To see the other types of publications on this topic, follow the link: Gene ontology.

Journal articles on the topic 'Gene ontology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Gene ontology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Williams, Jennifer, and William Andersen. "Bringing Ontology to the Gene Ontology." Comparative and Functional Genomics 4, no. 1 (2003): 90–93. http://dx.doi.org/10.1002/cfg.253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Al-Mubaid, Hisham. "Gene multifunctionality scoring using gene ontology." Journal of Bioinformatics and Computational Biology 16, no. 05 (2018): 1840018. http://dx.doi.org/10.1142/s0219720018400188.

Full text
Abstract:
Multifunctional genes are important genes because of their essential roles in human cells. Studying and analyzing multifunctional genes can help understand disease mechanisms and drug discovery. We propose a computational method for scoring gene multifunctionality based on functional annotations of the target gene from the Gene Ontology. The method is based on identifying pairs of GO annotations that represent semantically different biological functions and any gene annotated with two annotations from one pair is considered multifunctional. The proposed method can be employed to identify multifunctional genes in the entire human genome using solely the GO annotations. We evaluated the proposed method in scoring multifunctionality of all human genes using four criteria: gene-disease associations; protein–protein interactions; gene studies with PubMed publications; and published known multifunctional gene sets. The evaluation results confirm the validity and reliability of the proposed method for identifying multifunctional human genes. The results across all four evaluation criteria were statistically significant in determining multifunctionality. For example, the method confirmed that multifunctional genes tend to be associated with diseases more than other genes, with significance [Formula: see text]. Moreover, consistent with all previous studies, proteins encoded by multifunctional genes, based on our method, are involved in protein–protein interactions significantly more ([Formula: see text]) than other proteins.
APA, Harvard, Vancouver, ISO, and other styles
3

Akhmad, Dinar Munggaran. "PENGUKURAN KEMIRIPAN SEMANTIK BERBASIS GRAPH PADA GENE ONTOLOGY." Computatio : Journal of Computer Science and Information Systems 4, no. 2 (2020): 102. http://dx.doi.org/10.24912/computatio.v4i2.9678.

Full text
Abstract:
Ontologi mendukung suatu sistem Knowledge Management dan membuka kemungkinan untuk berpindah dari pandangan berorientasi dokumen ke arah pengetahuan yang saling terkait dan dapat dimanfaatkan kembali secara lebih fleksibel dan dinamis. Salah satu dokumen ontology yang sangat berperan dalam dunia bioinformatika adalah Gene Ontology. Gene Ontology dibangun berbasis Graph, memuat banyak term/istilah tentang Gen pada makhluk hidup. Gen dapat melakukan mutasi dan hal ini menyebabkan resistensi terhadap segala jenis obat. Gen yang diketahui menyebabkan penyakit malaria resisten terhadap obat antimalarial yaitu gen dhfr dan dhps. Penelusuran kemungkinan gen lain yang resisten dapat dilakukan dengan mengetahui sifat-sifat gen yang berhubungan dengan resistensi tersebut. Salah satu cara adalah dengan menghitung kemiripannya secara semantik melalui pendekatan path length metode Wang. Hasil penelitian menunjukkan bahwa rentang nilai kemiripan kedua gen tersebut adalah 0 – 1. Nilai kemiripan diuji pada salah satu komponen dalam Gene Ontology yaitu pada Molecular Function dengan nilai kemiripan sebesar 0.35 karena terhubung oleh 2 node yang sama yaitu catalytic activity. Dengan demikian penelitian ini diharapkan dapat mendeteksi gen lain yang terindikasi resistensi sebelum penelitian lebih lanjut secara molekuler.
APA, Harvard, Vancouver, ISO, and other styles
4

Stevenson, Dennis, and Cecilia Zumajo-Cardona. "From Plant Ontology to Gene Ontology and back." Current Plant Biology 14 (September 2018): 66–69. http://dx.doi.org/10.1016/j.cpb.2018.09.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, Liang. "GOBO: a Sub-Ontology API for Gene Ontology." IEIT Journal of Adaptive and Dynamic Computing 2011, no. 1 (2011): 29. http://dx.doi.org/10.5813/www.ieit-web.org/ijadc/2011.1.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lovering, R., P. Scambler, M. Hubank, R. Apweiler, and P. J. Talmud. "CARDIOVASCULAR GENE ONTOLOGY INITIATIVE." Atherosclerosis Supplements 9, no. 1 (2008): 101. http://dx.doi.org/10.1016/s1567-5688(08)70404-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Joslyn, C. A., S. M. Mniszewski, A. Fulmer, and G. Heaton. "The Gene Ontology Categorizer." Bioinformatics 20, Suppl 1 (2004): i169—i177. http://dx.doi.org/10.1093/bioinformatics/bth921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Camon, E. "The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology." Nucleic Acids Research 32, no. 90001 (2004): 262D—266. http://dx.doi.org/10.1093/nar/gkh021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peng, Jiajie, Tao Wang, Jixuan Wang, Yadong Wang, and Jin Chen. "Extending gene ontology with gene association networks." Bioinformatics 32, no. 8 (2015): 1185–94. http://dx.doi.org/10.1093/bioinformatics/btv712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xie, Hanqing. "Gene Ontology-Facilitated Genome Analysis." Current Genomics 4, no. 7 (2003): 569–74. http://dx.doi.org/10.2174/1389202033490196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Denny, Paul, Marc Feuermann, David P. Hill, Ruth C. Lovering, Helene Plun-Favreau, and Paola Roncaglia. "Exploring autophagy with Gene Ontology." Autophagy 14, no. 3 (2018): 419–36. http://dx.doi.org/10.1080/15548627.2017.1415189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lovering, Ruth C., Emily C. Dimmer, and Philippa J. Talmud. "Improvements to cardiovascular Gene Ontology." Atherosclerosis 205, no. 1 (2009): 9–14. http://dx.doi.org/10.1016/j.atherosclerosis.2008.10.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Geifman, Nophar, Alon Monsonego, and Eitan Rubin. "The Neural/Immune Gene Ontology: clipping the Gene Ontology for neurological and immunological systems." BMC Bioinformatics 11, no. 1 (2010): 458. http://dx.doi.org/10.1186/1471-2105-11-458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Fruzangohar, Mario, Esmaeil Ebrahimie, Abiodun D. Ogunniyi, Layla K. Mahdi, James C. Paton, and David L. Adelson. "Comparative GO: A Web Application for Comparative Gene Ontology and Gene Ontology-Based Gene Selection in Bacteria." PLoS ONE 8, no. 3 (2013): e58759. http://dx.doi.org/10.1371/journal.pone.0058759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Agapito, Giuseppe, Marianna Milano, Pietro Hiram Guzzi, and Mario Cannataro. "Extracting Cross-Ontology Weighted Association Rules from Gene Ontology Annotations." IEEE/ACM Transactions on Computational Biology and Bioinformatics 13, no. 2 (2016): 197–208. http://dx.doi.org/10.1109/tcbb.2015.2462348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Couto, Francisco M., and Mário J. Silva. "Disjunctive shared information between ontology concepts: application to Gene Ontology." Journal of Biomedical Semantics 2, no. 1 (2011): 5. http://dx.doi.org/10.1186/2041-1480-2-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shen, Ying, and Lin Zhang. "Gene function prediction with knowledge from gene ontology." International Journal of Data Mining and Bioinformatics 13, no. 1 (2015): 50. http://dx.doi.org/10.1504/ijdmb.2015.070840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Adryan, B., and R. Schuh. "Gene-Ontology-based clustering of gene expression data." Bioinformatics 20, no. 16 (2004): 2851–52. http://dx.doi.org/10.1093/bioinformatics/bth289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rue-Albrecht, Kévin, Paul A. McGettigan, Belinda Hernández, et al. "GOexpress: an R/Bioconductor package for the identification and visualisation of robust gene ontology signatures through supervised learning of gene expression data." BMC Bioinformatics 17, no. 1 (2016): 126. https://doi.org/10.1186/s12859-016-0971-3.

Full text
Abstract:
<strong>Background: </strong>Identification of gene expression profiles that differentiate experimental groups is critical for discovery and analysis of key molecular pathways and also for selection of robust diagnostic or prognostic biomarkers. While integration of differential expression statistics has been used to refine gene set enrichment analyses, such approaches are typically limited to single gene lists resulting from simple two-group comparisons or time-series analyses. In contrast, functional class scoring and machine learning approaches provide powerful alternative methods to leverage molecular measurements for pathway analyses, and to compare continuous and multi-level categorical factors.<strong>Results: </strong>We introduce GOexpress, a software package for scoring and summarising the capacity of gene ontology features to simultaneously classify samples from multiple experimental groups. GOexpress integrates normalised gene expression data (e.g., from microarray and RNA-seq experiments) and phenotypic information of individual samples with gene ontology annotations to derive a ranking of genes and gene ontology terms using a supervised learning approach. The default random forest algorithm allows interactions between all experimental factors, and competitive scoring of expressed genes to evaluate their relative importance in classifying predefined groups of samples.<strong>Conclusions: </strong>GOexpress enables rapid identification and visualisation of ontology-related gene panels that robustly classify groups of samples and supports both categorical (e.g., infection status, treatment) and continuous (e.g., time-series, drug concentrations) experimental factors. The use of standard Bioconductor extension packages and publicly available gene ontology annotations facilitates straightforward integration of GOexpress within existing computational biology pipelines.
APA, Harvard, Vancouver, ISO, and other styles
20

Fruzangohar, Mario, Esmaeil Ebrahimie, Abiodun D. Ogunniyi, Layla K. Mahdi, James C. Paton, and David L. Adelson. "Correction: Comparative GO: A Web Application for Comparative Gene Ontology and Gene Ontology-Based Gene Selection in Bacteria." PLOS ONE 10, no. 4 (2015): e0125537. http://dx.doi.org/10.1371/journal.pone.0125537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ebrahimie, Esmaeil, Mario Fruzangohar, Seyyed Hani Moussavi Nik, and Morgan Newman. "Gene Ontology-Based Analysis of Zebrafish Omics Data Using the Web Tool Comparative Gene Ontology." Zebrafish 14, no. 5 (2017): 492–94. http://dx.doi.org/10.1089/zeb.2016.1290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hu, Yang, Wenyang Zhou, Jun Ren, et al. "Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology." BioMed Research International 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/4130861.

Full text
Abstract:
Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401,p=2.2e-16) and gene frequency of individual term (Pearson correlation = 0.1298,p=3.686e-14) in GeneRIFs and GOA shows our annotation resource is very reliable.
APA, Harvard, Vancouver, ISO, and other styles
23

T, Mecthaline Lithiya. "Prediction of Micro-RNA Diseases using Cross Ontology and Gene Ontology." International Journal for Research in Applied Science and Engineering Technology 6, no. 3 (2018): 1164–67. http://dx.doi.org/10.22214/ijraset.2018.3181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Dameron, Olivier, Charles Bettembourg, and Nolwenn Le Meur. "Measuring the Evolution of Ontology Complexity: The Gene Ontology Case Study." PLoS ONE 8, no. 10 (2013): e75993. http://dx.doi.org/10.1371/journal.pone.0075993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Manda, Prashanti, Seval Ozkan, Hui Wang, Fiona McCarthy, and Susan M. Bridges. "Cross-Ontology Multi-level Association Rule Mining in the Gene Ontology." PLoS ONE 7, no. 10 (2012): e47411. http://dx.doi.org/10.1371/journal.pone.0047411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sant, David W., Michael Sinclair, Christopher J. Mungall, et al. "Sequence Ontology terminology for gene regulation." Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1864, no. 10 (2021): 194745. http://dx.doi.org/10.1016/j.bbagrm.2021.194745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Pal, Debnath. "On gene ontology and function annotation." Bioinformation 1, no. 1 (2006): 97–98. http://dx.doi.org/10.6026/97320630001097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Alam-Faruque, Yasmin, Emily C. Dimmer, Rachael P. Huntley, Claire O’Donovan, Peter Scambler, and Rolf Apweiler. "The Renal Gene Ontology Annotation Initiative." Organogenesis 6, no. 2 (2010): 71–75. http://dx.doi.org/10.4161/org.6.2.11294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ko, Song, Bo-Yeong Kang, and Dae-Won Kim. "Improving Clustering Performance Using Gene Ontology." Journal of Korean Institute of Intelligent Systems 19, no. 6 (2009): 802–8. http://dx.doi.org/10.5391/jkiis.2009.19.6.802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Tweedie, S., M. Ashburner, K. Falls, et al. "FlyBase: enhancing Drosophila Gene Ontology annotations." Nucleic Acids Research 37, Database (2009): D555—D559. http://dx.doi.org/10.1093/nar/gkn788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lee, B., K. Brown, Y. Hathout, and J. Seo. "GOTreePlus: an interactive gene ontology browser." Bioinformatics 24, no. 7 (2008): 1026–28. http://dx.doi.org/10.1093/bioinformatics/btn068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Shahzad, Muhammad, Kamran Ahsan, Adnan Nadeem, and Muhammad Sarim. "Gene Ontology Tools: A Comparative Study." Journal of Basic & Applied Sciences 11 (December 11, 2015): 619–29. http://dx.doi.org/10.6000/1927-5129.2015.11.83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ovezmyradov, Guvanch, Qianhao Lu, and Martin C. Göpfert. "Mining Gene Ontology Data with AGENDA." Bioinformatics and Biology Insights 6 (January 2012): BBI.S9101. http://dx.doi.org/10.4137/bbi.s9101.

Full text
Abstract:
The Gene Ontology (GO) initiative is a collaborative effort that uses controlled vocabularies for annotating genetic information. We here present AGENDA (Application for mining Gene Ontology Data), a novel web-based tool for accessing the GO database. AGENDA allows the user to simultaneously retrieve and compare gene lists linked to different GO terms in diverse species using batch queries, facilitating comparative approaches to genetic information. The web-based application offers diverse search options and allows the user to bookmark, visualize, and download the results. AGENDA is an open source web-based application that is freely available for non-commercial use at the project homepage. URL: http://sourceforge.net/projects/bioagenda .
APA, Harvard, Vancouver, ISO, and other styles
34

Tu, Kang, Hui Yu, and Mingzhu Zhu. "MEGO: gene functional module expression based on gene ontology." BioTechniques 38, no. 2 (2005): 277–83. http://dx.doi.org/10.2144/05382rr04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chang, Billy, Rafal Kustra, and Weidong Tian. "Functional-Network-Based Gene Set Analysis Using Gene-Ontology." PLoS ONE 8, no. 2 (2013): e55635. http://dx.doi.org/10.1371/journal.pone.0055635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Liu, Qi, Yong Deng, Chuan Wang, Tie-Liu Shi, and Yi-Xue Li. "Correlating Expression Data with Gene Function Using Gene Ontology†." Chinese Journal of Chemistry 24, no. 9 (2006): 1247–54. http://dx.doi.org/10.1002/cjoc.200690232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gan, Mingxin. "Correlating Information Contents of Gene Ontology Terms to Infer Semantic Similarity of Gene Products." Computational and Mathematical Methods in Medicine 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/891842.

Full text
Abstract:
Successful applications of the gene ontology to the inference of functional relationships between gene products in recent years have raised the need for computational methods to automatically calculate semantic similarity between gene products based on semantic similarity of gene ontology terms. Nevertheless, existing methods, though having been widely used in a variety of applications, may significantly overestimate semantic similarity between genes that are actually not functionally related, thereby yielding misleading results in applications. To overcome this limitation, we propose to represent a gene product as a vector that is composed of information contents of gene ontology terms annotated for the gene product, and we suggest calculating similarity between two gene products as the relatedness of their corresponding vectors using three measures: Pearson’s correlation coefficient, cosine similarity, and the Jaccard index. We focus on the biological process domain of the gene ontology and annotations of yeast proteins to study the effectiveness of the proposed measures. Results show that semantic similarity scores calculated using the proposed measures are more consistent with known biological knowledge than those derived using a list of existing methods, suggesting the effectiveness of our method in characterizing functional relationships between gene products.
APA, Harvard, Vancouver, ISO, and other styles
38

Hill, David P., Tanya Z. Berardini, Douglas G. Howe, and Kimberly M. Van Auken. "Representing ontogeny through ontology: A developmental biologist's guide to the gene ontology." Molecular Reproduction and Development 77, no. 4 (2009): 314–29. http://dx.doi.org/10.1002/mrd.21130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Newton, Joe R. "Linked gene ontology categories are novel and differ from associated gene ontology categories for the bipolar disorders." Psychiatric Genetics 17, no. 1 (2007): 29–34. http://dx.doi.org/10.1097/ypg.0b013e328010f28c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Shanthini, S. Booma, and V. Bhuvaneswari. "GENE ONTOLOGY SIMILARITY METRIC BASED ON DAG USING DIABETIC GENE." COMPUSOFT: An International Journal of Advanced Computer Technology 02, no. 05 (2013): 108–13. https://doi.org/10.5281/zenodo.14594816.

Full text
Abstract:
Bioinformatics and Data Mining provide exciting and challenging researches in several application areas especially in computer science. The association between gene and diseases are analyzed using data mining techniques. The objective of the paper is to study the various similarity metrics for analyzing the diabetic gene using data mining technique. This paper provides with an overview of different similarity metrics for gene clustering. A similarity metric is proposed to cluster diabetic gees based on DAG structure of gene ontology. The experimental verification is analyzed for evaluating the cluster with biological validation. The current OMIM dataset is used for the proposed work.&nbsp;
APA, Harvard, Vancouver, ISO, and other styles
41

Liang, Wang, and Zhao Kai Yong. "Translate gene sequence into gene ontology terms based on statistical machine translation." F1000Research 2 (November 1, 2013): 231. http://dx.doi.org/10.12688/f1000research.2-231.v1.

Full text
Abstract:
This paper presents a novel method to predict the functions of amino acid sequences, based on statistical machine translation programs. To build the translation model, we use the “parallel corpus” concept. For instance, an English sentence “I love apples” and its corresponding French sentence “j’adore les pommes” are examples of a parallel corpus. Here we regard an amino acid sequence like “MTMDKSELVQKA” as one language, and treat its functional description as “0005737 0006605 0019904 (Gene Ontology terms)” as a sentence of another language. We select amino acid sequences and their corresponding functional descriptions in Gene Ontology terms to build the parallel corpus. Then we use a phrase-based translation model to build the “amino acid sequence” to “protein function” translation model. The Bilingual Evaluation Understudy (BLEU) score, an algorithm for measuring the quality of machine-translated text, of the proposed method reaches about 0.6 when neglecting the order of Gene Ontology words. Although its functional prediction performance is still not as accurate as search-based methods, it was able to give the function of amino acid sequences directly and was more efficient.
APA, Harvard, Vancouver, ISO, and other styles
42

Roncaglia, Paola, Maryann E. Martone, David P. Hill, et al. "The Gene Ontology (GO) Cellular Component Ontology: integration with SAO (Subcellular Anatomy Ontology) and other recent developments." Journal of Biomedical Semantics 4, no. 1 (2013): 20. http://dx.doi.org/10.1186/2041-1480-4-20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lagreid, A. "Predicting Gene Ontology Biological Process From Temporal Gene Expression Patterns." Genome Research 13, no. 5 (2003): 965–79. http://dx.doi.org/10.1101/gr.1144503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Denaxas, Spiridon C., and Christos Tjortjis. "Scoring and summarising gene product clusters using the Gene Ontology." International Journal of Data Mining and Bioinformatics 2, no. 3 (2008): 216. http://dx.doi.org/10.1504/ijdmb.2008.020523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Cheng, Liangxi, Hongfei Lin, Yuncui Hu, Jian Wang, and Zhihao Yang. "Gene Function Prediction Based on the Gene Ontology Hierarchical Structure." PLoS ONE 9, no. 9 (2014): e107187. http://dx.doi.org/10.1371/journal.pone.0107187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Popescu, M., J. M. Keller, and J. A. Mitchell. "Fuzzy Measures on the Gene Ontology for Gene Product Similarity." IEEE/ACM Transactions on Computational Biology and Bioinformatics 3, no. 3 (2006): 263–74. http://dx.doi.org/10.1109/tcbb.2006.37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chen, Chien-Ming, Yu-Lun Lu, Chi-Pong Sio, Guan-Chung Wu, Wen-Shyong Tzou, and Tun-Wen Pai. "Gene Ontology based housekeeping gene selection for RNA-seq normalization." Methods 67, no. 3 (2014): 354–63. http://dx.doi.org/10.1016/j.ymeth.2014.01.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Tu, Kang, Hui Yu, Zheng Guo, and Xia Li. "Learnability-based further prediction of gene functions in Gene Ontology." Genomics 84, no. 6 (2004): 922–28. http://dx.doi.org/10.1016/j.ygeno.2004.08.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zhao, Yingwen, Guangyuan Fu, Jun Wang, Maozu Guo, and Guoxian Yu. "Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing." Genomics 111, no. 3 (2019): 334–42. http://dx.doi.org/10.1016/j.ygeno.2018.02.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sykacek, P. "Bayesian assignment of gene ontology terms to gene expression experiments." Bioinformatics 28, no. 18 (2012): i603—i610. http://dx.doi.org/10.1093/bioinformatics/bts405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography