Academic literature on the topic 'Generalized modified Weibull distribution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Generalized modified Weibull distribution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Generalized modified Weibull distribution"
Alizadeh, Morad, Muhammad Nauman Khan, Mahdi Rasekhi, and G.G Hamedani. "A New Generalized Modified Weibull Distribution." Statistics, Optimization & Information Computing 9, no. 1 (January 22, 2021): 17–34. http://dx.doi.org/10.19139/soic-2310-5070-1014.
Full textCordeiro, Gaussm, Abdus Saboor, Muhammad Khan, and Serge Provost. "The transmuted generalized modified Weibull distribution." Filomat 31, no. 5 (2017): 1395–412. http://dx.doi.org/10.2298/fil1705395c.
Full textOluyede, Broderick, Shujiao Huang, and Tiantian Yang. "A New Class of Generalized Modified Weibull Distribution with Applications." Austrian Journal of Statistics 44, no. 3 (October 14, 2015): 45–68. http://dx.doi.org/10.17713/ajs.v44i3.36.
Full textAhmad, Zubair, and Brikhna Iqbal. "Generalized Flexible Weibull Extension Distribution." Circulation in Computer Science 2, no. 4 (May 20, 2017): 68–75. http://dx.doi.org/10.22632/ccs-2017-252-11.
Full textAryal, Gokarna, and Ibrahim Elbatal. "On the Exponentiated Generalized Modified Weibull Distribution." Communications for Statistical Applications and Methods 22, no. 4 (July 31, 2015): 333–48. http://dx.doi.org/10.5351/csam.2015.22.4.333.
Full textAbdelall, Yassmen Y. "The odd generalized exponential modified Weibull distribution." International Mathematical Forum 11 (2016): 943–59. http://dx.doi.org/10.12988/imf.2016.6793.
Full textO. Oluyede, Broderick, Huybrechts F. Bindele, Boikanyo Makubate, and Shujiao Huang. "A New Generalized Log-logistic and Modified Weibull Distribution with Applications." International Journal of Statistics and Probability 7, no. 3 (April 17, 2018): 72. http://dx.doi.org/10.5539/ijsp.v7n3p72.
Full textCarrasco, Jalmar M. F., Edwin M. M. Ortega, and Gauss M. Cordeiro. "A generalized modified Weibull distribution for lifetime modeling." Computational Statistics & Data Analysis 53, no. 2 (December 2008): 450–62. http://dx.doi.org/10.1016/j.csda.2008.08.023.
Full textMerovci, Faton, and Ibrahim Elbatal. "A New Generalized of Exponentiated Modified Weibull Distribution." Journal of Data Science 13, no. 2 (April 8, 2021): 213–40. http://dx.doi.org/10.6339/jds.201504_13(2).0001.
Full textShahzad, Mirza Naveed, Ehsan Ullah, and Abid Hussanan. "Beta Exponentiated Modified Weibull Distribution: Properties and Application." Symmetry 11, no. 6 (June 12, 2019): 781. http://dx.doi.org/10.3390/sym11060781.
Full textDissertations / Theses on the topic "Generalized modified Weibull distribution"
Carrasco, Jalmar Manuel Farfán. "Modelo de regressão log-Weibull modificado e a nova distribuição Weibull modificada generalizada." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-29022008-151018/.
Full textIn this paperwork are proposed a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider a classic and Jackknife estimator for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under diferent perturbation schemes and we also present some ways to perform global influence. Besides, for diferent parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the deviance modified residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extend for a martingale-type residual in log-modifiedWeibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the deviance modified residual are performed to select an appropriate model. A new four-parameter distribution is introduced. Various properties the new distribution are discussed. Illustrative examples based on real data are also given.
Calsavara, Vinicius Fernando. "Modelos de sobrevivência com fração de cura usando um termo de fragilidade e tempo de vida Weibull modificada generalizada." Universidade Federal de São Carlos, 2011. https://repositorio.ufscar.br/handle/ufscar/4546.
Full textIn survival analysis, some studies are characterized by having a significant fraction of units that will never suffer the event of interest, even if accompanied by a long period of time. For the analysis of long-term data, we approach the standard mixture model by Berkson & Gage, where we assume the generalized modified Weibull distribution for the lifetime of individuals at risk. This model includes several classes of models as special cases, allowing its use to discriminate models. The standard mixture model implicitly assume that those individuals experiencing the event of interest possess homogeneous risk. Alternatively, we consider the standard mixture model with a frailty term in order to quantify the unobservable heterogeneity among individuals. This model is characterized by the inclusion of a unobservable random variable, which represents information that can not or have not been observed. We assume multiplicative frailty with a gamma distribution. For the lifetime of individuals at risk, we assume the Weibull distribution, obtaining the frailty Weibull standard mixture model. For both models, we realized simulation studies with the purpose of analyzing the frequentists properties of estimation procedures. Applications to real data set showed the applicability of the proposed models in which parameter estimates were determined using the approaches of maximum likelihood and Bayesian.
Em análise de sobrevivência determinados estudos caracterizam-se por apresentar uma fração significativa de unidades que nunca apresentarão o evento de interesse, mesmo se acompanhados por um longo período de tempo. Para a análise de dados com longa duração, abordamos o modelo de mistura padrão de Berkson & Gage supondo que os tempos de vida dos indivíduos em risco seguem distribuição Weibull modificada generalizada. Este modelo engloba diversas classes de modelos como casos particulares, propiciando o uso deste para discriminar modelos. O modelo abordado assume implicitamente que todos os indivíduos que falharam possuem risco homogêneo. Alternativamente, consideramos o modelo de mistura padrão com um termo de fragilidade com o objetivo de quantificar a heterogeneidade não observável entre os indivíduos. Este modelo é caracterizado pela inclusão de uma variável aleatória não observável, que representa as informações que não podem ou que não foram observadas. Assumimos que a fragilidade atua de forma multiplicativa com distribuição gama. Para os tempos de vida dos indivíduos em risco consideramos a distribuição Weibull, obtendo o modelo de mistura padrão Weibull com fragilidade. Para os dois modelos realizamos estudos de simulação com o objetivo de analisar as propriedades frequentistas dos processos de estimação. Aplicações a conjunto de dados reais mostraram a aplicabilidade dos modelos propostos, em que a estimação dos parâmetros foram determinadas através das abordagens de máxima verossimilhança e Bayesiana.
Sazak, Hakan Savas. "Estimation And Hypothesis Testing In Stochastic Regression." Phd thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/3/724294/index.pdf.
Full textSaaidia, Noureddine. "Sur les familles des lois de fonction de hasard unimodale : applications en fiabilité et analyse de survie." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14794/document.
Full textIn reliability and survival analysis, distributions that have a unimodalor $\cap-$shape hazard rate function are not too many, they include: the inverse Gaussian,log-normal, log-logistic, Birnbaum-Saunders, exponential Weibull and power generalized Weibulldistributions. In this thesis, we develop the modified Chi-squared tests for these distributions,and we give a comparative study between the inverse Gaussian distribution and the otherdistributions, then we realize simulations. We also construct the AFT model based on the inverseGaussian distribution and redundant systems based on distributions having a unimodal hazard ratefunction
Salem, J. A. "Generalized reliability methodology applied to brittle anisotropic single crystals /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/7049.
Full textFERREIRA, Ricardo José. "Development of a mixed model using generalized renewal processes and the weibull distribution." Universidade Federal Rural de Pernambuco, 2016. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7248.
Full textMade available in DSpace on 2018-05-15T13:58:25Z (GMT). No. of bitstreams: 1 Ricardo Jose Ferreira.pdf: 1514159 bytes, checksum: 365dd17d70da575c6399efe53acf1631 (MD5) Previous issue date: 2016-01-29
In order to analyze interventions in repairable systems, the literature contains several methodologies aiming to model the behavior of times between interventions. Such interventions can be modeled by Point Stochastic Processes in order to analyze the probabilistic behavior of times between events. Specifically, the Generalized Renewal Processes allow the study of times between interventions by measuring the quality of each intervention and the response of the system to these interventions — this is done by using the concept of virtual age. In such concept it is possible to apply two kinds of Kijima models (Type I and II). Therefore, this work presents a model capable of study the quality of interventions using up of a mix between the two Kijima models where it is possible to capture the performance on each of these interventions proportionally. Specifically, a new approach to virtual age of Kijima models is presented as well as mathematical properties of the Generalized Renewal Process using the Weibull distribution probability. Finally, the applicability of the model is checked in real data from some problems found in the literature.
Para analisar intervenções em sistemas reparáveis, a literatura apresenta diversas metodologias visando modelar o comportamento de tempos entre intervenções. Tais intervenções podem ser modeladas por Processos Estocásticos Pontuais visando analisar o comportamento probabilístico dos tempos entre eventos. Especificamente, os Processos de Renovação Generalizados permitem o estudo de tempos entre intervenções medindo a qualidade de impacto de cada intervenção e a resposta do sistema a tais intervenções - isto é feito utilizando o conceito de idade virtual. Em tal conceito é possível se aplicar dois tipos de modelos Kijima (tipo I e II).Sendo assim, esse trabalho apresenta um modelo capaz de estudar a qualidade de intervenções utilizando-se de uma mistura entre os dois modelos Kijima onde é possível capturar a atuação de cada um desses sobre as intervenções proporcionalmente. Especificamente, uma nova abordagem sobre a idade virtual dos modelos Kijima é apresentada, bem como propriedades matemáticas dos Processos de Renovação Generalizados utilizando a distribuição de probabilidadeWeibull. Por fim, a aplicabilidade do modelo é verificada em dados reais de alguns problemas presentes na literatura.
BARROS, Patrícia Silva Nascimento. "Classes de distribuições Weibull generalizada: teorias e aplicações." Universidade Federal Rural de Pernambuco, 2015. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5240.
Full textMade available in DSpace on 2016-08-09T14:39:17Z (GMT). No. of bitstreams: 1 Patricia Silva Nascimento Barros.pdf: 808042 bytes, checksum: 292470d809b5626affec619cf6da1f8a (MD5) Previous issue date: 2015-05-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The Weibull distribution is very popular to model survival data. Many modi cations of the Weibull distribution have been proposed in recent years. Inspired by the notion of generalized gamma-generated family of distribution of Zografos e Balakrishnan, the Generalized Weibull Distributions Class is proposed. A comprehensive treatment of the mathematical properties of some new distribution is provided, expressions giving for the distribution function, density function, hazard function, moment generating function, characteristic function, mean, variance, skewness and kurtosis. Real data sets were modeled showing best ts, according the chosen criteria, were obtained by the new models. Thus for the Generalized Weibull Distributions Class, in spite of having more parameters to be estimated, the algorithms were able to best adjust the survival analysis data.
A distribuição Weibull é muito popular para modelar dados de sobrevida. Muitas modificações da distribuição Weibull foram propostas nos últimos anos. Inspirado pela noção da família gama-generalizada de distribuições de Zografos e Balakrishnan, é proposta, a classe de distribuições Weibull generalizada. Um tratamento compreensivo das propriedades matem áticas de algumas novas distribuições é feita, sendo encontradas as expressões para a função de distribuição, função densidade, função de risco, função geradora de momentos, função característica, m édia, variância, assimetria e curtose. Ajustou-se os novos modelos para conjuntos de dados reais veri cando, pelos critérios de escolha, que os melhores ajustes foram obtidos pelos novos modelos. Dessa forma a classe de distribuições Weibull Generalizada mesmo tendo mais parâmetros a serem estimados, os algoritmos foram capazes de ajustar os dados de análise de sobrevivência.
Güimil, Fernando. "Comparing the Maximum Likelihood Method and a Modified Moment Method to fit a Weibull distribution to aircraft engine failure time data." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA337364.
Full textGüimil, Fernando. "Comparing the Maximum Likelihood Method and a Modified Moment Method to fit a Weibull distribution to aircraft engine failure time data." Thesis, Monterey, California. Naval Postgraduate School, 1997. http://hdl.handle.net/10945/8112.
Full textThis thesis provides a comparison of the accuracies of two methods for fitting a Weibull distribution to a set of aircraft engines time between failure data. One method used is the Maximum Likelihood Method and assumes that these engine failure times are independent. The other method is a Modified Method of Moments procedure and uses the fact that if time to failure T has a Weibull distribution with scale parameter lambda and shape parameter beta, then T(beta) has an exponential distribution with scale parameter lambda(beta). The latter method makes no assumption about independent failure times. A comparison is made from times that are randomly generated with a program. The program generates times in a manner that resembles the way in which engine failures occur in the real world for an engine with three subsystems. These generated operating times between failures for the same engine are not statistically independent. This comparison was extended to real data. Although the two methods gave good fits, the Maximum Likelihood Method produced a better fit than the Modified Method of Moments. Explanations for this fact are analyzed and presented in the conclusions
Hofmann, Glenn, Erhard Cramer, N. Balakrishnan, and Gerd Kunert. "An Asymptotic Approach to Progressive Censoring." Universitätsbibliothek Chemnitz, 2002. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200201539.
Full textBooks on the topic "Generalized modified Weibull distribution"
Güimil, Fernando. Comparing the Maximum Likelihood Method and a Modified Moment Method to fit a Weibull distribution to aircraft engine failure time data. Monterey, Calif: Naval Postgraduate School, 1997.
Find full textGeneralized Weibull Distributions Springerbriefs in Statistics. Springer-Verlag Berlin and Heidelberg GmbH &, 2013.
Find full textComparing the Maximum Likelihood Method and a Modified Moment Method to Fit a Weibull Distribution to Aircraft Engine Failure Time Data. Storming Media, 1997.
Find full textCheng, Russell. Examples of Embedded Distributions. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0006.
Full textBook chapters on the topic "Generalized modified Weibull distribution"
Lai, Chin-Diew. "Weibull Distribution." In Generalized Weibull Distributions, 1–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39106-4_1.
Full textCorrêa, T., I. Lins, M. Moura, and E. López. "Generalized renewal process based on the q-Weibull distribution for reliability applications." In Risk, Reliability and Safety: Innovating Theory and Practice, 1087–93. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315374987-164.
Full textYan, Wang, and Shi Yimin. "Statistical Inference of the Competing Risks Model with Modified Weibull Distribution Under Adaptive Type-II Progressive Hybrid Censoring." In Stochastic Models in Reliability, Network Security and System Safety, 295–312. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0864-6_15.
Full textVoinov, Vassilly, Roza Alloyarova, and Natalie Pya. "A Modified Chi-squared Goodness-of-fit Test for the Three-parameter Weibull Distribution and its Applications in Reliability." In Mathematical Methods in Survival Analysis, Reliability and Quality of Life, 189–202. London, UK: ISTE, 2010. http://dx.doi.org/10.1002/9780470610985.ch13.
Full textChen, (Din) Ding-Geng, and Yuhlong Lio. "A Family of Generalized Rayleigh-Exponential-Weibull Distribution and Its Application to Modeling the Progressively Type-I Interval Censored Data." In Emerging Topics in Statistics and Biostatistics, 529–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42196-0_23.
Full textKrupiński, Robert. "Modified Moment Method Estimator for the Shape Parameter of Generalized Gaussian Distribution for a Small Sample Size." In Computer Information Systems and Industrial Management, 420–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40925-7_39.
Full textMudasir, Sofi, and S. P. Ahmad. "Parameter Estimation of Weighted New Weibull Pareto Distribution." In Bayesian Analysis and Reliability Estimation of Generalized Probability Distributions, 13–29. AIJR Publisher, 2019. http://dx.doi.org/10.21467/books.44.2.
Full textYoussef, Bassant, Scott F. Midkiff, and Mohamed R. M. Rizk. "SNAM." In Advanced Methods for Complex Network Analysis, 215–36. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9964-9.ch009.
Full textKwitt, Roland, Peter Meerwald, and Andreas Uhl. "Blind Detection of Additive Spread-Spectrum Watermarking in the Dual-Tree Complex Wavelet Transform Domain." In Crime Prevention Technologies and Applications for Advancing Criminal Investigation, 53–65. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-1758-2.ch005.
Full textConference papers on the topic "Generalized modified Weibull distribution"
Abid, Salah Hamza, Nadia Hashim Al-Noor, and Mohammad Abd Alhussein Boshi. "On the generalized inverse Weibull distribution." In CURRENT TRENDS IN RENEWABLE AND ALTERNATE ENERGY. Author(s), 2019. http://dx.doi.org/10.1063/1.5095087.
Full textPeng, Weiwen, Hua Zhang, Hong-Zhong Huang, Zhean Gong, and Yu Liu. "Satellite reliability modeling with modified Weibull extension distribution." In 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE). IEEE, 2012. http://dx.doi.org/10.1109/icqr2mse.2012.6246218.
Full textYenilmez, Ismail, Yeliz Mert Kantar, Ibrahim Arik, and Ilhan Usta. "Analysis of the Modified Weibull Distribution for Estimation of Wind Speed Distribution." In the The International Conference. New York, New York, USA: ACM Press, 2015. http://dx.doi.org/10.1145/2832987.2833059.
Full textXiao, Han, Daquan Cai, and Wei Ou. "United Estimation of Weibull Distribution Parameters Based on Modified ABC." In 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC). IEEE, 2016. http://dx.doi.org/10.1109/imccc.2016.45.
Full textRenyan Jiang. "A modified MPS method for fitting the 3-parameter Weibull distribution." In 2013 International Conference on Quality, Reliability, Risk, Maintenance and Safety Engineering (QR2MSE). IEEE, 2013. http://dx.doi.org/10.1109/qr2mse.2013.6625731.
Full textNan Zhang, Gang Cui, and Hong-wei Liu. "A finite queuing model with generalized modified Weibull testing effort for software reliability." In 2011 International Conference on Computer Science and Network Technology (ICCSNT). IEEE, 2011. http://dx.doi.org/10.1109/iccsnt.2011.6181985.
Full textReddy, Galiveeti Hemakumar, Aditya N. Koundinya, More Raju, Sadhan Gope, and Chinmaya Behera. "Lifetime Estimation of Electrical Equipment in Distribution system using Modified 3-Parameter Weibull Distribution." In 2021 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C). IEEE, 2021. http://dx.doi.org/10.1109/icdi3c53598.2021.00013.
Full textLi, Changhai, Yunlong Teng, Lulu An, and Qiuge Dan. "Imprecise reliability of lifetime data based on three-parameter generalized inverse Weibull distribution." In 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). IEEE, 2019. http://dx.doi.org/10.1109/isgt-asia.2019.8881238.
Full textSalim, Omar M., Hassen Taher Dorrah, and Mahmoud Adel Hassan. "A Generalized Cascaded Approach to Estimate Missing Wind Data Using Multivariate Weibull Distribution Network." In 2020 12th International Conference on Electrical Engineering (ICEENG). IEEE, 2020. http://dx.doi.org/10.1109/iceeng45378.2020.9171741.
Full textMontes, Martin A., Anni K. Vuorenkoski, and Fraser R. Dalgleish. "An interpretation of underwater LiDAR waveforms based on a modified Weibull probability distribution function." In IGARSS 2016 - 2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016. http://dx.doi.org/10.1109/igarss.2016.7729978.
Full text