Academic literature on the topic 'Gene structure in plasmodia'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gene structure in plasmodia.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gene structure in plasmodia"
Knapp, Bernhard, Erika Hundt, and Hans A. Küpper. "Plasmodium falciparum aldolase: gene structure and localization." Molecular and Biochemical Parasitology 40, no. 1 (April 1990): 1–12. http://dx.doi.org/10.1016/0166-6851(90)90074-v.
Full textLal, Altaf A., Vidal F. de la Cruz, Gary H. Campbell, Patricia M. Procell, William E. Collins, and Thomas F. McCutchan. "Structure of the circumsporozoite gene of Plasmodium malariae." Molecular and Biochemical Parasitology 30, no. 3 (September 1988): 291–94. http://dx.doi.org/10.1016/0166-6851(88)90099-0.
Full textLajoie-Mazenc, I., C. Detraves, V. Rotaru, M. Gares, Y. Tollon, C. Jean, M. Julian, M. Wright, and B. Raynaud-Messina. "A single gamma-tubulin gene and mRNA, but two gamma-tubulin polypeptides differing by their binding to the spindle pole organizing centres." Journal of Cell Science 109, no. 10 (October 1, 1996): 2483–92. http://dx.doi.org/10.1242/jcs.109.10.2483.
Full textLi, Wu-Bo, David J. Bzik, Toshihiro Horii, and Joseph Inselburg. "Structure and expression of the Plasmodium falciparum SERA gene." Molecular and Biochemical Parasitology 33, no. 1 (February 1989): 13–25. http://dx.doi.org/10.1016/0166-6851(89)90037-6.
Full textRobson, Kathryn J. H., and M. W. Jennings. "The structure of the calmodulin gene of Plasmodium falciparum." Molecular and Biochemical Parasitology 46, no. 1 (May 1991): 19–34. http://dx.doi.org/10.1016/0166-6851(91)90195-c.
Full textNunes, Alvaro, Vandana Thathy, Thomas Bruderer, Ali A. Sultan, Ruth S. Nussenzweig, and Robert Ménard. "Subtle Mutagenesis by Ends-in Recombination in Malaria Parasites." Molecular and Cellular Biology 19, no. 4 (April 1, 1999): 2895–902. http://dx.doi.org/10.1128/mcb.19.4.2895.
Full textSharma, Yagya D., and Araxie Kilejian. "Structure of the knob protein (KP) gene of Plasmodium falciparum." Molecular and Biochemical Parasitology 26, no. 1-2 (November 1987): 11–16. http://dx.doi.org/10.1016/0166-6851(87)90124-1.
Full textSchwarz, R. T., V. Riveros-Moreno, M. J. Lockyer, S. C. Nicholls, L. S. Davey, Y. Hillman, J. S. Sandhu, R. R. Freeman, and A. A. Holder. "Structural diversity of the major surface antigen of Plasmodium falciparum merozoites." Molecular and Cellular Biology 6, no. 3 (March 1986): 964–68. http://dx.doi.org/10.1128/mcb.6.3.964.
Full textSchwarz, R. T., V. Riveros-Moreno, M. J. Lockyer, S. C. Nicholls, L. S. Davey, Y. Hillman, J. S. Sandhu, R. R. Freeman, and A. A. Holder. "Structural diversity of the major surface antigen of Plasmodium falciparum merozoites." Molecular and Cellular Biology 6, no. 3 (March 1986): 964–68. http://dx.doi.org/10.1128/mcb.6.3.964-968.1986.
Full textTsuboi, Takafumi, Osamu Kaneko, Chiho Eitoku, Nantavadee Suwanabun, Jetsumon Sattabongkot, Joseph M. Vinetz, and Motomi Torii. "Gene structure and ookinete expression of the chitinase genes of Plasmodium vivax and Plasmodium yoelii." Molecular and Biochemical Parasitology 130, no. 1 (August 2003): 51–54. http://dx.doi.org/10.1016/s0166-6851(03)00140-3.
Full textDissertations / Theses on the topic "Gene structure in plasmodia"
Watts, David Ian. "A comparison of gene structure in amoebae and plasmodia of Physarum polycephalum." Thesis, University of Leicester, 1987. http://hdl.handle.net/2381/35177.
Full textHolding, Thomas Mitchell. "Multi-scale immune selection and the maintenance of structured antigenic diversity in the malaria parasite Plasmodium falciparum." Thesis, University of Exeter, 2018. http://hdl.handle.net/10871/33217.
Full textRono, Evans Kiplangat. "Variation in the Anopheles gambiae TEP1 Gene Shapes Local Population Structures of Malaria Mosquitoes." Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18573.
Full textThe alleles (*R1, *R2, *S1 and *S2) and genotypes of A. gambiae complement-like thioester-containing protein 1 (TEP1) determine the fitness in male fertility and the degree of mosquito resistance to pathogens such as bacteria and malaria parasites. This trade-off between the reproduction and the immunity impacts directly on mosquito population abundance and malaria transmission respectively. How TEP1 genetic diversity influences the genetic structure of natural vector populations and development of human malaria parasites is unclear. The aims of this thesis were to: i) map distribution of TEP1 alleles and genotypes in local malaria vector populations in Mali, Burkina Faso, Cameroon and Kenya, and ii) assess the impact of TEP1 polymorphism on development of human P. falciparum parasites in mosquitoes. Analyses of TEP1 polymorphism revealed that natural selection acts in concert on both exons and introns, suggesting strong functional constrains acting at this locus. Moreover, our data demonstrate a structured maintenance of natural TEP1 genetic variation, where the alleles and the genotypes follow distinct evolutionary paths. These findings suggest the existence of species- and habitat-specific selection patterns that act on TEP1 locus. Results revealed that the TEP1*S1 and *S2 mosquitoes are equally susceptible to Plasmodium infections. Collectively, results of my thesis on the biogeographic TEP1 mapping, and on the breeding and infection experiments contribute to a better understanding of how the vector species and local environmental factors, shape vector population structures and malaria transmission. Furthermore, the high throughput TEP1 genotyping approach reported here could be used for field studies of local A. gambiae mosquito populations. This new approach will benefit surveilance and prediction of dynamics in local malaria vector populations that may have epidemiological significance, and therefore inform the development of novel vector control measures.
Jones, Piet. "Structure learning of gene interaction networks." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86650.
Full textENGLISH ABSTRACT: There is an ever increasing wealth of information that is being generated regarding biological systems, in particular information on the interactions and dependencies of genes and their regulatory process. It is thus important to be able to attach functional understanding to this wealth of information. Mathematics can potentially provide the tools needed to generate the necessary abstractions to model the complex system of gene interaction. Here the problem of uncovering gene interactions is cast in several contexts, namely uncovering gene interaction patterns using statistical dependence, cooccurrence as well as feature enrichment. Several techniques have been proposed in the past to solve these, with various levels of success. Techniques have ranged from supervised learning, clustering analysis, boolean networks to dynamical Bayesian models and complex system of di erential equations. These models attempt to navigate a high dimensional space with challenging degrees of freedom. In this work a number of approaches are applied to hypothesize a gene interaction network structure. Three di erent models are applied to real biological data to generate hypotheses on putative biological interactions. A cluster-based analysis combined with a feature enrichment detection is initially applied to a Vitis vinifera dataset, in a targetted analysis. This model bridges a disjointed set of putatively co-expressed genes based on signi cantly associated features, or experimental conditions. We then apply a cross-cluster Markov Blanket based model, on a Saccharomyces cerevisiae dataset. Here the disjointed clusters are bridged by estimating statistical dependence relationship across clusters, in an un-targetted approach. The nal model applied to the same Saccharomyces cerevisiae dataset is a non-parametric Bayesian method that detects probeset co-occurrence given a local background and inferring gene interaction based on the topological network structure resulting from gene co-occurance. In each case we gather evidence to support the biological relevance of these hypothesized interactions by investigating their relation to currently established biological knowledge. The various methods applied here appear to capture di erent aspects of gene interaction, in the datasets we applied them to. The targetted approach appears to putatively infer gene interactions based on functional similarities. The cross-cluster-analysis-based methods, appear to capture interactions within pathways. The probabilistic-co-occurrence-based method appears to generate modules of functionally related genes that are connected to potentially explain the underlying experimental dynamics.
AFRIKAANSE OPSOMMING: Daar is 'n toenemende rykdom van inligting wat gegenereer word met betrekking tot biologiese stelsels, veral inligting oor die interaksies en afhanklikheidsverhoudinge van gene asook hul regulatoriese prosesse. Dit is dus belangrik om in staat te wees om funksionele begrip te kan heg aan hierdie rykdom van inligting. Wiskunde kan moontlik die gereedskap verskaf en die nodige abstraksies bied om die komplekse sisteem van gene interaksies te modelleer. Hier is die probleem met die beraming van die interaksies tussen gene benader uit verskeie kontekste uit, soos die ontdekking van patrone in gene interaksie met behulp van statistiese afhanklikheid , mede-voorkoms asook funksie verryking. Verskeie tegnieke is in die verlede voorgestel om hierdie probleem te benader, met verskillende vlakke van sukses. Tegnieke het gewissel van toesig leer , die groepering analise, boolean netwerke, dinamiese Bayesian modelle en 'n komplekse stelsel van di erensiaalvergelykings. Hierdie modelle poog om 'n hoë dimensionele ruimte te navigeer met uitdagende grade van vryheid. In hierdie werk word 'n aantal benaderings toegepas om 'n genetiese interaksie netwerk struktuur voor te stel. Drie verskillende modelle word toegepas op werklike biologiese data met die doel om hipoteses oor vermeende biologiese interaksies te genereer. 'n Geteikende groeperings gebaseerde analise gekombineer met die opsporing van verrykte kenmerke is aanvanklik toegepas op 'n Vitis vinifera datastel. Hierdie model verbind disjunkte groepe van vermeende mede-uitgedrukte gene wat gebaseer is op beduidende verrykte kenmerke, hier eksperimentele toestande . Ons pas dan 'n tussen groepering Markov Kombers model toe, op 'n Saccharomyces cerevisiae datastel. Hier is die disjunkte groeperings ge-oorbrug deur die beraming van statistiese afhanklikheid verhoudings tussen die elemente in die afsondelike groeperings. Die nale model was ons toepas op dieselfde Saccharomyces cerevisiae datastel is 'n nie- parametriese Bayes metode wat probe stelle van mede-voorkommende gene ontdek, gegee 'n plaaslike agtergrond. Die gene interaksie is beraam op grond van die topologie van die netwerk struktuur veroorsaak deur die gesamentlike voorkoms gene. In elk van die voorgenome gevalle word ons hipotese vermoedelik ondersteun deur die beraamde gene interaksies in terme van huidige biologiese kennis na te vors. Die verskillende metodes wat hier toegepas is, modelleer verskillende aspekte van die interaksies tussen gene met betrekking tot die datastelle wat ons ondersoek het. In die geteikende benadering blyk dit asof ons vermeemde interaksies beraam gebaseer op die ooreenkoms van biologiese funksies. Waar die a eide gene interaksies moontlik gebaseer kan wees op funksionele ooreenkomste tussen die verskeie gene. In die analise gebaseer op die tussen modelering van gene groepe, blyk dit asof die verhouding van gene in bekende biologiese substelsels gemodelleer word. Dit blyk of die model gebaseer op die gesamentlike voorkoms van gene die verband tussen groepe van funksionele verbonde gene modelleer om die onderliggende dinamiese eienskappe van die experiment te verduidelik.
呂志恆 and Chi-hang Vincent Lui. "Gene structure and expression of human pro-alpha2(XI) collagen (col11A2) gene." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B31234355.
Full textLui, Chi-hang Vincent. "Gene structure and expression of human pro-alpha2(XI) collagen (col11A2) gene /." [Hong Kong] : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B14394856.
Full textMcCabe, Veronica Mary. "Domain structure of the mouse Xist gene." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286333.
Full textPearce, Marcela. "Genomic structure of the human utrophin gene." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318897.
Full textChua, Y. L. "Chromatin structure of the pea plastocyanin gene." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597674.
Full text李福基 and Fuk-ki Lee. "Sorbitol dehydrogenase: gene structure, function and mutation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31237241.
Full textBooks on the topic "Gene structure in plasmodia"
Gene structure and expression. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.
Find full textJulian, Burke, ed. Gene structure and transcription. 2nd ed. Oxford: IRL Press at Oxford University Press, 1992.
Find full textGene structure and expression. 3rd ed. Cambridge: Cambridge University Press, 1996.
Find full textGene structure and expression. 2nd ed. Cambridge [England]: Cambridge University Press, 1991.
Find full textJulian, Burke, ed. Gene structure and transcription. Oxford, England: IRL Press, 1988.
Find full textS, Holmes R., and Lim Hwa A, eds. Gene families: Structure, fuction, genetics and evolution. Singapore: World Scientific, 1996.
Find full textS, Dillon Lawrence. The gene: Its structure, function, and evolution. New York: Plenum Press, 1987.
Find full textShafai, Roshan. The polynucleotide structure of a germin gene. Ottawa: National Library of Canada, 1990.
Find full textEvans, D. E. Plant nuclear structure, genome architecture and gene regulation. Chichester, West Sussex, UK: Wiley-Blackwell, 2013.
Find full textNATO Advanced Research Workshop on Human Apolipoprotein Mutants: from Gene Structure to Phenotypic Expression (1988 Limone sul Garda, Italy). Human apolipoprotein mutants 2: From gene structure to phenotypic expression. New York: Plenum Press, 1989.
Find full textBook chapters on the topic "Gene structure in plasmodia"
Mukhopadhyay, Tapas, Steven A. Maxwell, and Jack A. Roth. "Gene Structure." In p53 Suppressor Gene, 13–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-22275-1_2.
Full textNeale, David B., and Nicholas C. Wheeler. "Gene Structure and Gene Families." In The Conifers: Genomes, Variation and Evolution, 75–90. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-46807-5_5.
Full textAxelson-Fisk, Marina. "Gene Structure Submodels." In Comparative Gene Finding, 201–67. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6693-1_5.
Full textLyubich, Yuri I., and Ethan Akin. "Stationary Gene Structure." In Mathematical Structures in Population Genetics, 169–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76211-6_4.
Full textBoedtker, Helga, and Sirpa Aho. "Collagen Gene Structure." In Biology of Invertebrate and Lower Vertebrate Collagens, 135–55. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-7636-1_11.
Full textAxelson-Fisk, Marina. "Gene Structure Submodels." In Comparative Gene Finding, 181–244. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-104-2_5.
Full textDillon, Lawrence S. "Viral Genes — Structure and Controls." In The Gene, 599–633. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-2007-2_10.
Full textBagyan, I. L., I. V. Gulina, A. S. Kraev, V. N. Mironov, L. V. Padegimas, M. M. Pooggin, E. V. Revenkova, et al. "Plant Gene Technology." In Genome Structure and Function, 279–318. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5550-2_14.
Full textReeck, Gerald R. "Nucleosome Structure." In Chromosomal Proteins and Gene Expression, 1–16. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-7615-6_1.
Full textHabener, Joel F. "Gene Structure and Regulation." In Molecular Cloning of Hormone Genes, 11–51. Totowa, NJ: Humana Press, 1987. http://dx.doi.org/10.1007/978-1-4612-4824-8_2.
Full textConference papers on the topic "Gene structure in plasmodia"
Batzoglou, Serafim, Lior Pachter, Jill Mesirov, Bonnie Berger, and Eric S. Lander. "Human and mouse gene structure." In the fourth annual international conference. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/332306.332326.
Full textPanfilio, Kristen A. "Trends in bug genome size, gene structure, and gene repertoires." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.93920.
Full textZhang, Shuqin. "Hierarchical modular structure in gene coexpression networks." In 2012 IEEE 6th International Conference on Systems Biology (ISB). IEEE, 2012. http://dx.doi.org/10.1109/isb.2012.6314123.
Full textBen-Dor, Amir, Benny Chor, Richard Karp, and Zohar Yakhini. "Discovering local structure in gene expression data." In the sixth annual international conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/565196.565203.
Full textRam, Ramesh, and Madhu Chetty. "Learning Structure of a Gene Regulatory Network." In 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007). IEEE, 2007. http://dx.doi.org/10.1109/icis.2007.127.
Full textO'hara, Patrick J., Frank A. Grant, A. Betty, J. Haldmen, and Mark J. Murray. "Structure of the Human Factor VII Gene." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643786.
Full textHolmes, Roger S., and Hwa A. Lim. "Gene Families: Structure, Function, Genetics and Evolution." In VIII International Congress on Isozymes. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814531344.
Full textOGREN, P. V., K. B. COHEN, G. K. ACQUAAH-MENSAH, J. EBERLEIN, and L. HUNTER. "THE COMPOSITIONAL STRUCTURE OF GENE ONTOLOGY TERMS." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704856_0021.
Full text"Neurotransmitter gene network reconstruction and analisis." In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-177.
Full text"Phase portraits of gene networks models." In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-088.
Full textReports on the topic "Gene structure in plasmodia"
Gatewood, J. M. Novel gene complex structure determination. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/524855.
Full textGlesne, D., E. Huberman, F. Collart, T. Varkony, and H. Drabkin. Chromosomal localization and structure of the human type II IMP dehydrogenase gene. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10148872.
Full textDerewenda, Zygmunt W. Structure-Function Relationships in Merlin, the Product of the NF2 Causal Gene. Fort Belvoir, VA: Defense Technical Information Center, October 2004. http://dx.doi.org/10.21236/ada429527.
Full textChisholm, Sally, Martin F. Polz, and Eric J. Alm. Final Report: DOE award: ER64516-1031199-0013966 2007-2011 Genomic Structure, Metagenomics, Horizontal Gene Transfer, and Natural Diversity of Prochlorococcus and Vibrio. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1089668.
Full text