Journal articles on the topic 'Generalised Maxwell Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Generalised Maxwell Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Karner, Timi, Rok Belšak, and Janez Gotlih. "Using a Fully Fractional Generalised Maxwell Model for Describing the Time Dependent Sinusoidal Creep of a Dielectric Elastomer Actuator." Fractal and Fractional 6, no. 12 (December 4, 2022): 720. http://dx.doi.org/10.3390/fractalfract6120720.
Full textFabris, Júlio C. "Cosmological model from generalised Maxwell-Einstein system in higher dimensions." Physics Letters B 267, no. 1 (September 1991): 30–32. http://dx.doi.org/10.1016/0370-2693(91)90519-v.
Full textZhao, Yanqing, Yuanbao Ni, and Weiqiao Zeng. "A consistent approach for characterising asphalt concrete based on generalised Maxwell or Kelvin model." Road Materials and Pavement Design 15, no. 3 (February 26, 2014): 674–90. http://dx.doi.org/10.1080/14680629.2014.889030.
Full textLiu, Zizhen, and Lynne Bilston. "On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour." Biorheology: The Official Journal of the International Society of Biorheology 37, no. 3 (May 2000): 191–201. http://dx.doi.org/10.1177/0006355x2000037003002.
Full textLong, Le Dinh, Bahman Moradi, Omid Nikan, Zakieh Avazzadeh, and António M. Lopes. "Numerical Approximation of the Fractional Rayleigh–Stokes Problem Arising in a Generalised Maxwell Fluid." Fractal and Fractional 6, no. 7 (July 2, 2022): 377. http://dx.doi.org/10.3390/fractalfract6070377.
Full textYang, X. S. "Nonlinear viscoelastic compaction in sedimentary basins." Nonlinear Processes in Geophysics 7, no. 1/2 (June 30, 2000): 1–8. http://dx.doi.org/10.5194/npg-7-1-2000.
Full textSchiffmann, Kirsten Ingolf. "Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models." International Journal of Materials Research 97, no. 9 (September 1, 2006): 1199–211. http://dx.doi.org/10.1515/ijmr-2006-0189.
Full textNaveena Kumara, A., Shreyas Punacha, and Md Sabir Ali. "Lyapunov exponents and phase structure of Lifshitz and hyperscaling violating black holes." Journal of Cosmology and Astroparticle Physics 2024, no. 07 (July 1, 2024): 061. http://dx.doi.org/10.1088/1475-7516/2024/07/061.
Full textGerritzen, Johannes, Michael Müller-Pabel, Jonas Müller, Benjamin Gröger, Niklas Lorenz, Christian Hopmann, and Maik Gude. "Development of a High-Fidelity Framework to Describe the Process-Dependent Viscoelasticity of a Fast-Curing Epoxy Matrix Resin including Testing, Modelling, Calibration and Validation." Polymers 14, no. 17 (September 2, 2022): 3647. http://dx.doi.org/10.3390/polym14173647.
Full textParodi, Pietro, and Peter Watson. "PROPERTY GRAPHS – A STATISTICAL MODEL FOR FIRE AND EXPLOSION LOSSES BASED ON GRAPH THEORY." ASTIN Bulletin 49, no. 2 (March 27, 2019): 263–97. http://dx.doi.org/10.1017/asb.2019.4.
Full textCâmara, Gustavo, Rui Micaelo, Nuno Monteiro Azevedo, and Hugo Silva. "Incremental Viscoelastic Damage Contact Models for Asphalt Mixture Fracture Assessment." Infrastructures 9, no. 7 (July 22, 2024): 118. http://dx.doi.org/10.3390/infrastructures9070118.
Full textCastro-Palacio, Juan Carlos, J. M. Isidro, Esperanza Navarro-Pardo, Luisberis Velázquez-Abad, and Pedro Fernández-de-Córdoba. "Monte Carlo Simulation of a Modified Chi Distribution with Unequal Variances in the Generating Gaussians. A Discrete Methodology to Study Collective Response Times." Mathematics 9, no. 1 (December 31, 2020): 77. http://dx.doi.org/10.3390/math9010077.
Full textZHU, ChangSheng, HaiJun ZHANG, Qin YANG, and ZhiXian ZHONG. "Generalized maxwell velocity slip boundary model." SCIENTIA SINICA Physica, Mechanica & Astronomica 43, no. 5 (May 1, 2013): 662–69. http://dx.doi.org/10.1360/132011-827.
Full textHu, H. "On the Nonlinear Generalized Maxwell Fluid Model." Journal of Applied Mechanics 70, no. 2 (March 1, 2003): 309–10. http://dx.doi.org/10.1115/1.1544538.
Full textWang, Ping, Jin-Ling Liu, and Fang Wang. "The first solution for the helical flows of generalized Maxwell fluid with longitudinal time dependent shear stresses on the boundary." Thermal Science 26, no. 2 Part A (2022): 1113–21. http://dx.doi.org/10.2298/tsci2202113w.
Full textRehman, Aziz Ur, Fahd Jarad, Muhammad Bilal Riaz, and Zaheer Hussain Shah. "Generalized Mittag-Leffler Kernel Form Solutions of Free Convection Heat and Mass Transfer Flow of Maxwell Fluid with Newtonian Heating: Prabhakar Fractional Derivative Approach." Fractal and Fractional 6, no. 2 (February 10, 2022): 98. http://dx.doi.org/10.3390/fractalfract6020098.
Full textNguyen, ST, M.-H. Vu, MN Vu, and TN Nguyen. "Generalized Maxwell model for micro-cracked viscoelastic materials." International Journal of Damage Mechanics 26, no. 5 (October 7, 2015): 697–710. http://dx.doi.org/10.1177/1056789515608231.
Full textHess, Siegfried, Bastian Arlt, Sebastian eidenreich, Patrick Ilg, Chris Goddard, and Ortwin Hess. "Flow Properties Inferred from Generalized Maxwell Models." Zeitschrift für Naturforschung A 64, no. 1-2 (February 1, 2009): 81–95. http://dx.doi.org/10.1515/zna-2009-1-213.
Full textXiao, Rui, Hongguang Sun, and Wen Chen. "An equivalence between generalized Maxwell model and fractional Zener model." Mechanics of Materials 100 (September 2016): 148–53. http://dx.doi.org/10.1016/j.mechmat.2016.06.016.
Full textYenilmez, Bekir, Baris Caglar, and E. Murat Sozer. "Viscoelastic modeling of fiber preform compaction in vacuum infusion process." Journal of Composite Materials 51, no. 30 (March 27, 2017): 4189–203. http://dx.doi.org/10.1177/0021998317699983.
Full textZhang, Chao, Jinhao Qiu, Yuansheng Chen, and Hongli Ji. "Modeling hysteresis and creep behavior of macrofiber composite–based piezoelectric bimorph actuator." Journal of Intelligent Material Systems and Structures 24, no. 3 (September 21, 2012): 369–77. http://dx.doi.org/10.1177/1045389x12460337.
Full textCheng, Gang, Jean Claude Gelin, and Thierry Barrière. "Physical Modelling and Identification of Polymer Viscoelastic Behaviour above Glass Transition Temperature and Application to the Numerical Simulation of the Hot Embossing Process." Key Engineering Materials 554-557 (June 2013): 1763–76. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.1763.
Full textGuemmadi, M., and A. Ouibrahim. "Generalized Maxwell Model as Viscoelastic Lubricant in Journal Bearing." Key Engineering Materials 478 (April 2011): 64–69. http://dx.doi.org/10.4028/www.scientific.net/kem.478.64.
Full textKapteijn, F., J. A. Moulijn, and R. Krishna. "The generalized Maxwell–Stefan model for diffusion in zeolites:." Chemical Engineering Science 55, no. 15 (August 2000): 2923–30. http://dx.doi.org/10.1016/s0009-2509(99)00564-3.
Full textCorr, D. T., M. J. Starr, R. Vanderby,, and T. M. Best. "A Nonlinear Generalized Maxwell Fluid Model for Viscoelastic Materials." Journal of Applied Mechanics 68, no. 5 (April 26, 2001): 787–90. http://dx.doi.org/10.1115/1.1388615.
Full textLuo, Dan, and Hong-Shan Chen. "A new generalized fractional Maxwell model of dielectric relaxation." Chinese Journal of Physics 55, no. 5 (October 2017): 1998–2004. http://dx.doi.org/10.1016/j.cjph.2017.08.020.
Full textPetera, Jerzy, Kamil Kaminski, and Monika Kotynia. "A generalized viscoelastic Maxwell model for semisolid thixotropic alloys." International Journal of Material Forming 3, S1 (April 2010): 775–78. http://dx.doi.org/10.1007/s12289-010-0885-y.
Full textOrekhov, A. A., L. N. Rabinskiy, and G. V. Fedotenkov. "Fundamental Solutions of the Equations of Classical and Generalized Heat Conduction Models." Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 165, no. 4 (February 18, 2024): 404–14. http://dx.doi.org/10.26907/2541-7746.2023.4.404-414.
Full textKryvko, Andriy, Claudia del C. Gutiérrez-Torres, José Alfredo Jiménez-Bernal, Orlando Susarrey-Huerta, Eduardo Reyes de Luna, and Didier Samayoa. "Fractal Continuum Maxwell Creep Model." Axioms 14, no. 1 (January 2, 2025): 33. https://doi.org/10.3390/axioms14010033.
Full textWang, Zhao Jing, Ling Luo, Yu Xi Jia, Jun Peng Gao, and Xiao Su Yi. "Predicting Polyurethane Shape Memory Behaviors in Stress-Controlled Situations Using a Viscoelastic Model." Key Engineering Materials 575-576 (September 2013): 101–6. http://dx.doi.org/10.4028/www.scientific.net/kem.575-576.101.
Full textBách, Phạm Tiến, Võ Đại Nhật, Nguyễn Việt Kỳ, and Lê Quân. "Maxwell model geotextile encased stone column in soft soil improvement." Science & Technology Development Journal - Engineering and Technology 4, no. 1 (April 9, 2021): first. http://dx.doi.org/10.32508/stdjet.v4i1.772.
Full textBANERJEE, N., and R. BANERJEE. "GENERALIZED HAMILTONIAN EMBEDDING OF THE PROCA MODEL." Modern Physics Letters A 11, no. 24 (August 10, 1996): 1919–27. http://dx.doi.org/10.1142/s0217732396001922.
Full textBrandt, F. T., J. Frenkel, and D. G. C. McKeon. "Dual symmetry in a generalized Maxwell theory." Modern Physics Letters A 31, no. 32 (October 5, 2016): 1650184. http://dx.doi.org/10.1142/s0217732316501844.
Full textKibaroğlu, Salih, Oktay Cebecioğlu, and Ahmet Saban. "Gauging the Maxwell Extended GLn,R and SLn+1,R Algebras." Symmetry 15, no. 2 (February 9, 2023): 464. http://dx.doi.org/10.3390/sym15020464.
Full textBasagiannis, Christos A., and Martin S. Williams. "Modified Generalized Maxwell Model for Hysteresis Behavior of Elastomeric Dampers." Journal of Engineering Mechanics 146, no. 8 (August 2020): 04020083. http://dx.doi.org/10.1061/(asce)em.1943-7889.0001801.
Full textWang, Fan, Wang-Cheng Shen, Jin-Ling Liu, and Ping Wang. "The analytic solutions for the unsteady rotating flows of the generalized Maxwell fluid between coaxial cylinders." Thermal Science 24, no. 6 Part B (2020): 4041–48. http://dx.doi.org/10.2298/tsci2006041w.
Full textStropek, Zbigniew, Zbigniew Stropek, Krzysztof Golacki, and Krzysztof Golacki. "Stress Relaxation of Apples at Different Deformation Velocities and Temperatures." Transactions of the ASABE 62, no. 1 (2019): 115–21. http://dx.doi.org/10.13031/trans.12993.
Full textMontenegro, David, and B. M. Pimentel. "Planar generalized electrodynamics for one-loop amplitude in the Heisenberg picture." International Journal of Modern Physics A 36, no. 19 (July 5, 2021): 2150142. http://dx.doi.org/10.1142/s0217751x21501426.
Full textXue, Changfeng, and Junxiang Nie. "Exact Solutions of Rayleigh-Stokes Problem for Heated Generalized Maxwell Fluid in a Porous Half-Space." Mathematical Problems in Engineering 2008 (2008): 1–10. http://dx.doi.org/10.1155/2008/641431.
Full textAl-Bender, F., V. Lampaert, and J. Swevers. "The generalized Maxwell-slip model: a novel model for friction Simulation and compensation." IEEE Transactions on Automatic Control 50, no. 11 (November 2005): 1883–87. http://dx.doi.org/10.1109/tac.2005.858676.
Full textHu Jun, 胡军, 许凯乐 Xu Kaile, 马壮壮 Ma Zhuangzhuang, and 马强 Ma Qiang. "Simulation Analysis of Aspherical Lens Molding Based on Generalized Maxwell Model." Laser & Optoelectronics Progress 57, no. 9 (2020): 092201. http://dx.doi.org/10.3788/lop57.092201.
Full textNguyen, TuanDung, Jin Li, Lijie Sun, DanhQuang Tran, and Fuzhen Xuan. "Viscoelasticity Modeling of Dielectric Elastomers by Kelvin Voigt-Generalized Maxwell Model." Polymers 13, no. 13 (July 2, 2021): 2203. http://dx.doi.org/10.3390/polym13132203.
Full textKamenar, Ervin, and Saša Zelenika. "Issues in validation of pre-sliding friction models for ultra-high precision positioning." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 3 (February 14, 2018): 997–1006. http://dx.doi.org/10.1177/0954406218758797.
Full textIKEDA, Kohsuke, Ryo OMURA, Toshikatsu NOHARA, Kazunori KUGA, Ryoji OKABE, Satoshi ISHIKAWA, and Masaki FUJIKAWA. "Applicability of Generalized Maxwell Model to Creep Deformation Behavior of Thermoplastics." Proceedings of Mechanical Engineering Congress, Japan 2021 (2021): J122–18. http://dx.doi.org/10.1299/jsmemecj.2021.j122-18.
Full textNiekamp, R., E. Stein, and A. Idesman. "Finite elements in space and time for generalized viscoelastic maxwell model." Computational Mechanics 27, no. 1 (January 29, 2001): 49–60. http://dx.doi.org/10.1007/s004660000213.
Full textFrancis, Royce A., Srinivas Reddy Geedipally, Seth D. Guikema, Soma Sekhar Dhavala, Dominique Lord, and Sarah LaRocca. "Characterizing the Performance of the Conway-Maxwell Poisson Generalized Linear Model." Risk Analysis 32, no. 1 (July 30, 2011): 167–83. http://dx.doi.org/10.1111/j.1539-6924.2011.01659.x.
Full textLi, Chuangdi, Xuefeng Yang, Yuxiang Li, and Xinguang Ge. "Wind vibration responses of structure with generalized Maxwell model viscoelastic dampers." Structures 47 (January 2023): 425–33. http://dx.doi.org/10.1016/j.istruc.2022.10.127.
Full textCao, Limei, Cong Li, Botong Li, Xinhui Si, and Jing Zhu. "Electro-osmotic flow of generalized Maxwell fluids in triangular microchannels based on distributed order time fractional constitutive model." AIP Advances 13, no. 2 (February 1, 2023): 025146. http://dx.doi.org/10.1063/5.0138004.
Full textFrolova, A. A. "Numerical Comparison of the Generalized Maxwell and Cercignani–Lampis Models." Computational Mathematics and Mathematical Physics 60, no. 12 (December 2020): 2094–107. http://dx.doi.org/10.1134/s0965542520120040.
Full textJalocha, D., A. Constantinescu, and R. Neviere. "Revisiting the identification of generalized Maxwell models from experimental results." International Journal of Solids and Structures 67-68 (August 2015): 169–81. http://dx.doi.org/10.1016/j.ijsolstr.2015.04.018.
Full text