Contents
Academic literature on the topic 'Générateurs hydroélectriques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Générateurs hydroélectriques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Générateurs hydroélectriques"
Cluzel, Philippe. "Étude pour la réduction de l’impact des éclusées sur le fleuve Aude." E3S Web of Conferences 346 (2022): 02009. http://dx.doi.org/10.1051/e3sconf/202234602009.
Full textDissertations / Theses on the topic "Générateurs hydroélectriques"
Cyr, Charles. "Développement d'algorithmes de détection de défauts pour la maintenance prédictive de générateurs hydroélectriques." Thesis, Université Laval, 2004. http://www.theses.ulaval.ca/2004/21577/21577.pdf.
Full textNasser, Mohamed. "Supervision de sources de production d'électricité hybrides éolien/hydraulique dans les réseaux d'énergie interconnectés ou isolés." Phd thesis, Paris, ENSAM, 2011. http://pastel.archives-ouvertes.fr/pastel-00593845.
Full textAllen, Demers Louis-Alexis. "Synthèse de mécanismes pour une génératrice hydrolienne à ailes oscillantes." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24964/24964.pdf.
Full textLalande, Guillaume. "Conception d'un prototype expérimental d'hydrogénérateur à ailes oscillantes." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/26912/26912.pdf.
Full textMéhut, Arnaud. "Hydrogénérateur à ailes oscillantes : Conception d'un système de conversion électromécanique." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/27772/27772.pdf.
Full textOlaya, Sébastien. "Contribution à la modélisation multi-physique et au contrôle optimal d'un générateur houlomoteur : application à un système "deux corps"." Thesis, Brest, 2016. http://www.theses.fr/2016BRES0051/document.
Full textIn this thesis, we perform a study on a self-reacting point absorber, project FUI 12 “EM BILBOQUET”, in order to optimise energy extraction from incoming waves. Main researches use seabed for providing reference to a floating body, called buoy. However, as it is well-known that ocean energy is greater far away from the shore, sea-depth becomes a constraint. In this thesis a damping plate attached to a spar keel is proposed to allow the floating body to react against it. Energy resulting from the relative motion between the two concentric bodies i.e. the buoy and the spar is harnessed by a rack-and-pinion, which drive a permanent magnet synchronous generator through a gearbox. In the first part of the thesis we have developed a wave-to-wire model i.e. a model of the whole electro-mechanical chain from sea to grid. To this purpose we have developed our own hydrodynamic code, based on linear potential theory and on a semianalytical approach, solving the seakeeping problem. The hydrodynamic coefficients obtained such as added mass, radiation damping, and wave excitation forces are required for solving the dynamic equation based on Cummins formulation. The second part of the thesis focuses on the self-reacting point-absorber optimal control strategy and the Model Predictive Control (MPC) formulation is proposed. Objective function attempting to optimise the power generation is directly formulated as an absorbed power maximisation problem and thus no optimal references, such as buoy and/or spar velocity, are required. However, rather than using the full-order WEC model in the optimisation problem, that can be time-consuming due to its high order, and also because of the linear assumptions, we propose the use of a “phenomenologically" one-body equivalent model derived from the Thévenin’s theorem
Ercolanelli, Julien. "Étude numérique et expérimentale d'un système couplé stabilisateur et récupérateur d'énergie des vagues Experimental and numerical investigation of sloshing in anti-roll tank using effective gravity angle Experimental and numerical assessment of the performance of a new type passive anti-roll stabilisation system." Thesis, Brest, École nationale supérieure de techniques avancées Bretagne, 2019. http://www.theses.fr/2019ENTA0008.
Full textGeps Techno's development is based on an innovative concept of a floating structure intended to produce electrical energy from several renewable marine energy sources, including wave power. The wave power system developed by Geps Techno is based on circulating water and creating a vortex within it. By taking advantage of the liquid hull phenomenon, the concept can also be used as a stabilization system for a ship or any other floating platform. The short-term objective of the company is the development of this technology allowing the stabilization and recovery of wave energy and for which there remain technological obstacles to be removed in order to achieve the viability and profitability of the system. To do this, in October 2015 Geps Techno launched the IHES (Integrated Harvesting Energy System) project, which consists of building a demonstrator of its wave power platform concept. The IHES project is one of the projects of the roadmap of the "Ecological ships" plan of New Industrial France. It is supported by Bpifrance within the framework of the Investments for the Future - Industrial Projects for the Future program. In order to master the objectives of stabilization and energy recovery, Geps Techno is studying the technological aspects necessary to switch from the energy available at wave level to that available at the wave turbine turbine. The Ph.D. thesis work supported by Fourestier in May 2017 focused on a first part "Definition and control of internal flows in the wave power system". Using CFD modeling, the latter resulted in operational models characterizing internal flows. This Cifre Ph.D. thesis follows on from Fourestier's work and deals with a second part "Modeling of the coupled platform / wave power system". All of this work should lead to an operational computer code correlated with experimental results making it possible to study the internal flow and the behavior of the float subjected to swell
Podeur, Vincent. "Modélisation expérimentale et numérique du power take-off d’un bassin houlomoteur." Electronic Thesis or Diss., Brest, École nationale supérieure de techniques avancées Bretagne, 2022. http://www.theses.fr/2022ENTA0005.
Full textThe present work aims at studying the power take-off of a wave energy converter (WEC). This system is composed of a set of connected tanks. Rubber flaps are installed at tanks inlet and outlet to ensure a one-way flow direction. Thanks to wave induced motions of the supporting platform, sloshing appears inside the WEC tanks which feed a cylindrical basin with a centered drain hole at its bottom. Then, a bathtub vortex flow appears within this tank, where a vertical axis turbine is installed to harvest kinetic energy from the flow. The first phase of this research focuses on studying the steady bathtub flow. To do so, a dedicated experiment is built. Velocity field within the cylindrical basin, with and without the turbine, is studied via Particle Image Velocimetry (PIV). In addition, power production from the turbine and water level inside the tank are measured. These results are used to define starting hypothesis for developing a numerical model of the turbine. The second phase of this research focuses on studying the unsteady bathtub flow. For this purpose, a second experiment is built. This setup provides a more realistic environment, closer to what can be observed with the WEC system. PIV measurements are also used extensively to study the flow with and without the turbine. The last stage of this research focuses on the numerical modelling of the vertical axis turbine. The model is based on the potential flow theory. First, a two-dimensional approach is used to validate the early pieces of the model. Secondly, a three-dimensional approach is adopted to account for more complex flow features. Finally, numerical and experiment results are compared
Chrin, Phok. "Contribution to electric energy generation for isolated-rural areas using 2nd life components and renewable energies : modelling and control of an induction generator." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30137.
Full textCambodia is a country located in Southeast Asia, with its high potential of renewable energy resource. Even if this country has a high potential for renewable, the installed power is still not high enough to cover the whole country. About 80% of population living in rural areas and 75% of the households live without electricity. They survive by using battery, diesel engine, candle, kerosene for lighting, TV, multimedia and some other household appliances. A few of residents in northern part of the country use pico-hydro power units bought from neighbor countries in order to electrify their houses. In these systems, the output voltage and frequency are not really stable while the load under load or speed variations. Consequently, the lifetime of household appliances could be reduced or the items damaged and local repairs are needed. Moreover, millions of Cambodian people cannot access neither take an advantage from the available energy resources due to two main factors: technology barriers and high investment cost. This research aims to remove technology barriers by designing simple systems for pico-hydro power generation with fast and simple installation, suitable for local applications with high quality of electrical supply. The first part of this work briefly describes the energy situation in rural areas of Cambodia where people are facing the lack of electrical supply which. They cannot neither improve their living standard nor develop their community. Rich villagers use car battery, solar PV applications, pico-hydro power while poor villagers use candle/kerosene for lighting. Local enterprises can provide renewable energy solutions but the prices are unaffordable and far from their expectations. Therefore, an original solution is proposed in this thesis by using wasted electric and electronic equipment (second-life components) to form the new power generation systems for remote rural areas. This is frugal innovation to serve the bottom of the social pyramid. The used components are: induction machine, Uninterrupted Power Supply (UPS), power supply of a computer and other electronic equipment, etc. These wasted components can be arranged together to form a good solution with an interesting output power. The second part of this thesis presents the modelling of the power stage of three-phase induction machine as a single-phase induction generator by using one phase for excitation while the other two phases are connected in series to supply load, named "Excited Induction Generator (EIG)". Capacitor banks are added to EIG for compensating the reactive power. Capacitor values influence poles and zeros locations which are described and analyzed in the root locus according to the parameter variations. The third part of this thesis is devoted to onsite modelling of losses in induction machine. The method should achieve results simply, rapidly, without any prior information on the machine, in order to further integrate this model into energy optimization algorithms. Design of experiments is a good candidate. Experimental models of the total loss (iron loss and rotor copper losses) are proposed for motor operation and generator mode for different machines of different powers. The last part of this thesis describes output voltage/current response for both simulation results and experimental results of the induction generators. Proportional-integral and proportional-resonant controllers are tested. The implementation of closed loop controller is first achieved in an analog circuit and then, with dSPACE/MATLAB Simulink environment
Aubry, Judicaël. "Optimisation du dimensionnement d’une chaîne de conversion électrique directe incluant un système de lissage de production par supercondensateurs : application au houlogénérateur SEAREV." Thesis, Cachan, Ecole normale supérieure, 2011. http://www.theses.fr/2011DENS0042/document.
Full textThe work presented in this thesis sets forth the study of the sizing of a direct-drive electrical conversion chain for a direct wave energy converter (SEAREV). This electrical chain is made up of a permanent magnet synchronous generator attached to a pendular wheel and a power-electronic converter made up of two three-phase pulse width modulation bridge, one controlling the generator, the other allowing injecting electrical energy into the grid. In addition, an energy storage system (bank of supercapacitors) is intended to smooth the power output. The sizing of all these components needs an operating cycle optimization approach, in a system context with strong multi-physics coupling, more particularly between hydrodynamical and electromechanical parts. At first, the generator-converter set, whose role is to damp the pendular movement of an internal wheel, is optimized with a view to minimize the cost of energy (kWh production cost). This optimization, based on torque-speed operating profiles, is carried out considering a strong coupling with the wave energy converter thanks to the consideration as design variables, some relatives to the generator-converter sizing but also some relatives to the damping law of the pendular wheel. In addition, the consideration of a flux-weakening strategy, interesting to ensure a constant power operation (levelling), allows, as soon as the sizing step, to deal with the generator-converter interaction. In a second step, the rated energy capacity of the energy storage system is being optimized with a view of the minimization of its economical life-cycle cost. To do this, we define quality criteria of the power output, including one related to the flicker, and we compare three energy managment rules while taking into account the power cycling aging of the supercapacitors due to the voltage and their temperature. In a third step, from yearly sea-states data, we provide sizings of the direct-drive electrical conversion chain that are the best trades-offs in terms of total electrical produced energy and economical investment cost