Academic literature on the topic 'Generalised Integrals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Generalised Integrals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Generalised Integrals"
Muldowney. "INFINITE-DIMENSIONAL GENERALISED RIEMANN INTEGRALS." Real Analysis Exchange 14, no. 1 (1988): 14. http://dx.doi.org/10.2307/44153611.
Full textEl-Gabali, M., and S. Kalla. "Some generalised radiation field integrals." Computers & Mathematics with Applications 32, no. 12 (December 1996): 121–28. http://dx.doi.org/10.1016/s0898-1221(96)00212-x.
Full textKumar, Ravindra. "Numerical approximations of certain generalised integrals." Mathematical and Computer Modelling 11 (1988): 679–82. http://dx.doi.org/10.1016/0895-7177(88)90579-1.
Full textAngelantonj, Carlo, Ioannis Florakis, and Boris Pioline. "Threshold corrections, generalised prepotentials and Eichler integrals." Nuclear Physics B 897 (August 2015): 781–820. http://dx.doi.org/10.1016/j.nuclphysb.2015.06.009.
Full textKaminski, D., and R. B. Paris. "Asymptotics via iterated Mellin–Barnes integrals: Application to the generalised Faxén integral." Methods and Applications of Analysis 4, no. 3 (1997): 311–25. http://dx.doi.org/10.4310/maa.1997.v4.n3.a5.
Full textDragomir, S. S., and A. Sofo. "Approximating the Stieltjes integral via the Darst-Pollard inequality." Filomat 21, no. 2 (2007): 63–75. http://dx.doi.org/10.2298/fil0702063d.
Full textDe Sarkar, S., and A. G. Das. "Riemann derivatives and general integrals." Bulletin of the Australian Mathematical Society 35, no. 2 (April 1987): 187–211. http://dx.doi.org/10.1017/s0004972700013174.
Full textCleary, Paul. "Integrability of Motions in Galactic Potentials." Publications of the Astronomical Society of Australia 6, no. 4 (1986): 453–58. http://dx.doi.org/10.1017/s1323358000018361.
Full textFeigin, M. V., M. A. Hallnäs, and A. P. Veselov. "Baker-Akhiezer functions and generalised Macdonald-Mehta integrals." Journal of Mathematical Physics 54, no. 5 (May 2013): 052106. http://dx.doi.org/10.1063/1.4804615.
Full textMacLeod, Allan J. "The efficient computation of some generalised exponential integrals." Journal of Computational and Applied Mathematics 148, no. 2 (November 2002): 363–74. http://dx.doi.org/10.1016/s0377-0427(02)00556-3.
Full textDissertations / Theses on the topic "Generalised Integrals"
Feigin, Mikhail V. "Rings of quantum integrals for generalised Calogero-Moser problems." Thesis, Loughborough University, 2002. https://dspace.lboro.ac.uk/2134/35847.
Full textBär, Christian. "Renormalized integrals and a path integral formula for the heat kernel on a manifold." Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/6005/.
Full textLarsson, David. "Generalized Riemann Integration : Killing Two Birds with One Stone?" Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-96661.
Full textÄnda sedan Cauchys tid har integrationsteori i huvudsak varit ett försök att åter finna Newtons Eden. Under den idylliska perioden [. . . ] var derivator och integraler [. . . ] olika sidor av samma mynt.-Peter Bullen, citerad i [24] Under de senaste århundradena har integrationsteori genomgått många förändringar och framförallt har det funnits en spänning mellan Riemanns och Lebesgues respektive angreppssätt till integration. Riemanns definition är ofta den första integral som möter en student pa grundutbildningen, medan Lebesgues integral är kraftfullare. Eftersom Lebesgues definition är mer komplicerad introduceras den först i forskarutbildnings- eller avancerade grundutbildningskurser. Integralen som framställs i det här examensarbetet utvecklades av Ralph Henstock och Jaroslav Kurzweil. Genom att på ett enkelt sätt ändra kriteriet for integrerbarhet i Riemanns definition finner vi en kraftfull integral med många av Lebesgueintegralens egenskaper. Vidare utvidgar den generaliserade Riemannintegralen klassen av integrerbara funktioner i jämförelse med Lebesgueintegralen, medan vi samtidigt erhåller en karaktärisering av Lebesgueintegralen i termer av absolutintegrerbarhet. Eftersom klassen av generaliserat Riemannintegrerbara funktioner är större än de absolutintegrerbara funktionerna blir vissa satser mer omständiga att bevisa i jämforelse med eleganta resultat i Lebesgues teori. Därtill förloras vissa viktiga egenskaper vid sammansättning av funktioner och även möjligheten till abstraktion försvåras. Integralen ska alltså ses som ett komplement till Lebesgues definition och inte en ersättning.
Taylor, C. James. "Generalised proportional-integral-plus control." Thesis, Lancaster University, 1996. http://eprints.lancs.ac.uk/49452/.
Full textKatugampola, Don Udita Nalin. "ON GENERALIZED FRACTIONAL INTEGRALS AND DERIVATIVES." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/dissertations/387.
Full textDelaney, Christopher. "Generalized Differential and Integral Categories." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37136.
Full textTang, W. "A generalized approach for transforming domain integrals into boundary integrals in boundary element methods." Thesis, University of Southampton, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378981.
Full textDunn, Thomas Boyd. "Integral Closure and the Generalized Multiplicity Sequence." Diss., North Dakota State University, 2015. https://hdl.handle.net/10365/27935.
Full textWilson, Julia Carol. "Generalized Dedekind sums and their connection with Franel integrals." Thesis, University of York, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358339.
Full textWilson, Michael. "Integral modelling of jets of variable composition in generalised crossflows." Thesis, University of Bath, 1986. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382563.
Full textBooks on the topic "Generalised Integrals"
Lee, Tuo Yeong. Henstock-Kurzweil integration on Euclidean spaces. Singapore: World Scientific, 2011.
Find full textRana, Inder K. An introduction to measure and integration. New Delhi: Narosa, 1997.
Find full textRana, Inder K. An introduction to measure and integration. 2nd ed. Providence, R.I: American Mathematical Society, 2002.
Find full textGuoju, Ye, ed. Topics in Banach space integration. Hackensack, NJ: World Scientific, 2005.
Find full textBook chapters on the topic "Generalised Integrals"
Muldowney, P. "Infinite-dimensional generalised Riemann integrals." In Lecture Notes in Mathematics, 131–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0083104.
Full textAkopov, N. "HERMES Results on the Generalised GDH Integrals." In Spin Structure of the Nucleon, 121–31. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0165-6_11.
Full textErickson, K. Bruce, and Ross A. Maller. "Generalised Ornstein-Uhlenbeck Processes and the Convergence of Lévy Integrals." In Lecture Notes in Mathematics, 70–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-31449-3_6.
Full textKanwal, Ram P. "Distributions Defined by Divergent Integrals." In Generalized Functions, 71–98. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8174-6_4.
Full textDubois, Didier, Henri Prade, Agnès Rico, and Bruno Teheux. "Generalized Sugeno Integrals." In Information Processing and Management of Uncertainty in Knowledge-Based Systems, 363–74. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40596-4_31.
Full textAnastassiou, George A. "M-Fractional Integral Type Inequalities." In Generalized Fractional Calculus, 277–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56962-4_13.
Full textKlement, Erich Peter, Radko Mesiar, and Endre Pap. "Generalized measures and integrals." In Trends in Logic, 283–312. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9540-7_14.
Full textDavies, B. "Generalized Functions." In Integral Transforms and their Applications, 130–54. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4899-2691-3_9.
Full textKanwal, Ram P. "Distributions Defined by Divergent Integrals." In Generalized Functions Theory and Technique, 71–98. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4684-0035-9_4.
Full textAnastassiou, George A. "Caputo Generalized $$\psi $$-Fractional Integral Type Inequalities." In Generalized Fractional Calculus, 113–33. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56962-4_6.
Full textConference papers on the topic "Generalised Integrals"
Malik, Pradeep, Saiful R. Mondal, and A. Swaminathan. "Fractional Integration of Generalized Bessel Function of the First Kind." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48950.
Full textZhang, De-Li, and Cai-Mei Guo. "N-dimensional generalized fuzzy integrals." In 2010 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.5581005.
Full textDe-Li Zhang, Cai-Mei Guo, and Da-You Liu. "Lattice-valued generalized fuzzy integrals." In 2008 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2008. http://dx.doi.org/10.1109/icmlc.2008.4620464.
Full textBoag, Amir, and Vitaliy Lomakin. "Generalized equivalence integral equations." In 2012 6th European Conference on Antennas and Propagation (EuCAP). IEEE, 2012. http://dx.doi.org/10.1109/eucap.2012.6206074.
Full textSharshevsky, A., Y. Brick, and A. Boag. "Generalized source integral equation." In 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2017. http://dx.doi.org/10.1109/iceaa.2017.8065455.
Full textIbrahim, Rabha W., and Maslina Darus. "Generalized the Pommerenke integral operators." In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4882559.
Full textAchar, B. N. Narahari, Tanya Prozny, and John W. Hanneken. "Linear Chain of Coupled Fractional Oscillators: Response Dynamics and Its Continuum Limit." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35403.
Full textCuesta, Eduardo, Alfonso Fernandez-Manso, and Carmen Quintano. "Generalized fractional integrals in advanced remote sensing." In 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA). IEEE, 2016. http://dx.doi.org/10.1109/mesa.2016.7587128.
Full textBorwein, Jonathan M., and Armin Straub. "Special values of generalized log-sine integrals." In the 36th international symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1993886.1993899.
Full textYasuo Narukawa and Vicenc Torra. "Domain extension for multidimensional generalized fuzzy integrals." In 2008 IEEE 16th International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2008. http://dx.doi.org/10.1109/fuzzy.2008.4630602.
Full textReports on the topic "Generalised Integrals"
Klein, Clara. Orthogonal, Left-Null, Integral Lines in generalized Budabara equations. Web of Open Science, March 2020. http://dx.doi.org/10.37686/emj.v1i1.21.
Full textSulkosky, Vincent. The Spin Structure of 3He and the Neutron at Low Q2: A Measurement of the Generalized GDH Integrand. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/913561.
Full textOstashev, Vladimir, Michael Muhlestein, and D. Wilson. Extra-wide-angle parabolic equations in motionless and moving media. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42043.
Full text