Academic literature on the topic 'Generalized eigenvalue algorithm'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Generalized eigenvalue algorithm.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Generalized eigenvalue algorithm"
Kangal, Fatih, and Emre Mengi. "Nonsmooth algorithms for minimizing the largest eigenvalue with applications to inner numerical radius." IMA Journal of Numerical Analysis 40, no. 4 (November 13, 2019): 2342–76. http://dx.doi.org/10.1093/imanum/drz041.
Full textNedamani, F. Abbasi, A. H. Refahi Sheikhani, and H. Saberi Najafi. "A New Algorithm for Solving Large-Scale Generalized Eigenvalue Problem Based on Projection Methods." Mathematical Problems in Engineering 2020 (December 14, 2020): 1–10. http://dx.doi.org/10.1155/2020/8895856.
Full textZheng, Wenming. "Class-Incremental Generalized Discriminant Analysis." Neural Computation 18, no. 4 (April 1, 2006): 979–1006. http://dx.doi.org/10.1162/neco.2006.18.4.979.
Full textOustry, François. "A Superlinear Algorithm to Solve Generalized Eigenvalue Problems." IFAC Proceedings Volumes 30, no. 27 (October 1997): 291–95. http://dx.doi.org/10.1016/s1474-6670(17)41197-9.
Full textDai, Hua. "An algorithm for symmetric generalized inverse eigenvalue problems." Linear Algebra and its Applications 296, no. 1-3 (July 1999): 79–98. http://dx.doi.org/10.1016/s0024-3795(99)00109-3.
Full textZheng, Wenming, Li Zhao, and Cairong Zou. "A Modified Algorithm for Generalized Discriminant Analysis." Neural Computation 16, no. 6 (June 1, 2004): 1283–97. http://dx.doi.org/10.1162/089976604773717612.
Full textRajakumar, C., and C. R. Rogers. "The Lanczos algorithm applied to unsymmetric generalized eigenvalue problem." International Journal for Numerical Methods in Engineering 32, no. 5 (October 5, 1991): 1009–26. http://dx.doi.org/10.1002/nme.1620320506.
Full textAishima, Kensuke. "A quadratically convergent algorithm for inverse generalized eigenvalue problems." Journal of Computational and Applied Mathematics 367 (March 2020): 112485. http://dx.doi.org/10.1016/j.cam.2019.112485.
Full textLi, Kuiyuan, Tien-Yien Li, and Zhonggang Zeng. "An algorithm for the generalized symmetric tridiagonal eigenvalue problem." Numerical Algorithms 8, no. 2 (September 1994): 269–91. http://dx.doi.org/10.1007/bf02142694.
Full textSpiridonov, Alexander O., Anna I. Repina, Ilya V. Ketov, Sergey I. Solov’ev, and Evgenii M. Karchevskii. "Exponentially Convergent Galerkin Method for Numerical Modeling of Lasing in Microcavities with Piercing Holes." Axioms 10, no. 3 (August 11, 2021): 184. http://dx.doi.org/10.3390/axioms10030184.
Full textDissertations / Theses on the topic "Generalized eigenvalue algorithm"
Maeda, Kazuki. "Theory of Discrete and Ultradiscrete Integrable Finite Lattices Associated with Orthogonal Polynomials and Its Applications." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/188859.
Full textAdlerborn, Björn. "Parallel Algorithms and Library Software for the Generalized Eigenvalue Problem on Distributed Memory Computer Systems." Licentiate thesis, Umeå universitet, Institutionen för datavetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-119439.
Full textRippl, Michael [Verfasser], Thomas [Akademischer Betreuer] Huckle, Bruno [Gutachter] Lang, and Thomas [Gutachter] Huckle. "Parallel Algorithms for the Solution of Banded Symmetric Generalized Eigenvalue Problems / Michael Rippl ; Gutachter: Bruno Lang, Thomas Huckle ; Betreuer: Thomas Huckle." München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/1230985379/34.
Full textLee, Ling, and 李. 凌. "Design and Implementation of Modified Generalized Eigenvalue Decomposition Processor based on Square-Root Algorithm for Leakage-based Precoding in MU-MIMO Systems." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/fe23hm.
Full text國立清華大學
通訊工程研究所
104
In order to improve the speed and reliability in current wireless communication system, multiuser MIMO (MU-MIMO) has become a popular research topic. For suppressing co-channel interference, it is necessary to design a precoding scheme for MU-MIMO downlink communication system. Leakage-based precoding scheme is a popular scheme for MU-MIMO communication system because of good performance. By adopting leakage-based precoding scheme, generalized eigenvalue decomposition (GEVD) is not only an inevitable process but also a complicated operation to calculate the precoder. Therefore, a GEVD hardware algorithm is proposed for decreasing computational time in this thesis. Compared to the conventional GEVD algorithm, the proposed algorithm has the less number of multiplications and shorter latency according to the theoretical analysis and practical implementation. The architecture of the proposed algorithm is presented in the following content. The proposed algorithm is implemented and verified by FPGA. The synthesis results in terms of FPGA and TSMC 90nm/40nm are shown. In the end of thesis, the architecture of the proposed algorithm is implemented as chip with TSMC 40nm and the specifications of the chip are presented.
Men, Quei Sung, and 門桂松. "Some Davidson - Type Algorithms for the Generalized Eigenvalue Problems." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/26205912869350159059.
Full textZENG, RONG-CHUAN, and 曾榮川. "HMDR AND FMDR ALGORITHMS AND ITS APPLICATIONS TO THE GENERALIZED EIGENVALUE PROBLEMS AND OPTIMAL CONTROL PROBLEMS." Thesis, 1988. http://ndltd.ncl.edu.tw/handle/21916418430457789331.
Full textBooks on the topic "Generalized eigenvalue algorithm"
L, Patrick Merrell, and Langley Research Center, eds. The use of Lanczos's method to solve the large generalized symmetric definite eigenvalue problem. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Find full textAmin, Nabil Ahmed Fouad. Adaptive antenna algorithms for maximizing the signal to jamming-plus-noise ratio as solving the generalized Eigenvalue problem. 1988.
Find full textBook chapters on the topic "Generalized eigenvalue algorithm"
Liu, Yifan, and Zheng Su. "Generalized Rayleigh Quotient Shift Strategy in QR Algorithm for Eigenvalue Problems." In Lecture Notes in Computer Science, 391–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-31852-1_47.
Full textChen, G., H. B. Keller, S. H. Lui, and B. Roux. "Parallel homotopy algorithm for large sparse generalized eigenvalue problems: Application to hydrodynamic stability analysis." In Parallel Processing: CONPAR 92—VAPP V, 331–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55895-0_427.
Full textCullum, Jane K., and Ralph A. Willoughby. "Real Symmetric Generalized Problems." In Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. II Programs, 228–72. Boston, MA: Birkhäuser Boston, 1985. http://dx.doi.org/10.1007/978-1-4684-9178-4_5.
Full textHara, Satoshi, Yoshinobu Kawahara, Takashi Washio, and Paul von Bünau. "Stationary Subspace Analysis as a Generalized Eigenvalue Problem." In Neural Information Processing. Theory and Algorithms, 422–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17537-4_52.
Full textBeattie, C., A. Beex, and M. Fargues. "Rank-One Extensions of the Generalized Hermitian Eigenvalue Problem for Adaptive High Resolution Array Processing." In Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, 417–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75536-1_22.
Full text"Chapter 5: Generalized and Matrix Polynomial Eigenvalue Problems." In Core-Chasing Algorithms for the Eigenvalue Problem, 89–104. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2018. http://dx.doi.org/10.1137/1.9781611975345.ch5.
Full textEricsson, Thomas. "A Generalised Eigenvalue Problem and The Lanczos Algorithm." In Large Scale Eigenvalue Problems, Proceedings of the IBM Europe Institute Workshop on Large Scale Eigenvalue Problems, 95–119. Elsevier, 1986. http://dx.doi.org/10.1016/s0304-0208(08)72642-2.
Full textConference papers on the topic "Generalized eigenvalue algorithm"
Hang, Tana, Guoren Yang, Bo Yu, Xuesong Liang, and Ying Tang. "Neural Network Based Algorithm for Generalized Eigenvalue Problem." In 2013 International Conference on Information Science and Cloud Computing Companion (ISCC-C). IEEE, 2013. http://dx.doi.org/10.1109/iscc-c.2013.93.
Full textSong, Junxiao, Prabhu Babu, and Daniel P. Palomar. "A fast algorithm for sparse generalized eigenvalue problem." In 2014 48th Asilomar Conference on Signals, Systems and Computers. IEEE, 2014. http://dx.doi.org/10.1109/acssc.2014.7094747.
Full textRong Wang, Feifei Gao, Minli Yao, and Hongxing Zou. "Low complexity adaptive algorithm for generalized eigenvalue decomposition." In 2013 8th International Conference on Communications and Networking in China (CHINACOM). IEEE, 2013. http://dx.doi.org/10.1109/chinacom.2013.6694681.
Full textBeex, A. A., D. M. Wilkes, and M. P. Fargues. "The C-RISE algorithm and the generalized eigenvalue problem." In [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1991. http://dx.doi.org/10.1109/icassp.1991.150101.
Full textYuan, Ganzhao, Li Shen, and Wei-Shi Zheng. "A Decomposition Algorithm for the Sparse Generalized Eigenvalue Problem." In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. http://dx.doi.org/10.1109/cvpr.2019.00627.
Full textZhou, Wenliang, and David Chelidze. "Generalized Eigenvalue Decomposition in Time Domain Modal Parameter Identification." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14702.
Full textAbed-Meraim, Karim, and Samir Attallah. "A new adaptive algorithm for the generalized symmetric eigenvalue problem." In 2007 9th International Symposium on Signal Processing and Its Applications (ISSPA). IEEE, 2007. http://dx.doi.org/10.1109/isspa.2007.4555621.
Full textZhou, Youling, Angli Liu, Wencai Du, and Jiping Jiao. "EF-ESPRIT: A simplified ESPRIT algorithm without generalized eigenvalue calculation." In 2013 3rd International Conference on Computer Science and Network Technology (ICCSNT). IEEE, 2013. http://dx.doi.org/10.1109/iccsnt.2013.6967222.
Full textLin, R. M., Z. Wang, and M. K. Lim. "A Practical Algorithm for the Efficient Computation of Eigenvector Derivatives." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0486.
Full textRezaei, Shahram. "Generalizing of Numerically Solving Methods of Eigenvalue Problems to Asymmetrical, Damping Included Case." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/cie-21270.
Full text