Academic literature on the topic 'Generalized Matrix Inverse (or g-inverse)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Generalized Matrix Inverse (or g-inverse).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Generalized Matrix Inverse (or g-inverse)"

1

Udwadia, Firdaus E. "When Does a Dual Matrix Have a Dual Generalized Inverse?" Symmetry 13, no. 8 (2021): 1386. http://dx.doi.org/10.3390/sym13081386.

Full text
Abstract:
This paper deals with the existence of various types of dual generalized inverses of dual matrices. New and foundational results on the necessary and sufficient conditions for various types of dual generalized inverses to exist are obtained. It is shown that unlike real matrices, dual matrices may not have {1}-dual generalized inverses. A necessary and sufficient condition for a dual matrix to have a {1}-dual generalized inverse is obtained. It is shown that a dual matrix always has a {1}-, {1,3}-, {1,4}-, {1,2,3}-, {1,2,4}-dual generalized inverse if and only if it has a {1}-dual generalized inverse and that every dual matrix has a {2}- and a {2,4}-dual generalized inverse. Explicit expressions, which have not been reported to date in the literature, for all these dual inverses are provided. It is shown that the Moore–Penrose dual generalized inverse of a dual matrix exists if and only if the dual matrix has a {1}-dual generalized inverse; an explicit expression for this dual inverse, when it exists, is obtained irrespective of the rank of its real part. Explicit expressions for the Moore–Penrose dual inverse of a dual matrix, in terms of {1}-dual generalized inverses of products, are also obtained. Several new results related to the determination of dual Moore-Penrose inverses using less restrictive dual inverses are also provided.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Mengmeng, Jianlong Chen, and Néstor Thome. "The W-weighted Drazin-star matrix and its dual." Electronic Journal of Linear Algebra 37, no. 37 (2021): 72–87. http://dx.doi.org/10.13001/ela.2021.5389.

Full text
Abstract:
After decades studying extensively two generalized inverses, namely Moore--Penrose inverse and Drazin inverse, currently, we found immersed in a new generation of generalized inverses (core inverse, DMP inverse, etc.). The main aim of this paper is to introduce and investigate a matrix related to these new generalized inverses defined for rectangular matrices. We apply our results to the solution of linear systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Cao, Xiaofei, Yuyue Huang, Xue Hua, Tingyu Zhao, and Sanzhang Xu. "Matrix inverses along the core parts of three matrix decompositions." AIMS Mathematics 8, no. 12 (2023): 30194–208. http://dx.doi.org/10.3934/math.20231543.

Full text
Abstract:
<abstract><p>New characterizations for generalized inverses along the core parts of three matrix decompositions were investigated in this paper. Let $ A_{1} $, $ \hat{A}_{1} $ and $ \tilde{A}_{1} $ be the core parts of the core-nilpotent decomposition, the core-EP decomposition and EP-nilpotent decomposition of $ A\in \mathbb{C}^{n\times n} $, respectively, where EP denotes the EP matrix. A number of characterizations and different representations of the Drazin inverse, the weak group inverse and the core-EP inverse were given by using the core parts $ A_{1} $, $ \hat{A}_{1} $ and $ \tilde{A}_{1} $. One can prove that, the Drazin inverse is the inverse along $ A_{1} $, the weak group inverse is the inverse along $ \hat{A}_{1} $ and the core-EP inverse is the inverse along $ \tilde{A}_{1} $. A unified theory presented in this paper covers the Drazin inverse, the weak group inverse and the core-EP inverse based on the core parts of the core-nilpotent decomposition, the core-EP decomposition and EP-nilpotent decomposition of $ A\in \mathbb{C}^{n\times n} $, respectively. In addition, we proved that the Drazin inverse of $ A $ is the inverse of $ A $ along $ U $ and $ A_{1} $ for any $ U\in \{A_{1}, \hat{A}_{1}, \tilde{A}_{1}\} $; the weak group inverse of $ A $ is the inverse of $ A $ along $ U $ and $ \hat{A}_{1} $ for any $ U\in \{A_{1}, \hat{A}_{1}, \tilde{A}_{1}\} $; the core-EP inverse of $ A $ is the inverse of $ A $ along $ U $ and $ \tilde{A}_{1} $ for any $ U\in \{A_{1}, \hat{A}_{1}, \tilde{A}_{1}\} $. Let $ X_{1} $, $ X_{4} $ and $ X_{7} $ be the generalized inverses along $ A_{1} $, $ \hat{A}_{1} $ and $ \tilde{A}_{1} $, respectively. In the last section, some useful examples were given, which showed that the generalized inverses $ X_{1} $, $ X_{4} $ and $ X_{7} $ were different generalized inverses. For a certain singular complex matrix, the Drazin inverse coincides with the weak group inverse, which is different from the core-EP inverse. Moreover, we showed that the Drazin inverse, the weak group inverse and the core-EP inverse can be the same for a certain singular complex matrix.</p></abstract>
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Yang, Kezheng Zuo, and Zhimei Fu. "New characterizations of the generalized Moore-Penrose inverse of matrices." AIMS Mathematics 7, no. 3 (2022): 4359–75. http://dx.doi.org/10.3934/math.2022242.

Full text
Abstract:
<abstract><p>Some new characterizations of the generalized Moore-Penrose inverse are proposed using range, null space, several matrix equations and projectors. Several representations of the generalized Moore-Penrose inverse are given. The relationships between the generalized Moore-Penrose inverse and other generalized inverses are discussed using core-EP decomposition. The generalized Moore-Penrose matrices are introduced and characterized. One relation between the generalized Moore-Penrose inverse and corresponding nonsingular border matrix is presented. In addition, applications of the generalized Moore-Penrose inverse in solving restricted matrix equations are studied.</p></abstract>
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Xifu, and Rouyue Fang. "Notes on Re-nnd generalized inverses." Filomat 29, no. 5 (2015): 1121–25. http://dx.doi.org/10.2298/fil1505121l.

Full text
Abstract:
Motivated by a recent paper, in which the authors studied Re-nnd {1,3}-inverse, {1,4}-inverse and {1,3,4}-inverse of a square matrix, in this paper, we establish some equivalent conditions for the existence of Re-nnd {1,2,3}-inverse, {1,2,4}-inverse and {1,3,4}-inverse. Furthermore, some expressions of these generalized inverses are presented.
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Sanzhang, and Dingguo Wang. "New characterizations of the generalized B-T inverse." Filomat 36, no. 3 (2022): 945–50. http://dx.doi.org/10.2298/fil2203945x.

Full text
Abstract:
Characterizations and explicit expressions of the generalized B-T inverse are given, this generalized inverse exists for any square matrix and any integer. The relationships between the generalized B-T inverse and some well-known generalized inverses are investigated. Moreover, an explicit formula of the generalized B-T inverse is given by using Hartwig-Spindelb?ck decomposition.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Xiaoji, Hongwei Jin, and Jelena Višnjić. "Representations of Generalized Inverses and Drazin Inverse of Partitioned Matrix with Banachiewicz-Schur Forms." Mathematical Problems in Engineering 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/9236281.

Full text
Abstract:
Representations of 1,2,3-inverses, 1,2,4-inverses, and Drazin inverse of a partitioned matrix M=ABCD related to the generalized Schur complement are studied. First, we give the necessary and sufficient conditions under which 1,2,3-inverses, 1,2,4-inverses, and group inverse of a 2×2 block matrix can be represented in the Banachiewicz-Schur forms. Some results from the paper of Cvetković-Ilić, 2009, are generalized. Also, we expressed the quotient property and the first Sylvester identity in terms of the generalized Schur complement.
APA, Harvard, Vancouver, ISO, and other styles
8

Yu, Yaoming, and Guorong Wang. "The Generalized Inverse A(2)T, Sof a Matrix Over an Associative Ring." Journal of the Australian Mathematical Society 83, no. 3 (2007): 423–38. http://dx.doi.org/10.1017/s1446788700038015.

Full text
Abstract:
AbstractIn this paper we establish the definition of the generalized inverse A(2)T, Swhich is a {2} inverse of a matrixAwith prescribed imageTand kernelsover an associative ring, and give necessary and sufficient conditions for the existence of the generalized inverseand some explicit expressions forof a matrix A over an associative ring, which reduce to the group inverse or {1} inverses. In addition, we show that for an arbitrary matrixAover an associative ring, the Drazin inverse Ad, the group inverse Agand the Moore-Penrose inverse. if they exist, are all the generalized inverse A(2)T, S.
APA, Harvard, Vancouver, ISO, and other styles
9

Kara, Abdessalam, Néstor Thome, and Dragan Djordjevic. "Simultaneous extension of generalized BT-inverses and core-EP inverses." Filomat 38, no. 30 (2024): 10605–14. https://doi.org/10.2298/fil2430605k.

Full text
Abstract:
In this paper we introduce the generalized inverse of complex square matrix with respect to other matrix having same size. Some of its representations, properties and characterizations are obtained. Also some new representation matrices of W-weighted BT-inverse and W-weighted core-EP inverse are determined as well as characterizations of generalized inverses A?, A?,W, A?, A?,W.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Xiezhang, and Yimin Wei. "A note on computing the generalized inverseA T,S (2)of a matrixA." International Journal of Mathematics and Mathematical Sciences 31, no. 8 (2002): 497–507. http://dx.doi.org/10.1155/s0161171202013169.

Full text
Abstract:
The generalized inverseA T,S (2)of a matrixAis a{2}-inverse ofAwith the prescribed rangeTand null spaceS. A representation for the generalized inverseA T,S (2)has been recently developed with the conditionσ (GA| T)⊂(0,∞), whereGis a matrix withR(G)=TandN(G)=S. In this note, we remove the above condition. Three types of iterative methods forA T,S (2)are presented ifσ(GA|T)is a subset of the open right half-plane and they are extensions of existing computational procedures ofA T,S (2), including special cases such as the weighted Moore-Penrose inverseA M,N †and the Drazin inverseAD. Numerical examples are given to illustrate our results.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Generalized Matrix Inverse (or g-inverse)"

1

Boucekkine, Moussa. "The inverse spectral generalized matrix eigenvalue problem." Thesis, University of Ottawa (Canada), 1988. http://hdl.handle.net/10393/5439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cho, Taewon. "Computational Advancements for Solving Large-scale Inverse Problems." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103772.

Full text
Abstract:
For many scientific applications, inverse problems have played a key role in solving important problems by enabling researchers to estimate desired parameters of a system from observed measurements. For example, large-scale inverse problems arise in many global problems and medical imaging problems such as greenhouse gas tracking and computational tomography reconstruction. This dissertation describes advancements in computational tools for solving large-scale inverse problems and for uncertainty quantification. Oftentimes, inverse problems are ill-posed and large-scale. Iterative projection methods have dramatically reduced the computational costs of solving large-scale inverse problems, and regularization methods have been critical in obtaining stable estimations by applying prior information of unknowns via Bayesian inference. However, by combining iterative projection methods and variational regularization methods, hybrid projection approaches, in particular generalized hybrid methods, create a powerful framework that can maximize the benefits of each method. In this dissertation, we describe various advancements and extensions of hybrid projection methods that we developed to address three recent open problems. First, we develop hybrid projection methods that incorporate mixed Gaussian priors, where we seek more sophisticated estimations where the unknowns can be treated as random variables from a mixture of distributions. Second, we describe hybrid projection methods for mean estimation in a hierarchical Bayesian approach. By including more than one prior covariance matrix (e.g., mixed Gaussian priors) or estimating unknowns and hyper-parameters simultaneously (e.g., hierarchical Gaussian priors), we show that better estimations can be obtained. Third, we develop computational tools for a respirometry system that incorporate various regularization methods for both linear and nonlinear respirometry inversions. For the nonlinear systems, blind deconvolution methods are developed and prior knowledge of nonlinear parameters are used to reduce the dimension of the nonlinear systems. Simulated and real-data experiments of the respirometry problems are provided. This dissertation provides advanced tools for computational inversion and uncertainty quantification.<br>Doctor of Philosophy<br>For many scientific applications, inverse problems have played a key role in solving important problems by enabling researchers to estimate desired parameters of a system from observed measurements. For example, large-scale inverse problems arise in many global problems such as greenhouse gas tracking where the problem of estimating the amount of added or removed greenhouse gas at the atmosphere gets more difficult. The number of observations has been increased with improvements in measurement technologies (e.g., satellite). Therefore, the inverse problems become large-scale and they are computationally hard to solve. Another example of an inverse problem arises in tomography, where the goal is to examine materials deep underground (e.g., to look for gas or oil) or reconstruct an image of the interior of the human body from exterior measurements (e.g., to look for tumors). For tomography applications, there are typically fewer measurements than unknowns, which results in non-unique solutions. In this dissertation, we treat unknowns as random variables with prior probability distributions in order to compensate for a deficiency in measurements. We consider various additional assumptions on the prior distribution and develop efficient and robust numerical methods for solving inverse problems and for performing uncertainty quantification. We apply our developed methods to many numerical applications such as greenhouse gas tracking, seismic tomography, spherical tomography problems, and the estimation of CO2 of living organisms.
APA, Harvard, Vancouver, ISO, and other styles
3

Archid, Atika. "Méthodes par blocs adaptées aux matrices structurées et au calcul du pseudo-inverse." Thesis, Littoral, 2013. http://www.theses.fr/2013DUNK0394/document.

Full text
Abstract:
Nous nous intéressons dans cette thèse, à l'étude de certaines méthodes numériques de type krylov dans le cas symplectique, en utilisant la technique de blocs. Ces méthodes, contrairement aux méthodes classiques, permettent à la matrice réduite de conserver la structure Hamiltonienne ou anti-Hamiltonienne ou encore symplectique d'une matrice donnée. Parmi ces méthodes, nous nous sommes intéressés à la méthodes d'Arnoldi symplectique par bloc que nous appelons aussi bloc J-Arnoldi. Notre but essentiel est d’étudier cette méthode de façon théorique et numérique, sur la nouvelle structure du K-module libre ℝ²nx²s avec K = ℝ²sx²s où s ≪ n désigne la taille des blocs utilisés. Un deuxième objectif est de chercher une approximation de l'epérateur exp(A)V, nous étudions en particulier le cas où A est une matrice réelle Hamiltonnienne et anti-symétrique de taille 2n x 2n et V est une matrice rectangulaire ortho-symplectique de taille 2n x 2s sur le sous-espace de Krylov par blocs Km(A,V) = blockspan {V,AV,...,Am-1V}, en conservant la structure de la matrice V. Cette approximation permet de résoudre plusieurs problèmes issus des équations différentielles dépendants d'un paramètre (EDP) et des systèmes d'équations différentielles ordinaires (EDO). Nous présentons également une méthode de Lanczos symplectique par bloc, que nous nommons bloc J-Lanczos. Cette méthode permet de réduire une matrice structurée sous la forme J-tridiagonale par bloc. Nous proposons des algorithmes basés sur deux types de normalisation : la factorisation S R et la factorisation Rj R. Dans une dernière partie, nous proposons un algorithme qui généralise la méthode de Greville afin de déterminer la pseudo inverse de Moore-Penros bloc de lignes par bloc de lignes d'une matrice rectangulaire de manière itérative. Nous proposons un algorithme qui utilise la technique de bloc. Pour toutes ces méthodes, nous proposons des exemples numériques qui montrent l'efficacité de nos approches<br>We study, in this thesis, some numerical block Krylov subspace methods. These methods preserve geometric properties of the reduced matrix (Hamiltonian or skew-Hamiltonian or symplectic). Among these methods, we interest on block symplectic Arnoldi, namely block J-Arnoldi algorithm. Our main goal is to study this method, theoretically and numerically, on using ℝ²nx²s as free module on (ℝ²sx²s, +, x) with s ≪ n the size of block. A second aim is to study the approximation of exp (A)V, where A is a real Hamiltonian and skew-symmetric matrix of size 2n x 2n and V a rectangular matrix of size 2n x 2s on block Krylov subspace Km (A, V) = blockspan {V, AV,...Am-1V}, that preserve the structure of the initial matrix. this approximation is required in many applications. For example, this approximation is important for solving systems of ordinary differential equations (ODEs) or time-dependant partial differential equations (PDEs). We also present a block symplectic structure preserving Lanczos method, namely block J-Lanczos algorithm. Our approach is based on a block J-tridiagonalization procedure of a structured matrix. We propose algorithms based on two normalization methods : the SR factorization and the Rj R factorization. In the last part, we proposea generalized algorithm of Greville method for iteratively computing the Moore-Penrose inverse of a rectangular real matrix. our purpose is to give a block version of Greville's method. All methods are completed by many numerical examples
APA, Harvard, Vancouver, ISO, and other styles
4

Schnabel, Uwe. "Berechnung singulärer Punkte nichtlinearer Gleichungssysteme." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2000. http://nbn-resolving.de/urn:nbn:de:swb:14-994854043859-72573.

Full text
Abstract:
Diese Arbeit beschäftigt sich mit der Berechnung singulärer Punkte nichtlinearer Gleichungssysteme F(x)=0. Dazu werden minimal erweiterte Systeme der Form F(x)+D*s=0, f(x)=0 betrachtet. Die allgemeine Vorgehensweise zur Berechnung singulärer Punkte mit solchen erweiterten Systemen wird geschlossen dargestellt. Dazu werden zuerst die (teilweise verallgemeinerten Ljapunov-Schmidt-)reduzierten Funktionen von Golubitsky und Schaeffer, Beyn, Jepson und Spence, Griewank und Reddien, Kunkel bzw. Govaerts verallgemeinert und zusammengefasst. Es wird die verallgemeinerte Kontaktäquivalenz all dieser verallgemeinerten reduzierten Funktionen und die Gleichheit der benötigten Regularitätsannahmen bewiesen. Für eine weitere, neu eingeführte reduzierte Funktion wird die in dieser Arbeit definierte Ableitungsäquivalenz zu den anderen reduzierten Funktionen gezeigt. Mit dieser neuen reduzierten Funktion wird eine Reihe singulärer Punkte klassifiziert. Aus dieser Klassifikation ergeben sich Funktionen f aus Ableitungen der neuen reduzierten Funktion. Mit den so eingeführten Funktionen f kann das zweistufiges Newtonverfahren nach Pönisch und Schwetlick effektiv angewendet werden. Alle benötigten Ableitungen werden mittels Automatischer Differentiation bestimmt. Die numerischen Ergebnisse für eine Reihe von Beispielen zeigen die Effizienz dieses Verfahrens. Beim Newtonverfahren werden lineare Gleichungssysteme mit geränderten Matrizen B gelöst. Es wird gezeigt, für welche Ränderungen die Konditionszahl von B minimal ist. Dies ist z.B. für gewisse Vielfache der Singulärvektoren zu den kleinsten Singulärwerten der Fall. Zur Bestimmung dieser Ränderungen wird die inverse Teilraumiteration für Singulärwerte in verschiedenen Algorithmen angewendet. Die Konvergenzeigenschaften werden untersucht. Für einen Algorithmus wird bewiesen, dass die Konditionszahlen der iterierten geränderten Matrizen monoton fallen. Die numerischen Experimente bestätigen diese Eigenschaften.
APA, Harvard, Vancouver, ISO, and other styles
5

Vera, Miler Jerković. "Primena uopštenih inverza u rešavanju fazi linearnih sistema." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2018. https://www.cris.uns.ac.rs/record.jsf?recordId=107117&source=NDLTD&language=en.

Full text
Abstract:
Predmet izučavanja doktorske disertacije jeste postavljanje univerzalne metode za rešavanje fazi linearnih sistema primenom blokovske reprezentacije uopštenih inverza matrice. Pre svega, postavljen je potreban i dovoljan uslov za ekzistenciju rešanja fazi linearnog sistema. Zatim je data tačna algebarska forma rešenja i na kraju je predstavljen efikasan algoritam.<br>Thе subject of research of thesis is setting universal method for solving fuzzy linear systems using a block representation of generalized inversis of a matrix. A necessary and sufficienf condition for the existence solutions of fuzzy linear systems is given. The exact algebraic form of any solutiof fuzzy linear system is established.
APA, Harvard, Vancouver, ISO, and other styles
6

Pessoa, Rosa Maria da Veiga. "Comparação entre metodos numericos para obtenção da inversa generalizada de Moore-Pensore de uma matriz." [s.n.], 1986. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307524.

Full text
Abstract:
Orientador: Jose Vitorio Zago<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica<br>Made available in DSpace on 2018-07-16T16:18:36Z (GMT). No. of bitstreams: 1 Pessoa_RosaMariadaVeiga_M.pdf: 5347559 bytes, checksum: e20216ea46d0ee80d39a65af2e58c535 (MD5) Previous issue date: 1986<br>Resumo: São estudados neste trabalho os métodos diretos e iterativos para cálculo da inversa (generalizada) de Moore-Penrose de uma matriz. Geralmente denotada por A+, a inversa de Moore-Penrose tem a propriedade de que x = A+b é a única solução aproximada do sistema linear Ax = b que minimiza tanto a norma euclidiana de x como os resíduos quadráticos (IIAx-bII).Após o estudo dos métodos para cálculo de A+,foi feita a implementação de quatorze métodos ; dois iterativos e doze diretos, para compará-los em termos de eficiência computacional.Os métodos diretos foram classificados tendo como critério o menor numero de operações.A comparação dos métodos é realizada através de uma análise dos resultados obtidos na aplicação dos métodos à matrizes previamente selecionadas. Daí tiramos a conclusão de que métodos são os mais indicados em termos de utilização de memória, tempo real de execução e precisão. Esses métodos são: o iterativo de ordem p = 3, o de Greville (6.11), eliminação Gaussiana(1.15) e Gram-Schmidt modificado (3.31)<br>Abstract: Not informed<br>Mestrado<br>Mestre em Matemática Aplicada
APA, Harvard, Vancouver, ISO, and other styles
7

"A computer programme in linear models." Chinese University of Hong Kong, 1988. http://library.cuhk.edu.hk/record=b5885963.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Generalized Matrix Inverse (or g-inverse)"

1

Xiaowen, Fang, and United States. National Aeronautics and Space Administration., eds. Optimal control of large space structures via generalized inverse matrix. Dept. of Electrical Engineering, Catholic University of America, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kei, Takeuchi, Takane Yoshio, and SpringerLink (Online service), eds. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. Springer Science+Business Media, LLC, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Campbell, S. L. Generalized inverses of linear transformations. Society for Industrial and Applied Mathematics, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Campbell, S. L. Generalized inverses of linear transformations. Dover Publications, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bapat, Ravindra B., Steve J. Kirkland, K. Manjunatha Prasad, and Simo Puntanen, eds. Combinatorial Matrix Theory and Generalized Inverses of Matrices. Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1053-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bapat, Ravindra B. Combinatorial Matrix Theory and Generalized Inverses of Matrices. Springer India, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hazra, A. K. Matrix: Algebra, Calculus and Generalized Inverse. Cambridge International Science Publishing, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pringle, R. M., A. A. Rayner, and Alan Stuart. Generalized Inverse Matrices with Applications to Statistics. Hafner Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hazra, A. K. Matrix: Algebra, Calculus and Generalized Inverse (Part II). Cambridge International Science Publishing, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Takeuchi, Kei, Haruo Yanai, and Yoshio Takane. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Generalized Matrix Inverse (or g-inverse)"

1

Li, Haitao, Xinrong Yang, and Wenrong Li. "Generalized Inverse of Boolean Matrix." In From Boolean Matrix Theory to Logical Dynamical Systems. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-2967-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Subharani, V., N. Jansirani, and V. R. Dare. "Generalized Inverse of Special Infinite Matrix." In Springer Proceedings in Mathematics & Statistics. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4646-8_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Yunong, and Dongsheng Guo. "Time-Varying Complex Matrix Generalized Inverse." In Zhang Functions and Various Models. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47334-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bodnar, Taras, and Nestor Parolya. "Spectral Analysis of Large Reflexive Generalized Inverse and Moore-Penrose Inverse Matrices." In Recent Developments in Multivariate and Random Matrix Analysis. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56773-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cvetković Ilić, Dragana S., and Yimin Wei. "Drazin Inverse of a $$2 \times 2$$ Block Matrix." In Algebraic Properties of Generalized Inverses. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6349-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Puntanen, Simo, George P. H. Styan, and Jarkko Isotalo. "Invariance with Respect to the Choice of Generalized Inverse." In Matrix Tricks for Linear Statistical Models. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10473-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jose, Shani, and K. C. Sivakumar. "Moore–Penrose Inverse of Perturbed Operators on Hilbert Spaces." In Combinatorial Matrix Theory and Generalized Inverses of Matrices. Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1053-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fazayeli, Farideh, and Arindam Banerjee. "The Matrix Generalized Inverse Gaussian Distribution: Properties and Applications." In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46128-1_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Diao, Huaian, and Yimin Wei. "On the Level-2 Condition Number for Moore–Penrose Inverse in Hilbert Space." In Combinatorial Matrix Theory and Generalized Inverses of Matrices. Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1053-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lukács, Gábor. "The generalized inverse matrix and the surface-surface intersection problem." In Theory and Practice of Geometric Modeling. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-61542-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Generalized Matrix Inverse (or g-inverse)"

1

Jiang, Laixu, Zhewei Huang, Yingqi Xi, and Jingqiao Liu. "Sound Field Reconstruction of Plate Using Compressed Singular Value Decomposition Equivalent Source Method Combined with Generalized Inverse of Matrix." In 2024 OES China Ocean Acoustics (COA). IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mihailović, Biljana. "”EQUATION SOLVING” GENERALIZED INVERSES - WHAT ARE THEY?" In The 9th Conference on Mathematics in Engineering: Theory and Applications. Faculty of Technical Sciences, University of Novi Sad, 2024. http://dx.doi.org/10.24867/meta.2024.11.

Full text
Abstract:
A new block representation theorem for the core inverse of square matrix with the index less or equal to 1 is presented. Two examples are given and some open problems are stated, having in mind an application of generalized inverses in solving fuzzy linear systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Kromer, Pavel, Jan Platos, and Vaclav Snasel. "Data mining using NMF and generalized matrix inverse." In 2010 10th International Conference on Intelligent Systems Design and Applications (ISDA). IEEE, 2010. http://dx.doi.org/10.1109/isda.2010.5687231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Martínez, José María Rico, and Joseph K. Davidson. "Geometrical Properties of the Generalized Inverse and its Application to the Inverse Velocity Analysis of Planar Redundant Manipulators." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1015.

Full text
Abstract:
Abstract The geometrical properties of the generalized inverse, a scheme frequently applied to the inverse velocity analysis of redundant manipulators, are presented. The columns of the Jacobian matrix, as well as, the rows of the generalized inverse are identified with infinitesimal screws. Then, many geometric properties of these screws are obtained and summarized, especially those that relate to the location of the row screws that appear in the generalized inverse. These properties are then used to develop a simplified alternative method for computing the generalized inverse of planar redundant manipulators.
APA, Harvard, Vancouver, ISO, and other styles
5

Jasinska, Elzbieta. "ESTIMATION LINEAR MODEL USING BLOCK GENERALIZED INVERSE OF A MATRIX." In 13th SGEM GeoConference on INFORMATICS, GEOINFORMATICS AND REMOTE SENSING. Stef92 Technology, 2013. http://dx.doi.org/10.5593/sgem2013/bb2.v2/s09.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peng, Xuemei, and Wei Liu. "Generalized Inverse Matrix A+ and Solution of Linear Equation Group." In CIPAE 2021: 2021 2nd International Conference on Computers, Information Processing and Advanced Education. ACM, 2021. http://dx.doi.org/10.1145/3456887.3457098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

KARAMPETAKIS, N. P., and P. TZEKIS. "ON THE COMPUTATION OF THE GENERALIZED INVERSE OF A POLYNOMIAL MATRIX." In Proceedings of the 6th IEEE Mediterranean Conference. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814447317_0097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Yingshi, Le'ang Li, Meiling Lv, Zhibin Li, and Lidong Wang. "A Class of Generalized Jacobi Matrix Eigenvalue Inverse Problems with Added Edges." In 2022 Global Conference on Robotics, Artificial Intelligence and Information Technology (GCRAIT). IEEE, 2022. http://dx.doi.org/10.1109/gcrait55928.2022.00125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mohideen, Cherkassky, and Wechsler. "Computation of the distributed associative memory and numerical stability of the generalized inverse matrix." In International Joint Conference on Neural Networks. IEEE, 1989. http://dx.doi.org/10.1109/ijcnn.1989.118340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Banerjee, Avijit, Partha Pratim Mondal, and Gourhari Das. "Construction of full order observer for linear time invariant systems using generalized matrix inverse." In 2013 IEEE Conference on Information & Communication Technologies (ICT). IEEE, 2013. http://dx.doi.org/10.1109/cict.2013.6558105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography