Journal articles on the topic 'Generalized Lotka-Volterra Chaotic System'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Generalized Lotka-Volterra Chaotic System.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Stucki, Jörg W., and Robert Urbanczik. "Entropy Production of the Willamowski-Rössler Oscillator." Zeitschrift für Naturforschung A 60, no. 8-9 (2005): 599–9. http://dx.doi.org/10.1515/zna-2005-8-907.
Full textChaudhary, Harindri, Mohammad Sajid, Santosh Kaushik, and Ali Allahem. "Stability analysis of chaotic generalized Lotka-Volterra system via active compound difference anti-synchronization method." Mathematical Biosciences and Engineering 20, no. 5 (2023): 9410–22. http://dx.doi.org/10.3934/mbe.2023413.
Full textSerpa, Nilo, and José Roberto Costa Steiner. "Advanced predator-prey Modelling for Work and Employment Scenarios: Brazil in Focus." CALIBRE - Revista Brasiliense de Engenharia e Física Aplicada 7, no. 2 (2022): 26. http://dx.doi.org/10.17648/calibre.v7i2.3455.
Full textTrikha, P., Nasreen, and L. S. Jahanzaib. "Combination Difference Synchronization between Identical Generalised Lotka-Volterra Chaotic Systems." Journal of Scientific Research 12, no. 2 (2020): 183–88. http://dx.doi.org/10.3329/jsr.v12i2.43765.
Full textChristie, J. R., K. Gopalsamy, and Jibin Li. "Chaos in perturbed Lotka-Volterra systems." ANZIAM Journal 42, no. 3 (2001): 399–412. http://dx.doi.org/10.1017/s1446181100012025.
Full textBougoffa, Lazhar, and Ammar Khanfer. "On the solutions of the generalized Lotka-Volterra system." ITM Web of Conferences 29 (2019): 01016. http://dx.doi.org/10.1051/itmconf/20192901016.
Full textValero, José. "A Weak Comparison Principle for Reaction-Diffusion Systems." Journal of Function Spaces and Applications 2012 (2012): 1–30. http://dx.doi.org/10.1155/2012/679465.
Full textASAI, TETSUYA, TAISHI KAMIYA, TETSUYA HIROSE, and YOSHIHITO AMEMIYA. "A SUBTHRESHOLD ANALOG MOS CIRCUIT FOR LOTKA–VOLTERRA CHAOTIC OSCILLATOR." International Journal of Bifurcation and Chaos 16, no. 01 (2006): 207–12. http://dx.doi.org/10.1142/s0218127406014733.
Full textGOPALSAMY, K. "Global asymptotic stability in a generalized Lotka-Volterra system." International Journal of Systems Science 17, no. 3 (1986): 447–51. http://dx.doi.org/10.1080/00207728608926819.
Full textSterpu, Mihaela, Carmen Rocșoreanu, Georgeta Soava, and Anca Mehedintu. "A Generalization of the Grey Lotka–Volterra Model and Application to GDP, Export, Import and Investment for the European Union." Mathematics 11, no. 15 (2023): 3351. http://dx.doi.org/10.3390/math11153351.
Full textAfraimovich, Valentin S., Gregory Moses, and Todd Young. "Two-dimensional heteroclinic attractor in the generalized Lotka–Volterra system." Nonlinearity 29, no. 5 (2016): 1645–44. http://dx.doi.org/10.1088/0951-7715/29/5/1645.
Full textNakaoka, S., Y. Saito, and Y. Takeuchi. "Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system." Mathematical Biosciences and Engineering 3, no. 1 (2006): 173–87. http://dx.doi.org/10.3934/mbe.2006.3.173.
Full textWang, Ruiping, and Dongmei Xiao. "Bifurcations and chaotic dynamics in a 4-dimensional competitive Lotka–Volterra system." Nonlinear Dynamics 59, no. 3 (2009): 411–22. http://dx.doi.org/10.1007/s11071-009-9547-3.
Full textFrezzato, Diego. "Universal embedding of autonomous dynamical systems into a Lotka-Volterra-like format." Physica Scripta 99, no. 1 (2023): 015235. http://dx.doi.org/10.1088/1402-4896/ad1236.
Full textSun, Jiebao, Dazhi Zhang, and Boying Wu. "A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations." Abstract and Applied Analysis 2011 (2011): 1–18. http://dx.doi.org/10.1155/2011/714248.
Full textTaniguchi, Kunihiko. "Permanence for a Generalized Nonautonomous Lotka-Volterra Competition System with Delays." Funkcialaj Ekvacioj 63, no. 2 (2020): 183–97. http://dx.doi.org/10.1619/fesi.63.183.
Full textAFRAIMOVICH, VALENTIN S., SZE-BI HSU, and HUEY-ER LIN. "CHAOTIC BEHAVIOR OF THREE COMPETING SPECIES OF MAY–LEONARD MODEL UNDER SMALL PERIODIC PERTURBATIONS." International Journal of Bifurcation and Chaos 11, no. 02 (2001): 435–47. http://dx.doi.org/10.1142/s021812740100216x.
Full textBelyaev, A. V., and T. V. Perevalova. "Stochastic sensitivity of quasiperiodic and chaotic attractors of the discrete Lotka-Volterra model." Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta 55 (May 2020): 19–32. http://dx.doi.org/10.35634/2226-3594-2020-55-02.
Full textItoh, Yoshiaki. "A certain configuration of random points on a circle associated with a generalized Lotka-Volterra equation." Journal of Applied Probability 26, no. 4 (1989): 898–900. http://dx.doi.org/10.2307/3214396.
Full textItoh, Yoshiaki. "A certain configuration of random points on a circle associated with a generalized Lotka-Volterra equation." Journal of Applied Probability 26, no. 04 (1989): 898–900. http://dx.doi.org/10.1017/s0021900200027789.
Full textMi, Yuzhen. "Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation." Journal of Function Spaces 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/8075381.
Full textZhao, Huitao, Yaowei Sun, and Zhen Wang. "Control of Hopf Bifurcation and Chaos in a Delayed Lotka-Volterra Predator-Prey System with Time-Delayed Feedbacks." Abstract and Applied Analysis 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/104156.
Full textCOLACCHIO, GIORGIO, MARCO SPARRO, and CLAUDIO TEBALDI. "SEQUENCES OF CYCLES AND TRANSITIONS TO CHAOS IN A MODIFIED GOODWIN'S GROWTH CYCLE MODEL." International Journal of Bifurcation and Chaos 17, no. 06 (2007): 1911–32. http://dx.doi.org/10.1142/s0218127407018117.
Full textChen, Yuyao, Xiping Li, and Aiai Jiang. "Plant Community Prediction Based on Lotka-Volterra Model and Statistical Analysis." Highlights in Science, Engineering and Technology 66 (September 20, 2023): 157–62. http://dx.doi.org/10.54097/hset.v66i.11682.
Full textBeretta, E., V. Capasso, and F. Rinaldi. "Global stability results for a generalized Lotka-Volterra system with distributed delays." Journal of Mathematical Biology 26, no. 6 (1988): 661–88. http://dx.doi.org/10.1007/bf00276147.
Full textChaudhary, Harindri, Ayub Khan, Uzma Nigar, Santosh Kaushik, and Mohammad Sajid. "An Effective Synchronization Approach to Stability Analysis for Chaotic Generalized Lotka–Volterra Biological Models Using Active and Parameter Identification Methods." Entropy 24, no. 4 (2022): 529. http://dx.doi.org/10.3390/e24040529.
Full textJiang, Zhao, Azhar Halik, and Ahmadjan Muhammadhaji. "Dynamics in an n-Species Lotka–Volterra Cooperative System with Delays." Axioms 12, no. 5 (2023): 501. http://dx.doi.org/10.3390/axioms12050501.
Full textVoroshilova, Anzhelika, and Jeff Wafubwa. "Discrete Competitive Lotka–Volterra Model with Controllable Phase Volume." Systems 8, no. 2 (2020): 17. http://dx.doi.org/10.3390/systems8020017.
Full textYin, Fancheng, and Xiaoyan Yu. "The Stationary Distribution and Extinction of Generalized Multispecies Stochastic Lotka-Volterra Predator-Prey System." Mathematical Problems in Engineering 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/479326.
Full textZHANG, TIANWEI, and YONGKUN LI. "POSITIVE PERIODIC SOLUTIONS FOR A GENERALIZED IMPULSIVE N-SPECIES GILPIN–AYALA COMPETITION SYSTEM WITH CONTINUOUSLY DISTRIBUTED DELAYS ON TIME SCALES." International Journal of Biomathematics 04, no. 01 (2011): 23–34. http://dx.doi.org/10.1142/s1793524511001131.
Full textBaek, Hunki. "Extinction and Permanence of a Three-Species Lotka-Volterra System with Impulsive Control Strategies." Discrete Dynamics in Nature and Society 2008 (2008): 1–18. http://dx.doi.org/10.1155/2008/752403.
Full textEberhardt, L. L. "Applying difference equations to wolf predation." Canadian Journal of Zoology 76, no. 2 (1998): 380–86. http://dx.doi.org/10.1139/z97-184.
Full textTaniguchi, Kunihiko. "Permanence and global asymptotic stability for a generalized nonautonomous Lotka-Volterra competition system." Hiroshima Mathematical Journal 42, no. 2 (2012): 189–208. http://dx.doi.org/10.32917/hmj/1345467070.
Full textLazzús, Juan A., Pedro Vega-Jorquera, Carlos H. López-Caraballo, Luis Palma-Chilla, and Ignacio Salfate. "Parameter estimation of a generalized Lotka–Volterra system using a modified PSO algorithm." Applied Soft Computing 96 (November 2020): 106606. http://dx.doi.org/10.1016/j.asoc.2020.106606.
Full textElsadany, A. A., A. E. Matouk, A. G. Abdelwahab, and H. S. Abdallah. "Dynamical analysis, linear feedback control and synchronization of a generalized Lotka-Volterra system." International Journal of Dynamics and Control 6, no. 1 (2017): 328–38. http://dx.doi.org/10.1007/s40435-016-0299-x.
Full textFIASCONARO, A., D. VALENTI, and B. SPAGNOLO. "NONMONOTONIC PATTERN FORMATION IN THREE SPECIES LOTKA–VOLTERRA SYSTEM WITH COLORED NOISE." Fluctuation and Noise Letters 05, no. 02 (2005): L305—L311. http://dx.doi.org/10.1142/s0219477505002690.
Full textK.Shchigolev, V. "Applying He's variational iteration method to FRW cosmology." International Journal of Advanced Astronomy 7, no. 2 (2019): 39. http://dx.doi.org/10.14419/ijaa.v7i2.29428.
Full textRICHMOND, PETER, and SORIN SOLOMON. "POWER LAWS ARE DISGUISED BOLTZMANN LAWS." International Journal of Modern Physics C 12, no. 03 (2001): 333–43. http://dx.doi.org/10.1142/s0129183101001754.
Full textLiu, Zhi, and Rongwei Guo. "Stabilization of the GLV System with Asymptotically Unbounded External Disturbances." Mathematics 11, no. 21 (2023): 4496. http://dx.doi.org/10.3390/math11214496.
Full textCIRONE, MARKUS A., FERDINANDO DE PASQUALE, and BERNARDO SPAGNOLO. "NONLINEAR RELAXATION IN POPULATION DYNAMICS." Fractals 11, supp01 (2003): 217–26. http://dx.doi.org/10.1142/s0218348x03001872.
Full textKouloukas, T. E., G. R. W. Quispel, and P. Vanhaecke. "Liouville integrability and superintegrability of a generalized Lotka–Volterra system and its Kahan discretization." Journal of Physics A: Mathematical and Theoretical 49, no. 22 (2016): 225201. http://dx.doi.org/10.1088/1751-8113/49/22/225201.
Full textStamov, Gani, Anatoliy Martynyuk, and Ivanka Stamova. "Impulsive Fractional-Like Differential Equations: Practical Stability and Boundedness with Respect to h-Manifolds." Fractal and Fractional 3, no. 4 (2019): 50. http://dx.doi.org/10.3390/fractalfract3040050.
Full textGarai, Shilpa, Moumita Garain, Sudip Samanta, and Nikhil Pal. "Dynamics of a discrete-time system with Z-type control." Zeitschrift für Naturforschung A 75, no. 7 (2020): 609–20. http://dx.doi.org/10.1515/zna-2020-0059.
Full textPlatonov, A. V. "Conditions for ultimate boundedness of solutions and permanence for a hybrid Lotka–Volterra system." Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, no. 6 (June 25, 2024): 68–79. http://dx.doi.org/10.26907/0021-3446-2024-6-68-79.
Full textBaek, Hunki. "The Dynamics of a Predator-Prey System with State-Dependent Feedback Control." Abstract and Applied Analysis 2012 (2012): 1–17. http://dx.doi.org/10.1155/2012/101386.
Full textMCGEHEE, EDWARD A., NOEL SCHUTT, DESIDERIO A. VASQUEZ, and ENRIQUE PEACOCK-LÓPEZ. "BIFURCATIONS, AND TEMPORAL AND SPATIAL PATTERNS OF A MODIFIED LOTKA–VOLTERRA MODEL." International Journal of Bifurcation and Chaos 18, no. 08 (2008): 2223–48. http://dx.doi.org/10.1142/s0218127408021671.
Full textZhen, Bin, and Yu Zhang. "Generalized Function Projective Synchronization of Two Different Chaotic Systems with Uncertain Parameters." Applied Sciences 13, no. 14 (2023): 8135. http://dx.doi.org/10.3390/app13148135.
Full textBibik, Yu V. "Analytical Investigation of the Chaotic Dynamics of a Two-Dimensional Lotka–Volterra System with a Seasonality Factor." Computational Mathematics and Mathematical Physics 61, no. 2 (2021): 226–41. http://dx.doi.org/10.1134/s0965542521010024.
Full textLi, Dan, Jing’an Cui, and Guohua Song. "Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion." Journal of Applied Mathematics 2014 (2014): 1–16. http://dx.doi.org/10.1155/2014/249504.
Full textGhaffar, Mayadah Khalil, Fadhel S. Fadhel, and Nabeel E. Arif. "Application of the Generalized Backstepping Control Method for Lotka-Volterra Prey-Predator System with Constant Time Delay." Journal of Physics: Conference Series 2322, no. 1 (2022): 012012. http://dx.doi.org/10.1088/1742-6596/2322/1/012012.
Full text