Academic literature on the topic 'Generalized linear models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Generalized linear models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Generalized linear models"
Schuenemeyer, John H., P. McCullagh, and J. A. Nelder. "Generalized Linear Models." Technometrics 34, no. 2 (May 1992): 224. http://dx.doi.org/10.2307/1269238.
Full textLachenbruch, P. A., P. McCullagh, and J. A. Nelder. "Generalized Linear Models." Biometrics 46, no. 4 (December 1990): 1231. http://dx.doi.org/10.2307/2532465.
Full textHilbe, Joseph M. "Generalized Linear Models." American Statistician 48, no. 3 (August 1994): 255. http://dx.doi.org/10.2307/2684732.
Full textHu, X. Joan. "Generalized Linear Models." American Statistician 57, no. 1 (February 2003): 67–68. http://dx.doi.org/10.1198/tas.2003.s212.
Full textHilbe, Joseph M. "Generalized Linear Models." American Statistician 48, no. 3 (August 1994): 255–65. http://dx.doi.org/10.1080/00031305.1994.10476073.
Full textZiegel, Eric R. "Generalized Linear Models." Technometrics 44, no. 3 (August 2002): 287–88. http://dx.doi.org/10.1198/004017002320256422.
Full textThompson, W. A., P. McCullagh, J. A. Nelder, and Annette J. Dobson. "Generalized Linear Models." Journal of the American Statistical Association 80, no. 392 (December 1985): 1066. http://dx.doi.org/10.2307/2288581.
Full textBurridge, Jim, P. McCullagh, and J. A. Nelder. "Generalized Linear Models." Journal of the Royal Statistical Society. Series A (Statistics in Society) 154, no. 2 (1991): 361. http://dx.doi.org/10.2307/2983054.
Full textMcCulloch, Charles E. "Generalized Linear Models." Journal of the American Statistical Association 95, no. 452 (December 2000): 1320–24. http://dx.doi.org/10.1080/01621459.2000.10474340.
Full textPukelsheim, F. "Generalized linear models." Metrika 33, no. 1 (December 1986): 290. http://dx.doi.org/10.1007/bf01894758.
Full textDissertations / Theses on the topic "Generalized linear models"
Mackinnon, Murray J. "Collinearity in generalized linear models." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/25711.
Full textBusiness, Sauder School of
Graduate
Benghiat, Sonia. "Diagnostics for generalized linear models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ64046.pdf.
Full textCreagh-Osborne, Jane. "Latent variable generalized linear models." Thesis, University of Plymouth, 1998. http://hdl.handle.net/10026.1/1885.
Full textVasconcelos, Julio Cezar Souza. "Modelo linear parcial generalizado simétrico." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-26072017-105153/.
Full textIn this work we propose the symmetric generalized partial linear model, based on the generalized partial linear models and symmetric linear models, that is, the response variable follows a distribution that belongs to the symmetric distribution family, considering a linear predictor that has a parametric and a non-parametric component. Some distributions that belong to this class are distributions: Normal, t-Student, Power Exponential, Slash and Hyperbolic among others. A brief review of the concepts used throughout the work was presented, namely: residual analysis, local influence, smoothing parameter, spline, cubic spline, natural cubic spline and backfitting algorithm, among others. In addition, a brief theory of GAMLSS models is presented (generalized additive models for position, scale and shape). The models were adjusted using the package gamlss available in the free R software. The model selection was based on the Akaike criterion (AIC). Finally, an application is presented based on a set of real data from Chile\'s financial area.
Stroinski, Krzysztof Jerzy. "Generalized linear models in motor insurance." Thesis, Heriot-Watt University, 1987. http://hdl.handle.net/10399/1044.
Full textHolmberg, Henrik. "Generalized linear models with clustered data." Doctoral thesis, Umeå universitet, Statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-52902.
Full textGory, Jeffrey J. "Marginally Interpretable Generalized Linear Mixed Models." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1497966698387606.
Full textJiang, Dingfeng. "Concave selection in generalized linear models." Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/2902.
Full textSammut, Fiona. "Using generalized linear models to model compositional response data." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/89876/.
Full textZulj, Valentin. "On The Jackknife Averaging of Generalized Linear Models." Thesis, Uppsala universitet, Statistiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-412831.
Full textBooks on the topic "Generalized linear models"
Gilchrist, Robert, Brian Francis, and Joe Whittaker, eds. Generalized Linear Models. New York, NY: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4615-7070-7.
Full textMyers, Raymond H., Douglas C. Montgomery, G. Geoffrey Vining, and Timothy J. Robinson. Generalized Linear Models. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470556986.
Full textMcCullagh, P., and J. A. Nelder. Generalized Linear Models. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3242-6.
Full textGill, Jeff. Generalized Linear Models. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 2001. http://dx.doi.org/10.4135/9781412984348.
Full textA, Nelder John, ed. Generalized linear models. 2nd ed. London: Chapman and Hall, 1989.
Find full textMcCulloch, Charles E. Generalized Linear Mixed Models. Beechwood OH and Alexandria VA: Institute of Mathematical Statistics and American Statistical Association, 2003. http://dx.doi.org/10.1214/cbms/1462106059.
Full textConference Board of the Mathematical Sciences. and National Science Foundation (U.S.), eds. Generalized linear mixed models. Beachwood, Ohio: Institute of Mathematical Statistics, 2003.
Find full textMcCulloch, Charles E. Generalized, linear, and mixed models. New York: John Wiley & Sons, 2001.
Find full textMcCulloch, Charles E. Generalized, Linear, and Mixed Models. New York: John Wiley & Sons, Ltd., 2005.
Find full textHardin, James W. Generalized linear models and extensions. 3rd ed. College Station, Tex: Stata Press, 2012.
Find full textBook chapters on the topic "Generalized linear models"
Salinas Ruíz, Josafhat, Osval Antonio Montesinos López, Gabriela Hernández Ramírez, and Jose Crossa Hiriart. "Generalized Linear Models." In Generalized Linear Mixed Models with Applications in Agriculture and Biology, 43–84. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-32800-8_2.
Full textBapat, R. B. "Generalized Inverses." In Linear Algebra and Linear Models, 31–36. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2739-0_4.
Full textMcCullagh, P., and J. A. Nelder. "Log-linear models." In Generalized Linear Models, 193–244. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3242-6_6.
Full textZiegler, Andreas. "Generalized linear models." In Generalized Estimating Equations, 21–28. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0499-6_3.
Full textMcCullagh, P., and J. A. Nelder. "Introduction." In Generalized Linear Models, 1–20. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3242-6_1.
Full textMcCullagh, P., and J. A. Nelder. "Joint modelling of mean and dispersion." In Generalized Linear Models, 357–71. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3242-6_10.
Full textMcCullagh, P., and J. A. Nelder. "Models with additional non-linear parameters." In Generalized Linear Models, 372–90. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3242-6_11.
Full textMcCullagh, P., and J. A. Nelder. "Model checking." In Generalized Linear Models, 391–418. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3242-6_12.
Full textMcCullagh, P., and J. A. Nelder. "Models for survival data." In Generalized Linear Models, 419–31. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3242-6_13.
Full textMcCullagh, P., and J. A. Nelder. "Components of dispersion." In Generalized Linear Models, 432–54. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3242-6_14.
Full textConference papers on the topic "Generalized linear models"
Zhou, Yuhong, Xuewei Li, and Wanqiu Xie. "Association analysis of ordinal traits in generalized partial linear cumulative logistic models." In 2024 Fourth International Conference on Biomedicine and Bioinformatics Engineering (ICBBE 2024), edited by Pier Paolo Piccaluga, Ahmed El-Hashash, and Xiangqian Guo, 9. SPIE, 2024. http://dx.doi.org/10.1117/12.3044097.
Full textJambulapati, Arun, James R. Lee, Yang P. Liu, and Aaron Sidford. "Sparsifying Generalized Linear Models." In STOC '24: 56th Annual ACM Symposium on Theory of Computing. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3618260.3649684.
Full textLee, Kuan-Yun, and Thomas A. Courtade. "Linear Models are Most Favorable among Generalized Linear Models." In 2020 IEEE International Symposium on Information Theory (ISIT). IEEE, 2020. http://dx.doi.org/10.1109/isit44484.2020.9174124.
Full textBo-June (Paul) Hsu. "Generalized linear interpolation of language models." In 2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU). IEEE, 2007. http://dx.doi.org/10.1109/asru.2007.4430098.
Full textBosowski, Nicholas, Vinay Ingle, and Dimitris Manolakis. "Generalized Linear Models for count time series." In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. http://dx.doi.org/10.1109/icassp.2017.7952962.
Full textRoth, Volker, and Bernd Fischer. "The Group-Lasso for generalized linear models." In the 25th international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1390156.1390263.
Full textHansen, M. H., and Bin Yu. "Mdl selection criteria for generalized linear models." In IEEE International Symposium on Information Theory, 2003. Proceedings. IEEE, 2003. http://dx.doi.org/10.1109/isit.2003.1228302.
Full textKumar, Arun, Jeffrey Naughton, and Jignesh M. Patel. "Learning Generalized Linear Models Over Normalized Data." In SIGMOD/PODS'15: International Conference on Management of Data. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2723372.2723713.
Full textYang, Shuhua, Hui Yuan, Xiaoying Zhang, Mengdi Wang, Hong Zhang, and Huazheng Wang. "Conversational Dueling Bandits in Generalized Linear Models." In KDD '24: The 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 3806–17. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3637528.3671892.
Full textHakimdavoodi, Hamidreza, and Maryam Amirmazlghani. "Maximum likelihood estimation of generalized linear models with generalized Gaussian residuals." In 2016 2nd International Conference of Signal Processing and Intelligent Systems (ICSPIS). IEEE, 2016. http://dx.doi.org/10.1109/icspis.2016.7869893.
Full textReports on the topic "Generalized linear models"
Moral, Rafael. Introduction to Generalized Linear Models. Instats Inc., 2024. http://dx.doi.org/10.61700/vteee3zjf6fsm1478.
Full textYee, Thomas. Vector Generalized Linear and Additive Models. Instats Inc., 2024. http://dx.doi.org/10.61700/dw398w3pmbj5f1724.
Full textJuricek, Ben C. Generalized Linear Mixed-Effects Models in R. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada413561.
Full textCarroll, Raymond J. Covariance Analysis in Generalized Linear Measurement Error Models. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada197661.
Full textArmstrong, Dave. Generalized Linear Models for Social and Health Sciences. Instats Inc., 2023. http://dx.doi.org/10.61700/dpngncc99f4pr469.
Full textBianchi, Francesco, and Giovanni Nicolò. A Generalized Approach to Indeterminacy in Linear Rational Expectations Models. Cambridge, MA: National Bureau of Economic Research, June 2017. http://dx.doi.org/10.3386/w23521.
Full textZhong, Xiaojing. Aggregation Effects in Generalized Linear Models: A Biochemical Engineering Application. Ames (Iowa): Iowa State University, January 2019. http://dx.doi.org/10.31274/cc-20240624-126.
Full textStefanski, Leonard A., and Raymond J. Carroll. Conditional Scores and Optimal Scores for Generalized Linear Measurement-Error Models. Fort Belvoir, VA: Defense Technical Information Center, October 1985. http://dx.doi.org/10.21236/ada168533.
Full textKunsch, H. R., L. A. Stefanski, and R. J. Carroll. Conditionally Unbiased Bounded Influence Robust Regression with Applications to Generalized Linear Models. Fort Belvoir, VA: Defense Technical Information Center, March 1987. http://dx.doi.org/10.21236/ada186319.
Full textArmstrong, Dave. Interactions and Non-Linearities in Regression Models. Instats Inc., 2023. http://dx.doi.org/10.61700/lnujxkrxa8jtk469.
Full text