CPT data. The bored piles have different sizes and round shapes, with diameters ranging from 320 to 1800 mm and lengths from 6 to 27 m. The driven piles also have different sizes and shapes (i.e. circular, square and hexagonal), with diameters ranging from 250 to 660 mm and lengths from 8 to 36 m. All the information of case records in the data source is reviewed to ensure the reliability of used data.The variables that are believed to have significant effect on the bearing capacity of pile foundations are considered. They include pile diameter, embedded length, weighted average cone point resistance within tip influence zone and weighted average cone point resistance and weighted average sleeve friction along shaft.The sleeve friction values are not available in the bored piles data, so the weighted average sleeve friction along shaft is excluded from bored piles models. The models output is the pile capacity (interpreted failure load).Additional input variables are included for modelling the load-settlement behaviour of piles. They include settlement, settlement increment and current state of loadsettlement. The output is the next state of load-settlement.The data are randomly divided into two statistically consistent sets, training set for model calibration and an independent validation set for model performance verification.The predictive ability of the developed GEP model is examined via comparing the performance of the model in training and validation sets. Two performance measures are used: the mean and the coefficient of correlation. The performance of the model was also verified through conducting sensitivity analysis which aimed to determine the response of the model to the variations in the values of each input variables providing the other input variables are constant. The accuracy of the GEP model was evaluated further by comparing its performance with number of currently adopted traditional CPT-based methods. For this purpose, several ranking criteria are used and whichever method scores best is given rank 1. The GEP models, for bored and driven piles, have shown good performance in training and validation sets with high coefficient of correlation between measured and predicted values and low mean values. The results of sensitivity analysis have revealed an incremental relationship between each of the input variables and the output, pile capacity. This agrees with what is available in the geotechnical knowledge and experimental data. The results of comparison with CPT-based methods have shown that the GEP models perform well.The GEP technique is also utilized to simulate the load-settlement behaviour of the piles. Several attempts have been carried out using different input settings. The results of the favoured attempt have shown that the GEP have achieved limited success in predicting the load-settlement behaviour of the piles. Alternatively, the ANN is considered and the sequential neural network is used for modelling the load-settlement behaviour of the piles.This type of network can account for the load-settlement interdependency and has the option to feedback internally the predicted output of the current state of loadsettlement to be used as input for the next state of load-settlement.Three ANN models are developed: a model for bored piles and two models for driven piles (a model for steel and a model for concrete piles). The predictive ability of the models is verified by comparing their predictions in training and validation sets with experimental data. Statistical measures including the coefficient of correlation and the mean are used to assess the performance of the ANN models in training and validation sets. The results have revealed that the predicted load-settlement curves by ANN models are in agreement with experimental data for both of training and validation sets. The results also indicate that the ANN models have achieved high coefficient of correlation and low mean values. This indicates that the ANN models can predict the load-settlement of the piles accurately.To examine the performance of the developed ANN models further, the prediction of the models in the validation set are compared with number of load-transfer methods. The comparison is carried out first visually by comparing the load-settlement curve obtained by the ANN models and the load transfer methods with experimental curves. Secondly, is numerically by calculating the coefficient of correlation and the mean absolute percentage error between the experimental data and the compared methods for each case record. The visual comparison has shown that the ANN models are in better agreement with the experimental data than the load transfer methods. The numerical comparison also has shown that the ANN models scored the highest coefficient of correlation and lowest mean absolute percentage error for all compared case records.The developed ANN models are coded into a simple and easily executable computer program.The output of this study is very useful for designers and also for researchers who wish to apply this methodology on other problems in Geotechnical Engineering. Moreover, the result of this study can be considered applicable worldwide because its input data is collected from different regions.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Gene expression programming (GEP) and the artificial neural networks (ANNs)"

1

Chen, Yuehui, Peng Wu, and Qiang Wu. "Foreign Exchange Rate Forecasting Using Higher Order Flexible Neural Tree." In Artificial Higher Order Neural Networks for Economics and Business, 94–112. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-59904-897-0.ch005.

Full text
Abstract:
Forecasting exchange rates is an important financial problem that is receiving increasing attention especially because of its difficulty and practical applications. In this chapter, we apply Higher Order Flexible Neural Trees (HOFNTs), which are capable of designing flexible Artificial Neural Network (ANN) architectures automatically, to forecast the foreign exchange rates. To demonstrate the efficiency of HOFNTs, we consider three different datasets in our forecast performance analysis. The data sets used are daily foreign exchange rates obtained from the Pacific Exchange Rate Service. The data comprises of the US dollar exchange rate against Euro, Great Britain Pound (GBP) and Japanese Yen (JPY). Under the HOFNT framework, we consider the Gene Expression Programming (GEP) approach and the Grammar Guided Genetic Programming (GGGP) approach to evolve the structure of HOFNT. The particle swarm optimization algorithm is employed to optimize the free parameters of the two different HOFNT models. This chapter briefly explains how the two different learning paradigms could be formulated using various methods and then investigates whether they can provide a reliable forecast model for foreign exchange rates. Simulation results showed the effectiveness of the proposed methods.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography