Dissertations / Theses on the topic 'Generalized linear models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Generalized linear models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mackinnon, Murray J. "Collinearity in generalized linear models." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/25711.
Full textBusiness, Sauder School of
Graduate
Benghiat, Sonia. "Diagnostics for generalized linear models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ64046.pdf.
Full textCreagh-Osborne, Jane. "Latent variable generalized linear models." Thesis, University of Plymouth, 1998. http://hdl.handle.net/10026.1/1885.
Full textVasconcelos, Julio Cezar Souza. "Modelo linear parcial generalizado simétrico." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-26072017-105153/.
Full textIn this work we propose the symmetric generalized partial linear model, based on the generalized partial linear models and symmetric linear models, that is, the response variable follows a distribution that belongs to the symmetric distribution family, considering a linear predictor that has a parametric and a non-parametric component. Some distributions that belong to this class are distributions: Normal, t-Student, Power Exponential, Slash and Hyperbolic among others. A brief review of the concepts used throughout the work was presented, namely: residual analysis, local influence, smoothing parameter, spline, cubic spline, natural cubic spline and backfitting algorithm, among others. In addition, a brief theory of GAMLSS models is presented (generalized additive models for position, scale and shape). The models were adjusted using the package gamlss available in the free R software. The model selection was based on the Akaike criterion (AIC). Finally, an application is presented based on a set of real data from Chile\'s financial area.
Stroinski, Krzysztof Jerzy. "Generalized linear models in motor insurance." Thesis, Heriot-Watt University, 1987. http://hdl.handle.net/10399/1044.
Full textHolmberg, Henrik. "Generalized linear models with clustered data." Doctoral thesis, Umeå universitet, Statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-52902.
Full textGory, Jeffrey J. "Marginally Interpretable Generalized Linear Mixed Models." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1497966698387606.
Full textJiang, Dingfeng. "Concave selection in generalized linear models." Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/2902.
Full textSammut, Fiona. "Using generalized linear models to model compositional response data." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/89876/.
Full textZulj, Valentin. "On The Jackknife Averaging of Generalized Linear Models." Thesis, Uppsala universitet, Statistiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-412831.
Full textLi, Zuojing. "Longitudinal data analysis using generalized linear models." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27267.
Full textHamzah, Nor Aishah. "Robust regression estimation in generalized linear models." Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294372.
Full textByrne, Evan. "Inference in Generalized Linear Models with Applications." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555152640361367.
Full textMin, Min. "Asymptotic normality in generalized linear mixed models." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7758.
Full textThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Utami, Zuliana Sri. "Penalized regression methods with application to generalized linear models, generalized additive models, and smoothing." Thesis, University of Essex, 2017. http://repository.essex.ac.uk/20908/.
Full textCarlos, Monteiro Ponce de Leon Antonio. "Optimum experimental design for model discrimination and generalized linear models." Thesis, London School of Economics and Political Science (University of London), 1993. http://etheses.lse.ac.uk/2434/.
Full textEmond, Mary Jane. "Efficient estimation in the generalized semilinear model /." Thesis, Connect to this title online; UW restricted, 1993. http://hdl.handle.net/1773/9543.
Full textPetry, Sebastian. "Regularization approaches for generalized linear models and single index models." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-143983.
Full textDunn, Peter Kenneth. "Likelihood-based inference for tweedie generalized linear models /." St. Lucia, Qld, 2001. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16472.pdf.
Full textRusch, Thomas, and Achim Zeileis. "Gaining Insight with Recursive Partitioning of Generalized Linear Models." Taylor and Francis, 2013. http://dx.doi.org/10.1080/00949655.2012.658804.
Full textRusch, Thomas, and Achim Zeileis. "Gaining Insight With Recursive Partitioning Of Generalized Linear Models." WU Vienna University of Economics and Business, 2011. http://epub.wu.ac.at/3143/6/paperEPUB.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Ulbricht, Jan [Verfasser]. "Variable Selection in Generalized Linear Models / Jan Ulbricht." München : Verlag Dr. Hut, 2010. http://d-nb.info/1008331422/34.
Full textSidumo, Bonelwa. "Generalized linear models, with applications in fisheries research." Thesis, Rhodes University, 2018. http://hdl.handle.net/10962/61102.
Full textBate, Steven Mark. "Generalized linear models for large dependent data sets." Thesis, University College London (University of London), 2004. http://discovery.ucl.ac.uk/1446542/.
Full textZhang, Ying. "Bayesian D-Optimal Design for Generalized Linear Models." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/30147.
Full textPh. D.
Winterer, Carrie Genevieve. "Predicting Twitter Time Series Using Generalized Linear Models." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1528400283595732.
Full textStephenson, William T. (William Thomas). "Approximate cross validation for sparse generalized linear models." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121742.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 59-60).
Cross validation (CV) is an effective yet computationally expensive tool for assessing the out of sample error for many methods in machine learning and statistics. Previous work has shown that methods to approximate CV can be very accurate and computationally cheap, but only for low dimensional problems. In this thesis, a modification of existing methods is developed to extend the high accuracy of these techniques to high dimensional settings.
by William T. Stephenson.
S.M.
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Greenaway, Mark Jonathan. "Numerically Stable Approximate Bayesian Methods for Generalized Linear Mixed Models and Linear Model Selection." Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/20233.
Full textHercz, Daniel. "Flexible modeling with generalized additive models and generalized linear mixed models: comprehensive simulation and case studies." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114300.
Full textCette these compare des GAM et GLMM dans le cadre de la modélisation des courbes non-linéaires. L'étude comprend une simulation complète et quelques analyses réelles. La simulation utilise des milliers de 'datasets' générés pour comparer forme entres les deux modèles (et les modèles linéaires comme point de repère), l'étendue de la non-linéarité, et la forme de la courbe obtenue. Les analyses d'étendre les résultats de la simulation à courbes de la fonction pulmonaire avec de GLMM / GAM avec mesures du tabagisme (la variable indépendante). Un autre analyse réelle avec les résultats dichotomiques complète l'étude et que les résultats soient plus représentatifs.
Feng, Zhenghui. "Estimation and selection in additive and generalized linear models." HKBU Institutional Repository, 2012. https://repository.hkbu.edu.hk/etd_ra/1435.
Full textMa, Renjun. "An orthodox BLUP approach to generalized linear mixed models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0024/NQ38934.pdf.
Full textAhlgren, Marcus. "Claims Reserving using Gradient Boosting and Generalized Linear Models." Thesis, KTH, Matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229406.
Full textEn av de centrala verksamheterna ett försäkringsbolag arbetar med handlar om att uppskatta skadekostnader för att kunna ersätta försäkringstagarna. Denna procedur kallas reservsättning och utförs av aktuarier med hjälp av statistiska metoder. Under de senaste årtiondena har statistiska inlärningsmetoder blivit mer och mer populära tack vare deras förmåga att hitta komplexa mönster i alla typer av data. Dock har intresset för dessa varit relativt lågt inom försäkringsbranschen till förmån för mer traditionella försäkringsmatematiska metoder. I den här masteruppsatsen undersöker vi förmågan att reservsätta med metoden \textit{gradient boosting}, en icke-parametrisk statistisk inlärningsmetod som har visat sig fungera mycket väl inom en rad andra områden vilket har gjort metoden mycket populär. Vi jämför denna metod med generaliserade linjära modeller(GLM) som är en av de vanliga metoderna vid reservsättning. Vi jämför modellerna med hjälp av ett dataset tillhandahålls av Länsförsäkringar AB. Modellerna implementerades med R. 80\% av detta dataset används för att träna modellerna och resterande 20\% används för att evaluera modellernas prediktionsförmåga på okänd data. Resultaten visar att GLM har ett lägre prediktionsfel. Gradient boosting kräver att ett antal hyperparametrar justeras manuellt för att få en välfungerande modell medan GLM inte kräver lika mycket korrigeringar varför den är mer praktiskt lämpad. Fördelen med att kunna modellerna komplexa förhållanden i data utnyttjas inte till fullo i denna uppsats då vi endast arbetar med sex prediktionsvariabler. Det är sannolikt att gradient boosting skulle ge bättre resultat med mer komplicerade datastrukturer.
Tang, On-yee, and 鄧安怡. "Estimation for generalized linear mixed model via multipleimputations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B30687652.
Full textYam, Ho-kwan, and 任浩君. "On a topic of generalized linear mixed models and stochastic volatility model." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B29913342.
Full textPetry, Sebastian [Verfasser]. "Regularization Approaches for Generalized Linear Models and Single Index Models / Sebastian Petry." München : Verlag Dr. Hut, 2012. http://d-nb.info/1023435241/34.
Full textWu, Ka-yui Karl, and 胡家銳. "On some extensions of generalized linear models with varying dispersion." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48199370.
Full textpublished_or_final_version
Statistics and Actuarial Science
Doctoral
Doctor of Philosophy
Ten, Eyck Patrick. "Problems in generalized linear model selection and predictive evaluation for binary outcomes." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/6003.
Full textTang, On-yee. "Estimation for generalized linear mixed model via multiple imputations." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B30687652.
Full textHolanda, Amanda Amorim. "Modelos lineares parciais aditivos generalizados com suavização por meio de P-splines." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-31052018-113859/.
Full textIn this work we present the generalized partial linear models with one continuous explanatory variable treated nonparametrically and the generalized additive partial linear models with at least two continuous explanatory variables treated in such a way. The P-splines are used to describe the relationship among the response and the continuous explanatory variables. Then, the penalized likelihood functions, penalized score functions and penalized Fisher information matrices are derived to obtain the penalized maximum likelihood estimators by the combination of the backfitting (Gauss-Seidel) algorithm and the Fisher escoring iterative method for the two types of model. In addition, we present ways to estimate the smoothing parameter as well as the effective degrees of freedom. Finally, for the purpose of illustration, the proposed models are fitted to real data sets.
Dagalp, Rukiye Esener. "Estimators For Generalized Linear Measurement Error Models With Interaction Terms." NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20011019-142524.
Full textThe primary objectives of this research are to develop andstudy estimators for generalized linear measurement errormodels when the mean function contains error-free predictorsas well as predictors measured with error and interactions between error-free and error-prone predictors. Attention is restricted to generalized linear models in canonical form with independent additive Gaussian measurement error in the error-prone predictors.Estimators appropriate for the functional (Fuller, 1987, Ch.1) version of the measurement error model are derived and studied. The estimators are also appropriate in the structural version of the model and thus the methods developed in this research are functional in the sense of Carroll, Ruppert and Stefanski (1995, Ch. 6).The primary approach to the development of estimators in this research is the conditional-score method proposed byStefanski and Carroll (1987) and described by Carroll et al.(1995, Ch. 6). Sufficient statistics for the unobserved predictors are obtained and the conditional distribution of the observed data given these sufficient statistics is derived. The latter admits unbiased score functions that arefree of the nuisance parameters (the unobserved predictors) and are used to construct unbiased estimating equations for model parameters.Estimators for the parameters of the model of interest are also derived using the corrected approach proposed by Nakamura (1990) and Stefanski (1989). These are also functional estimators in the sense of Carroll et al. (1995, Ch. 6) that are less dependent on the exponential-family model assumptions and thus provide a benchmark against whichto compare the conditional-score estimators.Large-sample distribution approximations for both theconditional-score and corrected-score estimators are derivedand the performance of the estimators and the adequacy of the large-sample distribution theory are studied via Monte Carlo simulation.
Merl, Daniel M. "Detecting patterns of natural selection using bayesian generalized linear models /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2006. http://uclibs.org/PID/11984.
Full textPan, Yiyang. "A robust fit for generalized partial linear partial additive models." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44647.
Full text鄧沛權 and Pui-kuen Tang. "Bayesian analysis of errors-in-variables in generalized linear models." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1992. http://hub.hku.hk/bib/B31232802.
Full textTang, Pui-kuen. "Bayesian analysis of errors-in-variables in generalized linear models /." [Hong Kong : University of Hong Kong], 1992. http://sunzi.lib.hku.hk/hkuto/record.jsp?B1325330X.
Full textYan, Huey. "Generalized Minimum Penalized Hellinger Distance Estimation and Generalized Penalized Hellinger Deviance Testing for Generalized Linear Models: The Discrete Case." DigitalCommons@USU, 2001. https://digitalcommons.usu.edu/etd/7066.
Full textSima, Adam. "Accounting for Model Uncertainty in Linear Mixed-Effects Models." VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/2950.
Full textMaekawa, Eduardo Shigueiti. "Estimativa do custo da colheita mecanizada de cana-de-açúcar utilizando modelos de regressão." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-30092016-101059/.
Full textThe mechanized harvesting of sugarcane is one of the most significant and costly operations of the production process, thus it is important to understand the relationships involving its cost. Currently, methods to estimate these costs rise from the concept of fixed and variable cost. However, considering the complexity of the harvesting process, it is necessary to evaluate techniques to relate the operating parameters with the final cost. In this context, statistical modeling by regression allows to treat such relationship and predict trends. The objective of this study was to develop an empirical model to calculate the cost of mechanical harvesting of sugarcane. A generalized linear model (GLM) and a generalized linear mixed model (GLMM) both with gamma distribution was developed using operational indicators and cost data from 20 plants in the sugarcane industry. Through the GLMM, satisfactory adhesion was obtained when compared to the GLM, null model (average) and linear (assuming normality). The indicators that explained the cost were: productivity (t mach-1), consumption (l t-1), hourmeter (h) and number of operators per harvester (nop).
Celik, Gul. "Parameter Estimation In Generalized Partial Linear Models With Conic Quadratic Programming." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612531/index.pdf.
Full textKarlsson, Sofia. "Purchase behaviour analysis in the retail industry using Generalized Linear Models." Thesis, KTH, Matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234684.
Full textMatematisk statistik tillämpas i denna masteruppsats för att analysera köpbeteende baserat på kunddata från det svenska varumärket Indiska. Syftet med studien är att bygga modeller som kan hjälpa till att förutsäga försäljningskvantiteter för olika produktklasser och identifiera vilka faktorer som är mest signifikanta i de olika modellerna och därtill att skapa en algoritm som ger förslag på rekommenderade produktkombinationer i köpprocessen. Generaliserade linjära modeller med en negativ binomialfördelning utvecklades för att beräkna den förutspådda försäljningskvantiteten för de olika produktklasserna. Dessutom används betingad sannolikhet i algoritmen som resulterar i en produktrekommendationsmotor som baseras på den betingade sannolikheten att de föreslagna produktkombinationerna är inköpta.Från resultaten kan slutsatsen dras att alla variabler som beaktas i modellerna; originalpris, inköpsmånad, produktfärg, kluster, inköpsland och kanal är signifikanta för det predikterade resultatet av försäljningskvantiteten för varje produktklass. Vidare är det möjligt att, med hjälp av betingad sannolikhet och historisk försäljningsdata, konstruera en algoritm som skapar rekommendationer av produktkombinationer av en eller två produkter som kan köpas tillsammans med en produkt som en kund visar intresse för.
Jiang, Jinzhu. "Feature Screening for High-Dimensional Variable Selection In Generalized Linear Models." Bowling Green State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1626826068909307.
Full text