To see the other types of publications on this topic, follow the link: General weights.

Journal articles on the topic 'General weights'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'General weights.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Arce, G. R. "A general weighted median filter structure admitting negative weights." IEEE Transactions on Signal Processing 46, no. 12 (1998): 3195–205. http://dx.doi.org/10.1109/78.735296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maligranda, Lech, Josip E. Pecaric, and Lars Erik Persson. "Stolarsky's Inequality with General Weights." Proceedings of the American Mathematical Society 123, no. 7 (1995): 2113. http://dx.doi.org/10.2307/2160946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maligranda, Lech, Josip E. Pečari{ć, and Lars Erik Persson. "Stolarsky’s inequality with general weights." Proceedings of the American Mathematical Society 123, no. 7 (1995): 2113. http://dx.doi.org/10.1090/s0002-9939-1995-1243171-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lypchuk, Tanya A., Malcolm C. Smith, and Allen Tannenbaum. "Weighted sensitivity minimization: General plants in H∞ and rational weights." Linear Algebra and its Applications 109 (October 1988): 71–90. http://dx.doi.org/10.1016/0024-3795(88)90199-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guoen, Hu. "Weighted estimates with general weights for multilinear Calderón-Zygmund operators." Acta Mathematica Scientia 32, no. 4 (2012): 1529–44. http://dx.doi.org/10.1016/s0252-9602(12)60121-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dick, Josef, Ian H. Sloan, Xiaoqun Wang, and Henryk Woźniakowski. "Good Lattice Rules in Weighted Korobov Spaces with General Weights." Numerische Mathematik 103, no. 1 (2006): 63–97. http://dx.doi.org/10.1007/s00211-005-0674-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

An, Jianbei. "2-Weights for general linear groups." Journal of Algebra 149, no. 2 (1992): 500–527. http://dx.doi.org/10.1016/0021-8693(92)90030-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Guo En, and Yue Ping Zhu. "Weighted norm inequalities with general weights for the commutator of Calderón." Acta Mathematica Sinica, English Series 29, no. 3 (2012): 505–14. http://dx.doi.org/10.1007/s10114-012-1352-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Varenyuk, N. A., E. F. Galba, I. V. Sergienko, and A. N. Khimich. "Weighted Pseudoinversion with Indefinite Weights." Ukrainian Mathematical Journal 70, no. 6 (2018): 866–89. http://dx.doi.org/10.1007/s11253-018-1539-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carlet, Claude. "Identifying codewords in general Reed-Muller codes and determining their weights." AIMS Mathematics 9, no. 5 (2024): 10609–37. http://dx.doi.org/10.3934/math.2024518.

Full text
Abstract:
<abstract><p>Determining the weight distribution of all Reed-Muller codes is a huge and exciting problem that has been around since the sixties. Some progress has been made very recently, but we are still far from a solution. In this paper, we addressed the subproblem of determining as many codeword weights as possible in Reed-Muller codes of any lengths and any orders, which is decisive for determining their weight spectra (i.e., the lists of all possible weights in these codes). New approaches seem necessary for both the main problem and the subproblem. We first studied the diffi
APA, Harvard, Vancouver, ISO, and other styles
11

Sergienko, I. V., and E. F. Galba. "Weighted Pseudoinversion with Singular Weights." Cybernetics and Systems Analysis 52, no. 5 (2016): 708–29. http://dx.doi.org/10.1007/s10559-016-9873-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Alderson, Tim L. "On the Weights of General MDS Codes." IEEE Transactions on Information Theory 66, no. 9 (2020): 5414–18. http://dx.doi.org/10.1109/tit.2020.2977319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Asparouhov, Tihomir. "General Multi-Level Modeling with Sampling Weights." Communications in Statistics - Theory and Methods 35, no. 3 (2006): 439–60. http://dx.doi.org/10.1080/03610920500476598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hovanov, Nikolai V., James W. Kolari, and Mikhail V. Sokolov. "Deriving weights from general pairwise comparison matrices." Mathematical Social Sciences 55, no. 2 (2008): 205–20. http://dx.doi.org/10.1016/j.mathsocsci.2007.07.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Genchev, T. G., and H. P. Heinig. "The Paley-Wiener theorem with general weights." Journal of Mathematical Analysis and Applications 153, no. 2 (1990): 460–69. http://dx.doi.org/10.1016/0022-247x(90)90225-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Alperin, J. L., and P. Fong. "Weights for symmetric and general linear groups." Journal of Algebra 131, no. 1 (1990): 2–22. http://dx.doi.org/10.1016/0021-8693(90)90163-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tobita, Hidetaka. "General matrix formula for the weight-average molecular weights of crosslinked polymer systems." Journal of Polymer Science Part B: Polymer Physics 36, no. 13 (1998): 2423–33. http://dx.doi.org/10.1002/(sici)1099-0488(19980930)36:13<2423::aid-polb17>3.0.co;2-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Englis, Miroslav. "Weighted Bergman Kernels for Logarithmic Weights." Pure and Applied Mathematics Quarterly 6, no. 3 (2010): 781–814. http://dx.doi.org/10.4310/pamq.2010.v6.n3.a8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Duoandikoetxea, Javier, Francisco J. Martin-Reyes, and Sheldy Ombrosi. "Calderon weights as Muckenhoupt weights." Indiana University Mathematics Journal 62, no. 3 (2013): 891–910. http://dx.doi.org/10.1512/iumj.2013.62.4971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lubinsky, Doron S., and Vilmos Totik. "Weighted polynomial approximation with Freud weights." Constructive Approximation 10, no. 3 (1994): 301–15. http://dx.doi.org/10.1007/bf01212563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kopotun, K. A., D. Leviatan, and I. A. Shevchuk. "On weighted approximation with Jacobi weights." Journal of Approximation Theory 237 (January 2019): 96–112. http://dx.doi.org/10.1016/j.jat.2018.09.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jelenković, Predrag R., and Mariana Olvera-Cravioto. "Implicit renewal theorem for trees with general weights." Stochastic Processes and their Applications 122, no. 9 (2012): 3209–38. http://dx.doi.org/10.1016/j.spa.2012.05.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Krutikov, V. N., T. D. Kanishcheva, S. A. Kononogov, L. K. Isaev, and N. I. Khanov. "The 23rd General Conference on Weights and Measures." Measurement Techniques 51, no. 9 (2008): 1045–47. http://dx.doi.org/10.1007/s11018-008-9150-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Neururer, Michael O. "Eichler cohomology in general weights using spectral theory." Ramanujan Journal 41, no. 1-3 (2016): 437–63. http://dx.doi.org/10.1007/s11139-015-9757-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

 Drihem, Douadi. "Complex interpolation of function spaces with general weights." Commentationes Mathematicae Universitatis Carolinae 64, no. 3 (2024): 289–320. http://dx.doi.org/10.14712/1213-7243.2024.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Oinarov, R. "On Weighted Norm Inequalities with Three Weights." Journal of the London Mathematical Society s2-48, no. 1 (1993): 103–16. http://dx.doi.org/10.1112/jlms/s2-48.1.103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Galba, E. F. "Weighted pseudoinversion of matrices with singular weights." Ukrainian Mathematical Journal 46, no. 10 (1994): 1457–62. http://dx.doi.org/10.1007/bf01066089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lin, Chiang, and Jen-Ling Shang. "Statuses and branch-weights of weighted trees." Czechoslovak Mathematical Journal 59, no. 4 (2009): 1019–25. http://dx.doi.org/10.1007/s10587-009-0071-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Haroske, Dorothee D., and Leszek Skrzypczak. "Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights." Annales Academiae Scientiarum Fennicae Mathematica 36 (2011): 111–38. http://dx.doi.org/10.5186/aasfm.2011.3607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Duan, Yongjiang, Jouni Rättyä, Siyu Wang, and Fanglei Wu. "Two weight inequality for Hankel form on weighted Bergman spaces induced by doubling weights." Advances in Mathematics 431 (October 2023): 109249. http://dx.doi.org/10.1016/j.aim.2023.109249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Borichev, Alexander. "On weighted polynomial approximation with monotone weights." Proceedings of the American Mathematical Society 128, no. 12 (2000): 3613–19. http://dx.doi.org/10.1090/s0002-9939-00-05511-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Combs, Randy. "Products of power weights and Ap weights." Proyecciones (Antofagasta) 15, no. 2 (1996): 141–51. http://dx.doi.org/10.22199/s07160917.1996.0002.00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Stiny, G. "Weights." Environment and Planning B: Planning and Design 19, no. 4 (1992): 413–30. http://dx.doi.org/10.1068/b190413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Muckenhoupt, Benjamin, Richard L. Wheeden, and Wo-Sang Young. "Sufficiency Conditions for L p Multipliers With General Weights." Transactions of the American Mathematical Society 300, no. 2 (1987): 463. http://dx.doi.org/10.2307/2000353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Słomska, Joanna. "Loom weights – a general typology of finds from Poland." Przegląd Archeologiczny 67 (2019): 89–99. http://dx.doi.org/10.23858/pa67.2019.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kubayi, D. G., and D. S. Lubinsky. "Quadrature sums and Lagrange interpolation for general exponential weights." Journal of Computational and Applied Mathematics 151, no. 2 (2003): 383–414. http://dx.doi.org/10.1016/s0377-0427(02)00747-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Jiménez, Raúl, and J. E. Yukich. "Strong laws for Euclidean graphs with general edge weights." Statistics & Probability Letters 56, no. 3 (2002): 251–59. http://dx.doi.org/10.1016/s0167-7152(01)00175-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lee, Kwankyu. "Bounds for generalized Hamming weights of general AG codes." Finite Fields and Their Applications 34 (July 2015): 265–79. http://dx.doi.org/10.1016/j.ffa.2015.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Luque, Teresa, Carlos Pérez, and Ezequiel Rela. "Reverse Hölder Property for Strong Weights and General Measures." Journal of Geometric Analysis 27, no. 1 (2016): 162–82. http://dx.doi.org/10.1007/s12220-016-9678-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zhihui, Chen, and Shen Yaotian. "Hardy-sobolev inequalities with general weights and remainder terms." Acta Mathematica Scientia 28, no. 3 (2008): 469–78. http://dx.doi.org/10.1016/s0252-9602(08)60048-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Harboure, Eleonor, Oscar Salinas, and Beatriz Viviani. "Local maximal function and weights in a general setting." Mathematische Annalen 358, no. 3-4 (2013): 609–28. http://dx.doi.org/10.1007/s00208-013-0973-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Costa, Vitor, Simone Dantas, Mitre C. Dourado, Lucia Penso, and Dieter Rautenbach. "Slash and burn on graphs — Firefighting with general weights." Discrete Applied Mathematics 210 (September 2016): 4–13. http://dx.doi.org/10.1016/j.dam.2014.11.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Drihem, D. "Spline Representations of Lizorkin–Triebel Spaces with General Weights." Siberian Mathematical Journal 64, no. 1 (2023): 208–50. http://dx.doi.org/10.1134/s0037446623010202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Irani. "Randomized Weighted Caching with Two Page Weights." Algorithmica 32, no. 4 (2002): 624–40. http://dx.doi.org/10.1007/s00453-001-0095-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Nishimura, Takahashi. "Topological invariance of weights for weighted homogeneous singularities." Kodai Mathematical Journal 9, no. 2 (1986): 188–90. http://dx.doi.org/10.2996/kmj/1138037201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

DROSTE, MANFRED, and ULRIKE PÜSCHMANN. "ON WEIGHTED BÜCHI AUTOMATA WITH ORDER-COMPLETE WEIGHTS." International Journal of Algebra and Computation 17, no. 02 (2007): 235–60. http://dx.doi.org/10.1142/s0218196707003585.

Full text
Abstract:
We investigate Büchi automata with weights for the transitions. Assuming that the weights are taken in a suitable ordered semiring, we show how to define the behaviors of these automata on infinite words. Our main result shows that the formal power series arising in this way are precisely the ones which can be constructed using ω-rational operations. This extends the classical Kleene–Schützenberger result for weighted finite automata to the case of infinite words and generalizes Büchi's theorem on languages of infinite words. We also derive versions of our main result for non-complete semiring
APA, Harvard, Vancouver, ISO, and other styles
47

Richards, Matthew J. "Some decomposition numbers for Hecke algebras of general linear groups." Mathematical Proceedings of the Cambridge Philosophical Society 119, no. 3 (1996): 383–402. http://dx.doi.org/10.1017/s0305004100074296.

Full text
Abstract:
The theorem which is still known as Nakayama's Conjecture shows how the modular characters of the symmetric group Sn can be divided into blocks of various weights, those with the same weight having similar properties. In fact, all blocks of weight one have essentially the same decomposition numbers and these are easy to describe. In recent work, Scopes [16, 17] has shown that there are essentially only finitely many possibilities for the decomposition numbers for blocks of any given weight, and has given a bound for the number. We develop the combinatorics implicit in her work, and so establis
APA, Harvard, Vancouver, ISO, and other styles
48

SHANG, YILUN. "ESTRADA INDEX OF GENERAL WEIGHTED GRAPHS." Bulletin of the Australian Mathematical Society 88, no. 1 (2012): 106–12. http://dx.doi.org/10.1017/s0004972712000676.

Full text
Abstract:
AbstractLet $G$ be a general weighted graph (with possible self-loops) on $n$ vertices and $\lambda _1,\lambda _2,\ldots ,\lambda _n$ be its eigenvalues. The Estrada index of $G$ is a graph invariant defined as $EE=\sum _{i=1}^ne^{\lambda _i}$. We present a generic expression for $EE$ based on weights of short closed walks in $G$. We establish lower and upper bounds for $EE$in terms of low-order spectral moments involving the weights of closed walks. A concrete example of calculation is provided.
APA, Harvard, Vancouver, ISO, and other styles
49

TANG, MING, ZONGHUA LIU, XIAOYAN ZHU, and XIAOYAN WU. "CONDENSATION ON WEIGHTED NETWORKS WITH SYMMETRIC WEIGHTS." International Journal of Modern Physics C 19, no. 06 (2008): 927–37. http://dx.doi.org/10.1142/s0129183108012601.

Full text
Abstract:
It is recently shown that the weight-directed network may seriously influence the particle condensation on it, where the weights on an edge are asymmetric. However, most of the realistic networks are weight-undirected networks where the weights on an edge are symmetric. For understanding how the structure of these networks influences the particle evolution, we study the condensation phenomenon on a model of weighted networks with symmetric weights by both theoretical analysis and numerical simulations. In theory, we have proposed a mean field approach to discuss the condensation for the zero r
APA, Harvard, Vancouver, ISO, and other styles
50

Mastroianni, Giuseppe, and Vilmos Totik. "Weighted Polynomial Inequalities with Doubling and A ∞ Weights." Constructive Approximation 16, no. 1 (2000): 37–71. http://dx.doi.org/10.1007/s003659910002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!